Evaluation of Water Quality and Heavy Metals in Wetlands along the Yellow River in Henan Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis
2.3. Quantifying Water Quality
2.3.1. Single-Factor Water Quality Identification Index ()
2.3.2. Comprehensive Water Quality Identification Index ()
2.4. Quantifying Heavy Metal Pollution
2.5. Multivariate Analyses
3. Result and Discussion
3.1. Comprehensive Water Condition
3.1.1. Water Quality Status
3.1.2. Heavy Metal Pollution
3.2. Spatiotemporal Analysis
3.2.1. Water Parameter Seasonality
3.2.2. Analysis of Water Parameters’ Spatial Characteristics
3.3. Correlations of Heavy Metals with Water Quality
3.3.1. Pearson Correlation Analysis
3.3.2. Redundancy Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Transect Number | Location | Geographic Information | Distance to Xiaolangdi Dam |
---|---|---|---|
belt transect #01 | Wenxian-Gongyi | 113°5′41″ to 113°6′33″ E 34°0′ to 34°51′ N | 70 km |
belt transect #02 | Yuangyang-Zhengzhou | 113°40′40″ to 113°44′92″ E 34°54′8″ to 35°0′21″ N | 140 km |
belt transect #03 | Yuangyang-Zhongmu | 114°8′7″ to 114°12′10″ E 34°51′34″ to 34°59′58″ N | 190 km |
belt transect #04 | Fengqiu-Kaifeng | 114°27′36″ to 114°30′22″ E 34°51′43″ to 34°57′54″ N | 230 km |
belt transect #05 | Changyuan-Lankao | 114°30′52″ to 114°41′6″ E 34°50′58″ to 34°57′34″ N | 260 km |
References
- Söderqvist, T.; Mitsch, W.J.; Turner, R. Valuation of wetlands in a landscape and institutional perspective. Ecol. Econ. 2000, 35, 1–6. [Google Scholar] [CrossRef]
- Vélez, J.M.M.; García, S.B.; Tenorio, A.E. Policies in coastal wetlands: Key challenges. Environ. Sci. Policy 2018, 88, 72–82. [Google Scholar] [CrossRef]
- Chen, W.; Cao, C.; Liu, D.; Tian, R.; Wu, C.; Wang, Y.; Qian, Y.; Ma, G.; Bao, D. An evaluating system for wetland ecological health: Case study on nineteen major wetlands in Beijing-Tianjin-Hebei region, China. Sci. Total. Environ. 2019, 666, 1080–1088. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, J.; Madden, M.; Mao, D. China’s Wetlands: Conservation Plans and Policy Impacts. Ambio 2012, 41, 782–786. [Google Scholar] [CrossRef] [Green Version]
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 934. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Riparian, W.J.J. Wetlands. Encyclopedia of Ecology; Academic Press: Cambridge, MA, USA, 2008; pp. 3035–3044. [Google Scholar]
- Martínez-Santos, P.; De Stefano, L.; Llamas, M.R.; Martínez-Alfaro, P.E. Wetland Restoration in the Mancha Occidental Aquifer, Spain: A Critical Perspective on Water, Agricultural, and Environmental Policies. Restor. Ecol. 2008, 16, 511–521. [Google Scholar] [CrossRef]
- Verones, F.; Bartl, K.; Pfister, S.; Vílchez, R.J.; Hellweg, S. Modeling the Local Biodiversity Impacts of Agricultural Water Use: Case Study of a Wetland in the Coastal Arid Area of Peru. Environ. Sci. Technol. 2012, 46, 4966–4974. [Google Scholar] [CrossRef]
- Li, D.; Sharp, J.O.; Drewes, J.E. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments. Microb. Ecol. 2016, 71, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Wu, W.; Yang, Z.; Zhou, Y. Drivers, trends, and potential impacts of long-term coastal reclamation in China from 1985 to 2010. Estuarine Coast. Shelf Sci. 2016, 170, 83–90. [Google Scholar] [CrossRef]
- Wu, W.; Yang, Z.; Tian, B.; Huang, Y.; Zhou, Y.; Zhang, T. Impacts of coastal reclamation on wetlands: Loss, resilience, and sustainable management. Estuarine Coast. Shelf Sci. 2018, 210, 153–161. [Google Scholar] [CrossRef]
- Effendi, H. River water quality preliminary rapid assessment using pollution index. Procedia Environ. Sci. 2016, 33, 562–567. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.; Fong, D.A.; Lo, E.Y.-M.; Monismith, S.G. Thermal structure and variability of a shallow tropical reservoir. Limnol. Oceanogr. 2014, 59, 115–128. [Google Scholar] [CrossRef]
- Khan, S.J.; Deere, D.; Leusch, F.D.; Humpage, A.; Jenkins, M.; Cunliffe, D. Extreme weather events: Should drinking water quality management systems adapt to changing risk profiles? Water Res. 2015, 85, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; He, B.; Nover, D.; Yang, G.; Chen, W.; Meng, H.; Zou, S.; Liu, C. Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods. Sustainability 2016, 8, 133. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-B.; Liu, C.-W.; Liao, P.-Y.; Lee, J.-J. Spatial pattern assessment of river water quality: implications of reducing the number of monitoring stations and chemical parameters. Environ. Monit. Assess. 2014, 186, 1781–1792. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, S.; Liu, Y.; Wang, X. River ecosystem assessment and application in ecological restorations: A mathematical approach based on evaluating its structure and function. Ecol. Eng. 2015, 76, 151–157. [Google Scholar] [CrossRef]
- Peters, K.; Bundschuh, M.; Schäfer, R. Review on the effects of toxicants on freshwater ecosystem functions. Environ. Pollut. 2013, 180, 324–329. [Google Scholar] [CrossRef]
- Tang, W.; Shan, B.; Zhang, W.; Zhang, H.; Wang, L.; Ding, Y. Heavy Metal Pollution Characteristics of Surface Sediments in Different Aquatic Ecosystems in Eastern China: A Comprehensive Understanding. PLoS ONE 2014, 9, e108996. [Google Scholar] [CrossRef]
- Singh, N.; Kaur, M.; Katnoria, J.K. Spatial and Temporal Heavy Metal Distribution and Surface Water Characterization of Kanjli Wetland (a Ramsar site), India Using Different Indices. Bull. Environ. Contam. Toxicol. 2017, 99, 735–742. [Google Scholar] [CrossRef]
- Nair, M.; Jayalakshmy, K.V.; Balachandran, K.K.; Joseph, T. Bioaccumulation of Toxic Metals by Fish in a Semi-Enclosed Tropical Ecosystem. Environ. Forensics 2006, 7, 197–206. [Google Scholar] [CrossRef]
- Song, Q.; Jabeen, S.; Shamsi, I.H.; Zhu, Z.; Liu, X.; Brookes, P.C. Spatio-temporal Variability of Heavy Metal Concentrations in Soil-rice System and Its Socio-environmental Analysis. Int. J. Agric. Boil. 2016, 18, 403–411. [Google Scholar]
- Ghadouani, A.; Coggins, L.X. Science, technology and policy for Water Pollution Control at the Watershed Scale: Current issues and future challenges. Phys. Chem. Earth, Parts A/B/C 2011, 36, 335–341. [Google Scholar] [CrossRef]
- Du, J.; Wang, G.; Yang, Y.; Zhang, T.; Mao, T. Temporal and spatial variation of the distributive patterns and driving force analysis in the Yangtze River and Yellow River source regions wetland. Acta Ecol. Sin. 2015, 35, 6173–6182. [Google Scholar]
- Sun, W.; Sun, Z.; Tian, L.; Hu, X.; Long, S.; Gao, S.; Tian, P.; Hu, Y. Variation and prediction of different marsh landscapes in intertidal zone of the Yellow River Delta. Acta Ecol. Sin. 2017, 37, 215–225. [Google Scholar]
- Chen, J.; Guo, Y.; Lu, X.; Ding, S.; Su, S.; Guo, J.; Li, Q. Species diversity of herbaceous communities in the Yiluo River Basin. Acta Ecol. Sin. 2012, 32, 3021–3030. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Liang, G.; Tang, Q.; Ding, S.; Li, Q.; Zhang, X. Plant species of the non-agricultural habitats in the lower reaches of the Yellow River plain agro-landscape. Acta Ecol. Sin. 2014, 34, 789–797. [Google Scholar]
- Kazi, T.; Arain, M.; Jamali, M.; Jalbani, N.; Afridi, H.; Sarfraz, R.; Baig, J.; Shah, A.Q. Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicol. Environ. Saf. 2009, 72, 301–309. [Google Scholar] [CrossRef]
- Moore, W.A.; Kroner, R.C.; Ruchhoft, C.C. Dichromate Reflux Method for Determination of Oxygen Consumed. Anal. Chem. 1948, 21, 953–957. [Google Scholar] [CrossRef]
- Xu, Z. Single Factor Water Quality Identification Index for Environmental Quality Assessment of Surface Water. J. Tongji Univ. 2005, 33, 321–325. [Google Scholar]
- Mohan, S.V.; Nithila, P.; Reddy, S.J. Estimation of heavy metals in drinking water and development of heavy metal pollution index. J. Environ. Sci. Heal. Part A Environ. Sci. Eng. Toxicol. 1996, 31, 283–289. [Google Scholar] [CrossRef]
- Xu, Z. Comprehensive Water Quality Identification Index for Environmental Quality Assessment of Surface Water. J. Tongji Univ. 2005, 33, 482–488. [Google Scholar]
- Noori, R.; Berndtsson, R.; Hosseinzadeh, M.; Adamowski, J.F.; Abyaneh, M.R. A critical review on the application of the National Sanitation Foundation Water Quality Index. Environ. Pollut. 2019, 244, 575–587. [Google Scholar] [CrossRef]
- Prasad, B.; Bose, J. Evaluation of the heavy metal pollution index for surface and spring water near a limestone mining area of the lower Himalayas. Environ. Earth Sci. 2001, 41, 183–188. [Google Scholar] [CrossRef]
- Reza, R.; Singh, G. Heavy metal contamination and its indexing approach for river water. Int. J. Environ. Sci. Technol. 2010, 7, 785–792. [Google Scholar] [CrossRef] [Green Version]
- GB3838-2002 Environmental Quality Standards for Surface Water. Available online: http://english.mee.gov.cn/Resources/standards/water_environment/quality_standard/200710/t20071024_111792.shtml (accessed on 5 February 2020).
- Lattin, J.M.; Carroll, D.J.; Green, P.E.J.T. Analyzing Multivariate Data. Technometrics 2004, 46, 2. [Google Scholar]
- Johnson, R. Applied Multivariate Statistical Analysis. In Johnson 2002 Applied; Prentice Hall: Upper Saddle River, NJ, USA, 2002; pp. 227–490. [Google Scholar]
- Huang, J.; Ho, M.; Du, P. Assessment of temporal and spatial variation of coastal water quality and source identification along Macau peninsula. Stoch. Environ. Res. Risk A 2011, 25, 353–361. [Google Scholar] [CrossRef]
- Xu, H.; Yang, L.-Z.; Zhao, G.-M.; Jiao, J.-G.; Yin, S.-X.; Liu, Z.-P. Anthropogenic Impact on Surface Water Quality in Taihu Lake Region, China. Pedosphere 2009, 19, 765–778. [Google Scholar] [CrossRef]
- Barakat, A.; El Baghdadi, M.; Rais, J.; Aghezzaf, B.; Slassi, M. Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. Int. Soil Water Conserv. Res. 2016, 4, 284–292. [Google Scholar] [CrossRef]
- Shen, Y.-N.; Lu, J.; Chen, D.-J.; Shi, Y.-M. Response of Stream Pollution Characteristics to Catchment Land Cover in Cao-E River Basin, China. Pedosphere 2011, 21, 115–123. [Google Scholar] [CrossRef]
- Zhou, F.; Guo, H.; Liu, Y.; Jiang, Y. Chemometrics data analysis of marine water quality and source identification in Southern Hong Kong. Mar. Pollut. Bull. 2007, 54, 745–756. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q.; Yu, M.; Wu, J. Application of Multivariate Statistical Techniques to Water Quality Monitoring. China Water Wastewater 2010, 26, 120–122, 126. [Google Scholar]
- Wei, H.; Yu, H.; Zhang, G.; Pan, H.; Lv, C.; Meng, F. Revealing the correlations between heavy metals and water quality, with insight into the potential factors and variations through canonical correlation analysis in an upstream tributary. Ecol. Indic. 2018, 90, 485–493. [Google Scholar] [CrossRef]
- Dong, X.; Yang, X.; Liu, E.; Wang, R. Application of redundancy analysis in sedimentary proxies for paleolimnolo predigesting cal research: A case study of Taibai Lake. Geogr. Res. 2007, 26, 55–62. [Google Scholar]
- Zhao, Q.; Weise, L.; Li, P.; Yang, K.; Zhang, Y.; Dong, D.; Li, P.; Li, X. Ageing behavior of phenanthrene and pyrene in soils: A study using sodium dodecylbenzenesulfonate extraction. J. Hazard. Mater. 2010, 183, 881–887. [Google Scholar] [CrossRef]
- Lv, J.; Liu, Y.; Zhang, Z.; Zhou, R.; Zhu, Y. Distinguishing anthropogenic and natural sources of trace elements in soils undergoing recent 10-year rapid urbanization: a case of Donggang, Eastern China. Environ. Sci. Pollut. Res. 2015, 22, 10539–10550. [Google Scholar] [CrossRef]
- Shangguan, Y.; Wei, Y.; Wang, L.; Hou, H. Sources and Distribution of Trace Elements in Soils Near Coal-Related Industries. Arch. Environ. Con. Tox. 2016, 70, 439–451. [Google Scholar] [CrossRef]
- Legorburu, I.; Rodríguez, J.G.; Borja, Á.; Menchaca, I.; Solaun, O.; Valencia, V.; Galparsoro, I.; Larreta, J. Source characterization and spatio–temporal evolution of the metal pollution in the sediments of the Basque estuaries (Bay of Biscay). Mar. Pollut. Bull. 2013, 66, 25–38. [Google Scholar] [CrossRef]
- Alberto, W.D.; Del Pilar, D.M.; Valeria, A.M.; Fabiana, P.S.; A Cecilia, H.; Angeles, B.M.D.L. Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquía River Basin (Cordoba-Argentina). Water Res. 2001, 35, 2881–2894. [Google Scholar] [CrossRef]
- Ribaudo, M.; Heimlich, R.; Claassen, R.; Peters, M. Least-cost management of nonpoint source pollution: source reduction versus interception strategies for controlling nitrogen loss in the Mississippi Basin. Ecol. Econ. 2001, 37, 183–197. [Google Scholar] [CrossRef]
- Bu, H.; Meng, W.; Zhang, Y.; Wan, J. Relationships between land use patterns and water quality in the Taizi River basin, China. Ecol. Indic. 2014, 41, 187–197. [Google Scholar] [CrossRef]
- Dong, J.; Xia, X.; Wang, M.; Lai, Y.; Zhao, P.; Dong, H.; Zhao, Y.; Wen, J. Effect of water–sediment regulation of the Xiaolangdi Reservoir on the concentrations, bioavailability, and fluxes of PAHs in the middle and lower reaches of the Yellow River. J. Hydrol. 2015, 527, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.-J.; Shen, Z.-M.; Zhang, J.-P.; Wang, W.-H. Water quality characteristics along the course of the Huangpu River (China). J. Environ. Sci. 2007, 19, 1193–1198. [Google Scholar] [CrossRef]
- Kumari, M.; Tripathi, S.; Pathak, V.; Tripathi, B.D. Chemometric characterization of river water quality. Environ. Monit. Assess. 2013, 185, 3081–3092. [Google Scholar] [CrossRef] [PubMed]
- Khadse, G.K.; Patni, P.M.; Kelkar, P.S.; Devotta, S. Qualitative evaluation of Kanhan river and its tributaries flowing over central Indian plateau. Environ. Monit. Assess. 2008, 147, 83–92. [Google Scholar] [CrossRef]
- Noorhosseini, S.A.; Allahyari, M.S.; Damalas, C.A.; Moghaddam, S.S. RETRACTED: Public environmental awareness of water pollution from urban growth: The case of Zarjub and Goharrud rivers in Rasht, Iran. Sci. Total. Environ. 2017, 599, 2019–2025. [Google Scholar] [CrossRef]
- Liu, L.; Ding, S.; Ren, J.; Bian, Z. Effects of landscape spatial heterogeneity on surface water quality service: A case study in Yihe River basin, Henan province. Geogr. Sci. 2019, 38, 1527–1541. [Google Scholar]
- Varol, M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 2011, 195, 355–364. [Google Scholar] [CrossRef]
- Kuang, C.; Shan, Y.; Gu, J.; Shao, H.; Zhang, W.; Zhang, Y.; Zhang, J.; Liu, H. Assessment of heavy metal contamination in water body and riverbed sediments of the Yanghe River in the Bohai Sea, China. Environ. Earth Sci. 2016, 75, 14. [Google Scholar] [CrossRef]
- Kumar, M.; Rahman, M.M.; Ramanathan, A.; Naidu, R. Arsenic and other elements in drinking water and dietary components from the middle Gangetic plain of Bihar, India: Health risk index. Sci. Total. Environ. 2016, 539, 125–134. [Google Scholar] [CrossRef]
- Morabito, E.; Radaelli, M.; Corami, F.; Turetta, C.; Toscano, G.; Capodaglio, G. Temporal evolution of cadmium, copper and lead concentration in the Venice Lagoon water in relation with the speciation and dissolved/particulate partition. Mar. Pollut. Bull. 2017, 129, 884–892. [Google Scholar] [CrossRef]
- Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef] [PubMed]
- Muramoto, S.; Oki, Y. Removal of some heavy metals from polluted water by water hyacinth (Eichhornia crassipes). Bull. Environ. Contam. Toxicol. 1983, 30, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.S.; Gaur, J. Potential of Lemna polyrrhiza for removal of heavy metals. Ecol. Eng. 1995, 4, 37–43. [Google Scholar] [CrossRef]
- Odjegba, V.J.; Fasidi, I.O. Phytoremediation of heavy metals by Eichhornia crassipes. Environmentalist 2007, 27, 349–355. [Google Scholar] [CrossRef]
- Kumari, M.; Tripathi, B. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicol. Environ. Saf. 2015, 112, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J.; Březinová, T. Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: A review. Chem. Eng. J. 2016, 290, 232–242. [Google Scholar] [CrossRef]
- Simeonov, V.; Stratis, J.; Samara, C.; Zachariadis, G.; Voutsa, D.; Anthemidis, A.; Sofoniou, M.; Kouimtzis, T. Assessment of the surface water quality in Northern Greece. Water Res. 2003, 37, 4119–4124. [Google Scholar] [CrossRef]
- Vega, M.; Pardo, R.; Barrado, E.; Debán, L. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res. 1988, 32, 3581–3592. [Google Scholar] [CrossRef]
- Canli, M.; Atli, G. The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environ. Pollut. 2003, 121, 129–136. [Google Scholar] [CrossRef]
- Karlsson, K.; Viklander, M.; Scholes, L.; Revitt, M. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks. J. Hazard. Mater. 2010, 178, 612–618. [Google Scholar] [CrossRef]
- Martínez-Cortijo, J.; Ruiz-Canales, A. Effect of heavy metals on rice irrigated fields with waste water in high pH Mediterranean soils: The particular case of the Valencia area in Spain. Agric. Water Manag. 2018, 210, 108–123. [Google Scholar] [CrossRef]
- Cecilia, R.; Eduardo, Q.; Vernica, M.; Marion, P. Evaluation of water quality and heavy metal concentrations in the RAMSAR Wetland El Yali (Central Chile, 33Åã45′S). Ecol. Indic. 2019, 145, 499–507. [Google Scholar]
- Jackson, C.R. Hillslope infiltration and lateral downslope unsaturated flow. Water Resour. Res. 1992, 28, 2533–2539. [Google Scholar] [CrossRef]
Judging Basis | The Water Quality Grade |
---|---|
1.0 ≤ ≤ 2.0 | class I |
2.0 < ≤ 3.0 | class II |
3.0 < ≤ 4.0 | class III |
4.0 < ≤ 5.0 | class IV |
5.0 < ≤ 6.0 | class V |
6.0 < ≤ 7.0 | Inferior, but not black and foul |
> 7.0 | Inferior, black and foul |
SN | HPID | HPIA | HPIB |
---|---|---|---|
1-N-O-2 | 6 | 0.1626 | 10,265 |
1-S-I | 20 | 75 | 47,192 |
1-S-I-I | 37 | 99 | 2780 |
2-N-O | 55 | 0.0495 | 64,977 |
2-N-I | 25 | 0.0493 | 7885 |
2-S-I | 37 | 0.0045 | 30,030 |
3-N-O | 29 | 0.0875 | 78,995 |
3-N-I | 28 | 37 | 49,507 |
3-S-O | 32 | 0.0233 | 4796 |
3-S-I-2 | 0.1526 | 0.0626 | 10,910 |
4NO | 42 | 7 | 7197 |
4-N-I | 30 | 0.0485 | 33,280 |
4-S-O | 49 | 62 | 40,775 |
4-S-I-2 | 19 | 306 | 69,830 |
5-N-O | 19 | 33 | 42,339 |
5-N-I | 31 | 205 | 55,055 |
5-S-O | 45 | 0.0575 | 7660 |
5-S-I | 41 | 0.1054 | 39,456 |
Parameter/(mg/L) | Mean | Min | Max | SD | CV | Mean in SD/SA/SB |
---|---|---|---|---|---|---|
DO | 4.93 | 0.06 | 12.64 | 3.61 | 73.30% | 2.1/3.38/9.31 |
NH3-N | 1.41 | 0.154 | 5.984 | 1.37 | 97.36% | 1.150/2.580/0.499 |
COD | 42.97 | 1.535 | 121.3 | 29.59 | 68.85% | 44.729/51.610/32.577 |
TN | 2.15 | 0.258 | 10.161 | 2.53 | 117.63% | 2.596/3.085/0.764 |
TP | 0.27 | 0 | 3.108 | 0.64 | 236.79% | 0.637/0.113/0.062 |
As | 0.009 | 0.0008 | 0.0279 | 0.01 | 68.79% | 0.1358/0.0038/0.0107 |
Hg | 0.011 | 0 | 0.0811 | 0.02 | 189.32% | 0/4.69 × 10−5/0.0347 |
Cd | 0.026 | 0 | 0.1415 | 0.04 | 163.65% | 0.0776/2.06 × 10−6/0 |
Cr | 0.005 | 0 | 0.05858 | 0.01 | 274.42% | 0/0.0102/0.0033 |
Cu | 0.009 | 0 | 0.0582 | 0.02 | 159.74% | 0.0006/0.0245/0.0033 |
Pb | 0.010 | 0 | 0.0677 | 0.02 | 194.02% | 0.0282/0/0.0006 |
Zn | 0.027 | 0 | 0.1792 | 0.03 | 114.44% | 0.0281/3.33 × 10−7/0.0518 |
Water Quality Parameters | Principal Component | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
DO | −0.603 | −0.579 | 0.327 | −0.135 |
NH3-N | 0.695 | −0.089 | 0.055 | 0.33 |
COD | 0.398 | 0.161 | 0.261 | 0.755 |
TN | 0.555 | 0.28 | 0.591 | −0.218 |
TP | 0.269 | 0.597 | 0.554 | −0.162 |
As | −0.485 | 0.462 | −0.317 | 0.423 |
Hg | −0.662 | −0.354 | 0.363 | 0.04 |
Cd | −0.021 | 0.788 | −0.33 | −0.179 |
Cr | 0.448 | −0.504 | −0.298 | −0.205 |
Cu | 0.721 | −0.546 | −0.186 | −0.04 |
Pb | 0.036 | 0.758 | −0.096 | −0.253 |
Zn | −0.655 | 0.105 | 0.11 | 0.137 |
Characteristic root | 3.208 | 2.902 | 1.32 | 1.11 |
% of variance explained | 26.736 | 24.183 | 11.002 | 9.246 |
Cumulative % of variance | 26.736 | 50.919 | 61.921 | 71.167 |
Period | Parameter | DO | NH3-N | COD | TN | TP |
---|---|---|---|---|---|---|
SD | DO | 1 | ||||
NH3-N | −0.255 | 1 | ||||
COD | −0.02 | 0.520 * | 1 | |||
TN | 0.071 | 0.366 | 0.480 * | 1 | ||
TP | −0.047 | 0.256 | 0.414 | 0.895 ** | 1 | |
SA | DO | 1 | ||||
NH3-N | 0.035 | 1 | ||||
COD | −0.424 | 0.065 | 1 | |||
TN | 0.244 | −0.098 | −0.162 | 1 | ||
TP | 0.086 | −0.046 | 0.288 | −0.046 | 1 | |
SB | DO | 1 | ||||
NH3-N | −0.389 | 1 | ||||
COD | −0.165 | 0.26 | 1 | |||
TN | 0.365 | 0.001 | 0.376 | 1 | ||
TP | −0.201 | 0.368 | 0.565 * | 0.43 | 1 |
Period | SD | SA | SB | |||
---|---|---|---|---|---|---|
Parameters | As | Zn | As | Zn | As | Zn |
DO | −0.128 | −0.571 * | −0.050 | 0.187 | −0.513 * | −0.133 |
NH3-N | −0.068 | 0.540 * | 0.219 | −0.294 | 0.360 | 0.589 * |
COD | 0.125 | 0.001 | 0.081 | −0.141 | 0.640 ** | 0.204 |
TN | −0.496 * | 0.039 | −0.141 | −0.110 | 0.155 | −0.034 |
TP | −0.417 | −0.036 | −0.060 | 0.698 ** | 0.658 ** | 0.117 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Z.; Zhao, Q.; Chang, J.; Peng, L.; Wang, S.; Hong, Y.; Liu, G.; Ding, S. Evaluation of Water Quality and Heavy Metals in Wetlands along the Yellow River in Henan Province. Sustainability 2020, 12, 1300. https://doi.org/10.3390/su12041300
Hong Z, Zhao Q, Chang J, Peng L, Wang S, Hong Y, Liu G, Ding S. Evaluation of Water Quality and Heavy Metals in Wetlands along the Yellow River in Henan Province. Sustainability. 2020; 12(4):1300. https://doi.org/10.3390/su12041300
Chicago/Turabian StyleHong, Zhendong, Qinghe Zhao, Jinlong Chang, Li Peng, Shuoqian Wang, Yongyi Hong, Gangjun Liu, and Shengyan Ding. 2020. "Evaluation of Water Quality and Heavy Metals in Wetlands along the Yellow River in Henan Province" Sustainability 12, no. 4: 1300. https://doi.org/10.3390/su12041300
APA StyleHong, Z., Zhao, Q., Chang, J., Peng, L., Wang, S., Hong, Y., Liu, G., & Ding, S. (2020). Evaluation of Water Quality and Heavy Metals in Wetlands along the Yellow River in Henan Province. Sustainability, 12(4), 1300. https://doi.org/10.3390/su12041300