Recycling Untreated Coal Bottom Ash with Added Value for Mitigating Alkali–Silica Reaction in Concrete: A Sustainable Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Tests on Raw Materials
2.3. Fresh Properties of Mixtures Incorporating CBA
2.4. Cube and Prism Specimens
2.5. Mortar Bars
3. Results and Discussion
3.1. Characterization of Raw Materials
3.2. Flow of Mixtures Incorporating Coal Bottom Ash
3.3. Porosity and Density
3.4. Thermal Analysis
3.5. Effect of CBA on Compressive and Flexural Strength
3.6. Expansion Due to ASR
3.7. Effect of ASR on Compressive and Flexural Strengths
3.8. Microstructural and EDX Analyses
4. Conclusions
- The flow of mortar mixtures incorporating CBA decreased compared to that of the control mixture without CBA, likely due to the porous nature of CBA and its high unburnt content.
- The 28 days f’c of specimens incorporating 10% CBA was comparable to that of the control specimens without CBA. At later ages (>28 days), an increase in compressive strength for specimens incorporating 10% CBA was observed compared to that of the control specimens. Higher CBA proportions (i.e., 30% and 40%) led to decreased f’c at all testing ages due to cement dilution.
- Specimens incorporating 10% and 20% CBA had strength activity index (SAI) greater than 75%, confirming the pozzolanic nature of CBA.
- Mortar bar specimens without CBA had 0.23% and 0.28% of ASR expansion at 14 and 28 days, respectively, higher than the limits specified by ASTM C1260. The maximum expansion was 0.37% for the control specimens without CBA at 150 days.
- Specimens incorporating CBA exhibited less ASR expansion compared to that of the control specimens. For instance, mortar bars incorporating 40% CBA had expansion of 0.09% and 0.17% at 14 and 28 days, respectively.
- SEM images showed ASR microcracks in control specimens without CBA. However, specimens incorporating CBA showed no microcracking and denser microstructure.
- Using CBA as partial replacement for cement can decrease the energy consumed in cement manufacturing and the associated CO2 emissions, reduce the landfilling of CBA, while mitigating ASR expansion and the associated costly damage in concrete structures.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- ACI Committee 221. State-of-the-art report on alkali-aggregate reactivity. Am. Concr. Inst. 1998, 221, 1–23. [Google Scholar]
- Giebson, C.; Voland, K.; Meng, B.; Ludwig, H.-M. Alkali-silica reaction performance testing of concrete considering external alkalis and preexisting microcracks. Struct. Concr. 2017, 18, 528–538. [Google Scholar] [CrossRef]
- Wiedmann, A.; Weise, F.; Kotan, E.; Müller, H.S.; Meng, B. Effects of fatigue loading and alkali-silica reaction on the mechanical behavior of pavement concrete. Struct. Concr. 2017, 18, 539–549. [Google Scholar] [CrossRef]
- Chatterji, S. The role of Ca(OH)2 in the breakdown of Portland cement concrete due to alkali-silica reaction. Cem. Concr. Res. 1979, 9, 185–188. [Google Scholar] [CrossRef]
- Na, O.; Xi, Y.; Ou, E.; Saouma, V.E. The effects of alkali-silica reaction on the mechanical properties of concretes with three different types of reactive aggregate. Struct. Concr. 2016, 17, 74–83. [Google Scholar] [CrossRef]
- Saha, A.K.; Sarker, P.K. Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars. Constr. Build. Mater. 2016, 123, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Ono, K. Damaged concrete structures in Japan due to alkali silica reaction. Int. J. Cem. Compos. Light. Concr. 1988, 10, 247–257. [Google Scholar] [CrossRef]
- Stark, D. Handbook for the Identification of Alkali-Silica Reactivity in Highway Structures; SHRP-C/FR-91-101; TRB National Research Council: Washington, DC, USA, 1991; p. 49. [Google Scholar]
- Thomas, M.; Folliard, K.J.; Fournier, B.; Rivard, P.; Drimalas, T. Methods for Evaluating and Treating ASR-Affected Structures: Results of Field Application and Demonstration Projects, 2013b Volume II: Details of Field Applications and Analysis (Report FHWA-HIF-14-003); Federal Highway Administration (FHWA), U.S. Dept of Transportation: Washington, DC, USA, 2013; p. 342.
- Owsiak, Z.; Zapała-Sławeta, J.; Czapik, P. Diagnosis of concrete structures distress due to alkali-aggregate reaction. Bull. Pol. Acad. Sci. Technic. Sci. 2015, 63, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Jensen, V. Alkali–silica reaction damage to Elgeseter Bridge, Trondheim, Norway: A review of construction, research and repair up to 2003. Mater. Charact. 2004, 53, 155–170. [Google Scholar] [CrossRef]
- Munir, M.J.; Qazi, A.U.; Kazmi, S.M.S.; Khitab, A.; Ashiq, S.Z.; Ahmed, I. A literature review on alkali silica reactivity of concrete in Pakistan. Pak. J. Sci. 2016, 68, 53–62. [Google Scholar]
- Gocevski, V.; Pietruszczak, S. Assessment of the effects of slot cutting in concrete dams affected by alkali aggregate reaction. In Proceedings of the 11th International Conference on Alkali Aggregate Reaction in Concrete, Quebec City, QC, Canada, 11–16 June 2000; pp. 1303–1312. [Google Scholar]
- Cavalcanti, A.; Campos, A.; Silveria, E.; Wanderley, E. Rehabilitation of a generating unit affected by alkali-aggregate reaction. In Proceedings of the 11th International Conference on Alkali-Aggregate Reaction in Concrete, Quebec City, QC, Canada, 11–16 June 2000; pp. 1253–1262. [Google Scholar]
- US. Geological Survey. Mineral Commodity Summaries 2015. USA Geological. Survey; US. Geological Survey: Reston, VI, USA, 2015.
- Choate, W.T. Energy and Emission Reduction Opportunities for the Cement Industry. In Energy and Emission Reduction Opportunities for the Cement Industry; Office of Scientific and Technical Information (OSTI): Washington, DC, USA, 2003. [Google Scholar]
- Thomas, M. The effect of supplementary cementing materials on alkali-silica reaction: A review. Cem. Concr. Res. 2011, 41, 1224–1231. [Google Scholar] [CrossRef]
- Shehata, M.H.; Thomas, M.D.; Bleszynski, R.F. The effects of fly ash composition on the chemistry of pore solution in hydrated cement pastes. Cem. Concr. Res. 1999, 29, 1915–1920. [Google Scholar] [CrossRef]
- Saha, A.K.; Sarker, P.K.; Potential, A.S.R. expansion mitigation of ferronickel slag aggregate by fly ash. Struct. Concr. 2018, 19, 1376–1386. [Google Scholar] [CrossRef] [Green Version]
- Abbas, S.; Kazmi, S.M.; Munir, M.J. Potential of rice husk ash for mitigating the alkali-silica reaction in mortar bars incorporating reactive aggregates. Constr. Build. Mater. 2017, 132, 61–70. [Google Scholar] [CrossRef]
- Abbas, S.; Sharif, A.; Ahmed, A.; Abbass, W.; Shaukat, S. Prospective of sugarcane bagasse ash for controlling ASR in concrete incorporating reactive aggregates. Structut. Concr. 2019, 1, 1–13. [Google Scholar]
- Rafieizonooz, M.; Mirza, J.; Salim, M.R.; Hussin, M.W.; Khankhaje, E. Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Constr. Build. Mater. 2016, 116, 15–24. [Google Scholar] [CrossRef]
- Hashemi, S.S.G.; Bin Mahmud, H.; Djobo, J.N.Y.; Tan, C.G.; Ang, B.C.; Ranjbar, N. Microstructural characterization and mechanical properties of bottom ash mortar. J. Clean. Prod. 2018, 170, 797–804. [Google Scholar] [CrossRef]
- Singh, N.; Shehnaz, D.; Bhardwaj, A. Reviewing the role of coal bottom ash as an alternative of cement. Constr. Build. Mater. 2020, 233, 117276. [Google Scholar] [CrossRef]
- Izquierdo, M.; Querol, X. Leaching behaviour of elements from coal combustion fly ash: An overview. Int. J. Coal Geol. 2012, 94, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Sushil, S.; Batra, V. Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel 2006, 85, 2676–2679. [Google Scholar] [CrossRef]
- Abdulmatin, A.; Tangchirapat, W.; Jaturapitakkul, C. An investigation of bottom ash as a pozzolanic material. Constr. Build. Mater. 2018, 186, 155–162. [Google Scholar] [CrossRef]
- Kurama, H.; Kaya, M. Usage of coal combustion bottom ash in concrete mixture. Constr. Build. Mater. 2008, 22, 1922–1928. [Google Scholar] [CrossRef]
- American Coal bottom ash Association; 99/03527 Current trends in coal combustion product (CCP) production and use. Fuel Energy Abstr. 1999, 40, 376. [CrossRef]
- Kou, S.-C.; Poon, C.-S. Properties of concrete prepared with crushed fine stone, furnace bottom ash and fine recycled aggregate as fine aggregates. Constr. Build. Mater. 2009, 23, 2877–2886. [Google Scholar] [CrossRef]
- Qiao, X.; Tyrer, M.; Poon, C.; Cheeseman, C. Novel cementitious materials produced from incinerator bottom ash. Resour. Conserv. Recycl. 2008, 52, 496–510. [Google Scholar] [CrossRef]
- Zhang, B.; Poon, C.S. Use of Furnace Bottom Ash for producing lightweight aggregate concrete with thermal insulation properties. J. Clean. Prod. 2015, 99, 94–100. [Google Scholar] [CrossRef]
- Kim, H.; Lee, H. Use of power plant bottom ash as fine and coarse aggregates in high-strength concrete. Constr. Build. Mater. 2011, 25, 1115–1122. [Google Scholar] [CrossRef]
- Oruji, S.; Brake, N.A.; Guduru, R.K.; Nalluri, L.; Günaydın-Şen, Ö.; Kharel, K.; Rabbanifar, S.; Hosseini, S.; Ingram, E. Mitigation of ASR expansion in concrete using ultra-fine coal bottom ash. Constr. Build. Mater. 2019, 202, 814–824. [Google Scholar] [CrossRef]
- Gooi, S.; Mousa, A.; Kong, D. A critical review and gap analysis on the use of coal bottom ash as a substitute constituent in concrete. J. Clean. Prod. 2020, 268, 121752. [Google Scholar] [CrossRef]
- Muthusamy, K.; Jamaludin, N.F.A.; Kamaruzzaman, M.N.; Ahmad, M.Z.; Zamri, N.A.; Budiea, A.M.A. Compressive Strength of Palm Oil Clinker Lightweight Aggregate Concrete Containing Coal bottom Ash as Sand Replacement; Elsevier BV: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Arun, N.; Singh, P.; Gupta, S. Utilization of ground bottom ash in concrete. Mater. Today Proc. 2020, 32, 663–669. [Google Scholar] [CrossRef]
- Yao, Z.; Ji, X.; Sarker, P.; Tang, J.H.; Ge, L.; Xia, M.; Xi, Y. A comprehensive review on the applications of coal fly ash. Earth Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Private Power and Infrastructure Board, Pakistan Coal Power Generation Potential; Government of Pakistan: Islamabad, Pakistan, 2004; p. 77.
- Coutinho, M.; Butt, H.K. Environmental Impact Assessment Guidance for Coal Fired Power Plants in Pakistan; IUCN: Islamabad, Pakistan, 2014; p. 149. [Google Scholar]
- ASTM C1260. Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method); American Society for Testing and Materials: West Conshohocken, PA, USA, 2014; p. 5. [Google Scholar]
- ASTM C184. Standard Test Method for Fineness of Hydraulic Cement by the 150 Micrometer (no. 100) and 75 Micrometer (no. 200) Sieves; ASTM: West Conshohocken, PA, USA, 1994; p. 3. [Google Scholar]
- ASTM C204. Standard Test Methods for Fineness of Hydraulic Cement by Air Permeability Apparatus; American Society for Testing and Materials: West Conshohocken, PA, USA, 2018; p. 11. [Google Scholar]
- ASTM C188. Standard Test Method for Density of Hydraulic Cement; American Society for Testing and Materials: West Conshohocken, PA, USA, 2017; p. 3. [Google Scholar]
- ASTM C151. Standard Test Method for Autoclave Expansion of Hydraulic Cement; American Society for Testing and Materials: West Conshohocken, PA, USA, 2018; p. 4. [Google Scholar]
- ASTM C295. Standard Guide for Petrographic Examination of Aggregates for Concrete; American Society for Testing and Materials: West Conshohocken, PA, USA, 2019; p. 9. [Google Scholar]
- USEPA. TCLP Method 1311. Eff. Br. Mind. Interv. Acute Pain Exp. AnExam. Individ. Differ. 2015, 1, 1–36. [Google Scholar]
- Rafieizonooz, M.; Salim, M.R.; Mirza, J.; Hussin, M.W.; Salmiati, R.; Khan, E.K. Toxicity characteristics and durability of concrete containing coal bottom ash assubstitute for cement and river sand. Construct. Build. Mater. 2017, 143, 234–246. [Google Scholar] [CrossRef]
- ASTM C187. Standard Test Method for Amount of Water Required for Normal Consistency of Hydraulic Cement Paste; American Society for Testing and Materials: West Conshohocken, PA, USA, 2016; p. 3. [Google Scholar]
- ASTM C191. Standard Test Methods for Time of Setting of Hydraulic cement by Vicatneedle; American Society for Testing and Materials: West Conshohocken, PA, USA, 2019; p. 8. [Google Scholar]
- ASTM C1437. Standard Test Method for Flow of Hydraulic Cement Mortar; American Society for Testing and Materials: West Conshohocken, PA, USA, 2015; p. 2. [Google Scholar]
- ASTM C109. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2in. or [50 mm] Cube Specimens); ASTM: West Conshohocken, PA, USA, 2016; p. 10. [Google Scholar]
- ASTM C348. Standard Test Method for Flexural Strength of Hydraulic Cement Mortars; American Society for Testing and Materials: West Conshohocken, PA, USA, 2019; p. 6. [Google Scholar]
- ASTM C311. Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland Cement Concrete; ASTM: West Conshohocken, PA, USA, 2018; p. 11. [Google Scholar]
- ASTM C642. Standard Test Method for Density, Absorption, and Voids in Hardened Concrete; ASTM: West Conshohocken, PA, USA, 2013; p. 3. [Google Scholar]
- ASTM C490. Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete; ASTM: West Conshohocken, PA, USA, 2017; p. 5. [Google Scholar]
- Jaturapitakkul, C.; Cheerarot, R. Development of Bottom Ash as Pozzolanic Material. J. Mater. Civ. Eng. 2003, 15, 48–53. [Google Scholar] [CrossRef]
- Muthusamy, K.; Rasid, M.H.; Jokhio, G.A.; Budiea, A.M.A.; Hussin, M.W.; Mirza, J. Coal bottom ash as sand replacement in concrete: A review. Constr. Build. Mater. 2020, 236, 117507. [Google Scholar] [CrossRef]
- Wu, Z.; Naik, T. Use of Clean Coal bottom Ash for Managing ASR. Report No. CBU-2004-06, 2004; Civil Engineering Department, The University of Wisconsin-Milwaukee: Milwaukee, WI, USA, 2004; p. 12. [Google Scholar]
- Esteves, T.; Rajamma, R.; Soares, D.; Silva, A.S.; Ferreira, V.; Labrincha, J.A. Use of biomass fly ash for mitigation of alkali-silica reaction of cement mortars. Constr. Build. Mater. 2012, 26, 687–693. [Google Scholar] [CrossRef]
- Kim, H.-K. Utilization of sieved and ground coal bottom ash powders as a coarse binder in high-strength mortar to improve workability. Constr. Build. Mater. 2015, 91, 57–64. [Google Scholar] [CrossRef]
- Targan, Ş.; Olgun, A.; Erdogan, Y.; Sevinc, V. Effects of supplementary cementing materials on the properties of cement and concrete. Cem. Concr. Res. 2002, 32, 1551–1558. [Google Scholar] [CrossRef]
- Targan, S.; Olgun, A.; Erdogan, Y.; Sevinç, V. Influence of natural pozzolan, colemanite ore waste, bottom ash, and fly ash on the properties of Portland cement. Cem. Concr. Res. 2003, 33, 1175–1182. [Google Scholar] [CrossRef]
- Chusilp, N.; Jaturapitakkul, C.; Kiattikomol, K. Effects of LOI of ground bagasse ash on the compressive strength and sulfate resistance of mortars. Constr. Build. Mater. 2009, 23, 3523–3531. [Google Scholar] [CrossRef]
- Siddique, R. Compressive strength, water absorption, sorptivity, abrasion resistance and permeability of self-compacting concrete containing coal bottom ash. Constr. Build. Mater. 2013, 47, 1444–1450. [Google Scholar] [CrossRef]
- Singh, M.; Siddique, R. Strength properties and micro-structural properties of concrete containing coal bottom ash as partial replacement of fine aggregate. Constr. Build. Mater. 2014, 50, 246–256. [Google Scholar] [CrossRef]
- Oruji, S.; Brake, N.A.; Nalluri, L.; Guduru, R.K. Strength activity and microstructure of blended ultra-fine coal bottom ash-cement mortar. Constr. Build. Mater. 2017, 153, 317–326. [Google Scholar] [CrossRef]
- Cheriaf, M.; Rocha, J.; Péra, J. Pozzolanic properties of pulverized coal combustion bottom ash. Cem. Concr. Res. 1999, 29, 1387–1391. [Google Scholar] [CrossRef]
- Andrade, L.; Rocha, J.; Cheriaf, M. Influence of coal bottom ash as fine aggregate on fresh properties of concrete. Constr. Build. Mater. 2009, 23, 609–614. [Google Scholar] [CrossRef]
- USEPA (United States Environmental Protection Agency). US Environmental Protection Agency Method 1311; USAEPA: Washington, DC, USA, 1992.
- USEPA. Land Application of Sewage Sludge: A Guide for Land Appliers on the Requirements of the Federal Standards for the Use or Disposal of Sewage Sludge, 40 CFR Part 503” EPA/831-B-93-002b; USEPA: Washington, DC, USA, 1994; p. 105.
- U.S. Composting Council. Test Methods for the Examination of Composting and Compost (Interim Draft); U.S. Composting Council: Bethesda, MD, USA, 1997. [Google Scholar]
- Liu, A.; Ren, F.; Lin, W.Y.; Wang, J.-Y. A review of municipal solid waste environmental standards with a focus on incinerator residues. Int. J. Sustain. Built Environ. 2015, 4, 165–188. [Google Scholar] [CrossRef] [Green Version]
- EUR-Lex, Council decision 2003/33/EC of December 2002. Establishing Criteria and Procedures for the Acceptance of Waste at Landfills Pursuant to Article 16 of and Annex II to Director 1999/31/EC; European Union: Brussels, Belgium, 20 December 2003. [Google Scholar]
- Fytianos, K.; Tsaniklidi, B.; Voudrias, E. Leachability of heavy metals in Greek fly ash from coal combustion. Environ. Int. 1998, 24, 477–486. [Google Scholar] [CrossRef]
- Wadge, A.; Hutton, M.; Peterson, P. The concentrations and particle size relationships of selected trace elements in fly ashes from U.K. coal-fired power plants and a refuse incinerator. Sci. Total. Environ. 1986, 54, 13–27. [Google Scholar] [CrossRef]
- Hassaan, M.; El-Nemr, A.; Madkour, F. Environmental assessment of heavy metal pollution and human health risk. Am. J. Water Sci. Eng. 2016, 2, 14–19. [Google Scholar]
- Sijakova-Ivanova, T.; Panov, Z.; Blazev, K.; Zajkova-paneva, V. Investigation of fly ash heavy metals content and physico chemical properties from thermal power plant, Republic of Macedonia. Int. J. Eng. Sci. Technol. (IJEST) 2011, 3, 8219–8225. [Google Scholar]
- Llorens, J.F.; Fernandez-Turiel, J.; Querol, X. The fate of trace elements in a large coal-fired power plant. Environ. Earth Sci. 2001, 40, 409–416. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, A.; Mathur, M. Management of fly ash in India: A perspective. In Proceedings of the third International Conference on Fly Ash Utilization and Disposal, New Dehli, India, 19–21 February 2003; pp. 1–18. [Google Scholar]
- Gwenzi, W.; Mupatsi, N. Evaluation of heavy metal leaching from coal bottom ash versus conventional concrete monoliths and debris. Waste Manag. 2016, 49, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Danielowska, D. Heavy metals in fly ash from coal fired power station in Poland. Pol. J. Environ. Studies 2006, 15, 943–946. [Google Scholar]
- Tharaniyil, R. Coal Combustion Product Utilization Handbook, 3rd ed.; WE Energies Publication: Amery, WI, USA, 2013; p. 448. [Google Scholar]
- Dahl, O.; Poykio, R.; Nurmesniemi, H. Concentrations of heavy metals in fly ash from a coal-fired power plant with respect to the new Finnish limit values. J. Mater. Cycles Waste Manag. 2008, 10, 87–92. [Google Scholar] [CrossRef]
- Singh, M.; Siddique, R. Effect of coal bottom ash as partial replacement of sand on properties of concrete. Resour. Conserv. Recycl. 2013, 72, 20–32. [Google Scholar] [CrossRef]
- Aydin, E. Novel coal bottom ash waste composites for sustainable construction. Constr. Build. Mater. 2016, 124, 582–588. [Google Scholar] [CrossRef]
- Mangi, S.; Ibrahim, M.; Jamaluddin, N.; Arshad, M.; Mudjanarko, S. Recycling of coal bottom ash in concrete as a partial cementitious resource. Resources 2019, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Baite, E.; Messan, A.; Hannawi, K.; Tsobnang, F.; Prince, W. Physical and transfer properties of mortar containing coal bottom ash aggregates from Tefereyre (Niger). Constr. Build. Mater. 2016, 125, 919–926. [Google Scholar] [CrossRef]
- Filho, C.G.D.S.; Milioli, F.E. A thermogravimetric analysis of the combustion of a Brazilian mineral coal. Química Nova 2008, 31, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Mal’chik, A.G.; Litovkin, S.V.; Rodionov, P.V. Investigations of physiochemical properties of bottom ash materials for use them as secondary raw materials. Mater. Sci. Eng. 2015, 91, 1–7. [Google Scholar]
- Marinkovic, S.; Trifunovic, P.; Tobalic, R.; Matijasvic, S.; Kostic-Pulek, A. DTA/TGA studies of bottom ash from the Nikola Tesla power plant from Serbia for the purpose of its utilization in road construction. In Proceedings of the 36th International Conference of SSCHE, Matliare, Slovakia, 25–29 May 2009. [Google Scholar]
- Dos Santos, R.P.; Martins, J.; Gadelha, C.; Cavada, B.; Albertini, A.V.; Arruda, F.; Vasconcelos, M.; Teixeira, E.; Alves, F.; Filho, J.L.; et al. Coal Fly Ash Ceramics: Preparation, Characterization, and Use in the Hydrolysis of Sucrose. Sci. World J. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moropoulou, A.; Bakolas, A.; Aggelakopoulou, E. Evaluation of pozzolanic activity of natural and artificial pozzolans by thermal analysis. Thermochim. Acta 2004, 420, 135–140. [Google Scholar] [CrossRef]
- Almeida, A.E.F.D.S.; Sichieri, E.P. Thermogravimetric analyses and mineralogical study of polymer modified mortar with silica fume. Mater. Res. 2006, 9, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Alarcon-Ruiz, L.; Platret, G.; Massieu, E.; Ehrlacher, A. The use of thermal analysis in assessing the effect of temperature on a cement paste. Cem. Concr. Res. 2005, 35, 609–613. [Google Scholar] [CrossRef]
- Rajabipour, F.; Giannini, E.; Dunant, C.F.; Ideker, J.H.; Thomas, M.D. Alkali–silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps. Cem. Concr. Res. 2015, 76, 130–146. [Google Scholar] [CrossRef]
- Thomas, M. The role of calcium in alkali-silica reaction. In Material Science of Concrete—The Sidney Diamond Symposium; American Ceramic Society Bulletin: Westerville, OH, USA, 1998; pp. 325–337. [Google Scholar]
- El-Jazairi, B.; Illston, J. A simultaneous semi-isothermal method of thermogravimetry and derivative thermogravimetry, and its application to cement pastes. Cem. Concr. Res. 1977, 7, 247–257. [Google Scholar] [CrossRef]
- Aly, M.; Hashmi, M.; Olabi, A.; Messeiry, M.; Abadir, E.; Hussain, A. Effect of colloidal nano-silica on the mechanical and physical behaviour of waste-glass cement mortar. Mater. Des. 2012, 33, 127–135. [Google Scholar] [CrossRef]
- Moser, R.D.; Jayapalan, A.R.; Garas, V.Y.; Kurtis, K.E. Assessment of binary and ternary blends of metakaolin and Class C fly ash for alkali-silica reaction mitigation in concrete. Cem. Concr. Res. 2010, 40, 1664–1672. [Google Scholar] [CrossRef]
- Ranjbar, N.; Kuenzel, C. Influence of preheating of fly ash precursors to produce geopolymers. J. Am. Ceram. Soc. 2017, 100, 3165–3174. [Google Scholar] [CrossRef]
- BS EN 450-1:2012. Fly Ash for Concrete. Definition, Specifications and Conformity Criteria; BSI: London, UK; p. 34.
- Muhammad, J.; Munir, S.; Abbas, A.U.; Qazi, M.; Nehdi, S.M.; Kazmi, S. Role of test method in detection of aggregate ASR reactivity. Inst. Civil Eng. (ICE) Construct. Mater. J. 2016, 1–19. [Google Scholar]
- Saha, A.K. A comparative study between ASTM C1567 and ASTM C227 to mitigate alkali-silica reaction. Struct. Concr. 2019, 20, 420–427. [Google Scholar] [CrossRef] [Green Version]
- Nagrockiene, D.; Rutkauskas, A. The effect of fly ash additive on the resistance of concrete to alkali silica reaction. Constr. Build. Mater. 2019, 201, 599–609. [Google Scholar] [CrossRef]
- Wang, S. Cofired biomass fly ashes in mortar: Reduction of Alkali Silica Reaction (ASR) expansion, pore solution chemistry and the effects on compressive strength. Constr. Build. Mater. 2015, 82, 123–132. [Google Scholar] [CrossRef]
- Australian Standard (AS) 1141.60.1. Method for Sampling and Testing Aggregates, Potential Alkali-Silica Reactivity-Accelerated Mortar Bar Method; Standards Australia: Sydney, Australia, 2014. [Google Scholar]
- Nixon, P.J.; Sims, I. RILEM Recommended Test Method: AAR-2—Detection of Potential Alkali-Reactivity—Accelerated Mortar-Bar Test Method for Aggregates. Alkali Activ. Mater. 2015, 61–77. [Google Scholar] [CrossRef]
- Yazıcı, H. The effect of steel micro-fibers on ASR expansion and mechanical properties of mortars. Constr. Build. Mater. 2012, 30, 607–615. [Google Scholar] [CrossRef]
- Esposito, R.; Anaç, C.; Hendriks, M.A.; Çopuroğlu, O. Influence of the Alkali-Silica Reaction on the Mechanical Degradation of Concrete. J. Mater. Civ. Eng. 2016, 28, 04016007. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Thomas, R.J.; Peethamparan, S. Alkali-silica reactivity of alkali-activated concrete subjected to ASTM C 1293 and 1567 alkali-silica reactivity tests. Cem. Concr. Res. 2019, 123, 105796. [Google Scholar] [CrossRef]
- Beglarigale, A.; Yazici, H. Mitigation of Detrimental Effects of Alkali-Silica Reaction in Cement-Based Composites by Combination of Steel Microfibers and Ground-Granulated Blast-Furnace Slag. J. Mater. Civ. Eng. 2014, 26, 04014091. [Google Scholar] [CrossRef]
Cement (kg/m3) | Aggregate (kg/m3) | Water (kg/m3) |
---|---|---|
724 | 1629 | 340 |
Constituents | CaO | MgO | SiO2 | SO3 | Al2O3 | Fe2O3 | K2O | Na2O | LOI |
---|---|---|---|---|---|---|---|---|---|
Cement * | 62.08 | 1.96 | 20.85 | 2.49 | 4.88 | 3.21 | 0.74 | 0.10 | 2.78 |
Coal bottom ash * | 7.65 | 0.51 | 33.85 | 4.88 | 11.20 | 4.75 | 0.52 | 0.13 | 10.85 |
Kim (2015) [61] | 0.99 | 1.25 | 45.74 | - | 25.33 | 6.86 | 3.71 | 0.70 | 12.60 |
Kurama and Kaya (2008) [28] | 4.69 | - | 54.50 | - | 15.40 | 11.16 | - | - | 8.90 |
Siddique (2013) [65] | 1.58 | 1.19 | 57.56 | 0.02 | 21.58 | 8.56 | 1.08 | 0.14 | 5.80 |
Targan et al. (2002) [62] | 17.57 | 1.52 | 42.39 | 2.34 | 21.35 | 6.41 | 1.11 | - | 10.17 |
Singh and Siddique (2014) [66] | 4.17 | 0.82 | 47.53 | 1.00 | 20.69 | 5.99 | 0.76 | 0.33 | 0.89 |
Oruji et al. (2017) [67] | 9.50 | 1.60 | 58.70 | 0.40 | 20.10 | 6.20 | 1.00 | 0.10 | 0.80 |
Jaturapitakkul and Cheerarot (2003) [57] | 11.48 | 3.47 | 46.02 | 1.52 | 22.31 | 10.64 | 3.47 | 0.07 | 2.72 |
Hashemi et al. (2018) [23] | 4.19 | 1.24 | 50.49 | 0.10 | 27.56 | 10.93 | 0.82 | 0.57 | 1.11 |
Cheriaf et al. (1999) [68] | 0.80 | 0.60 | 56.00 | 0.10 | 26.70 | 5.80 | 2.60 | 0.20 | 4.60 |
Rafieizonooz et al. (2016) [22] | 8.70 | 0.96 | 45.30 | 0.35 | 18.10 | 19.84 | 2.48 | - | - |
Andrade et al. (2009) [69] | 0.80 | 0.60 | 56.00 | 0.10 | 26.70 | 5.80 | 2.60 | 0.20 | 4.60 |
Fly ash (FA) ** | 5.11 | 2.15 | 50.77 | 1.20 | 26.65 | 10.06 | 0.61 | 0.77 | 1.08 |
Region | Materials | Heavy Metals (ppm) | ||||
---|---|---|---|---|---|---|
Lead (Pb) | Zinc (Zn) | Copper (Cu) | Nickel (Ni) | Chromium (Cr) | ||
Pakistan * | Coal bottom ash | 18 | 60 | 23 | 27 | 18 |
CBA0 | 35 | 80 | 38 | 26 | 50 | |
CBA10 | 34 | 94 | 32 | 36 | 36 | |
CBA40 | 35 | 96 | 34 | 36 | 42 | |
Macedonia [78] | Coal ash | 50 | 191 | 80 | 68 | 114 |
Spain [79] | 52 | 221 | 72 | 88 | 134 | |
Greece [75] | 143 | 59 | 63 | - | - | |
United Kingdom [76] | 176 | - | - | - | - | |
India [80] | 54 | 69 | 83 | 56 | 145 | |
South Africa [81] | 10 | 34 | 103 | - | - | |
Poland [82] | Fly ash | 44 | 120 | 38 | 41 | 64 |
Tharaniyil (2013) [83] | 111 | 110 | 239 | 65 | 124 | |
Finland [84] | Fly ash | 25 | 72 | 34 | 50 | 35 |
Limit for earth construction agent | 300 | 200 | 400 | - | 400 | |
USEPA [47,70,71,72] | - | 300 | 2800 | 1500 | - | 1200 |
Sludge | 840 | - | 4300 | 420 | 3000 | |
EUR, 2003 [74] | Hazardous waste | 50 | 200 | 100 | 40 | 70 |
Hassaan et al. (2016) [77] | Sediment quality (Heavily polluted) | - | >200 | >50 | >50 | - |
Properties | Coal Bottom Ash | Cement | Limits for Cement | Standards |
---|---|---|---|---|
Specific gravity | 2.35 | 3.12 | 3.10—3.25 | ASTM C188 |
Fineness (Passing 200 sieve) (%) | >95 | 95 | >90 | ASTM C204 |
Blaine fineness (cm2/g) | 4355 | 3015 | >2250 | ASTM C184 |
Unit weight (kg/m3) | 364 | 1545 | -- | -- |
Autoclave expansion (%) | - | 0.10 | 0.20 * | ASTM C151 |
Standard consistency (%) | - | 25.5 | -- | ASTM C187 |
Initial setting time (Minutes) | 210 | 170 | >45 | ASTM C191 |
Final setting time (Minutes) | 335 | 295 | <375 | ASTM C191 |
Properties | Tests | Results |
---|---|---|
Physical | Voids content (%) | 40.71 |
Bulk density (kg/m3) | 1448.00 | |
Specific gravity | 2.60 | |
Water absorption (%) | 2.20 | |
Impact value (%) | 22.31 | |
Crushing value (%) | 24.58 | |
Chemical | Calcium oxide (%) | 3.60 |
Magnesium oxide (%) | 2.40 | |
Loss on ignition (%) | 7.80 | |
Silica (%) | 77.20 | |
Alkali metals (%) | 0.40 | |
Ferric oxide (%) | 4.38 | |
Alumina (%) | 4.02 |
Rock Types | Percentage (%) | |
---|---|---|
Sandstone (85%) | Quartz (monocrystalline) | 43 |
Quartz * (Polycrystalline) | 35 | |
Plagioclase | 9 | |
Ferruginous clays * | 6 | |
Quartzite | 3 | |
Amphibole | 1 | |
Opaque minerals | 3 | |
Siltstone (4%) | Quartz (monocrystalline) | 69 |
Quartz * (Polycrystalline) | 9 | |
Feldspar | 19 | |
Ferruginous clays | 1 | |
Amphibole | 1 | |
Ores | 1 | |
Shale * (11%) | Ferruginous clays * | 75 |
Quartz * | 25 |
Mixtures | CBA0 | CBA10 | CBA10 | CBA10 | CBA10 |
---|---|---|---|---|---|
Flow (mm) | 113 | 109 | 107 | 104 | 101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, S.; Arshad, U.; Abbass, W.; Nehdi, M.L.; Ahmed, A. Recycling Untreated Coal Bottom Ash with Added Value for Mitigating Alkali–Silica Reaction in Concrete: A Sustainable Approach. Sustainability 2020, 12, 10631. https://doi.org/10.3390/su122410631
Abbas S, Arshad U, Abbass W, Nehdi ML, Ahmed A. Recycling Untreated Coal Bottom Ash with Added Value for Mitigating Alkali–Silica Reaction in Concrete: A Sustainable Approach. Sustainability. 2020; 12(24):10631. https://doi.org/10.3390/su122410631
Chicago/Turabian StyleAbbas, Safeer, Uzair Arshad, Wasim Abbass, Moncef L. Nehdi, and Ali Ahmed. 2020. "Recycling Untreated Coal Bottom Ash with Added Value for Mitigating Alkali–Silica Reaction in Concrete: A Sustainable Approach" Sustainability 12, no. 24: 10631. https://doi.org/10.3390/su122410631
APA StyleAbbas, S., Arshad, U., Abbass, W., Nehdi, M. L., & Ahmed, A. (2020). Recycling Untreated Coal Bottom Ash with Added Value for Mitigating Alkali–Silica Reaction in Concrete: A Sustainable Approach. Sustainability, 12(24), 10631. https://doi.org/10.3390/su122410631