Utilization of Evolutionary Plant Breeding Increases Stability and Adaptation of Winter Wheat Across Diverse Precipitation Zones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Creation of the Evolving Populations
2.2. Genetic Markers
2.3. Experimental Design
2.4. Data Collection
2.4.1. Agronomic Data
2.4.2. End-Use Quality Data
2.4.3. Disease Evaluation
2.5. Statistical Analysis
3. Results
3.1. Genetic Marker Analysis
3.2. Trait Analysis
3.3. Location Analysis
3.4. Stability Analysis
3.5. Selection and Indices
4. Discussion
4.1. Genetic Diversity
4.2. Performance
4.3. Stability
4.4. Selection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Acquaah, G. Principles of Plant Genetics and Breeding, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2012. [Google Scholar]
- Bernardo, R. Essentials of Plant Breeding; Stemma Press: Woodbury, MN, USA, 2014; ISBN 978-0-9720724-2-7. [Google Scholar]
- Döring, T.F.; Knapp, S.; Kovacs, G.; Murphy, K.; Wolfe, M.S. Evolutionary Plant Breeding in Cereals—Into a New Era. Sustainability 2011, 3, 1944–1971. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.L.; Wolfe, M.S. Evolutionary plant breeding for low input systems. J. Agric. Sci. 2005, 143, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Knapp, S.; Döring, T.F.; Jones, H.E.; Snape, J.; Wingen, L.U.; Wolfe, M.S.; Leverington-Waite, M.; Griffiths, S. Natural selection towards wild-type in composite cross populations of winter wheat. Front. Plant. Sci. 2020, 10, 1757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccarelli, S.; Grando, S.; Maatougui, M.; Michael, M.; Slash, M.; Haghparast, R.; Rahmanian, M.; Taheri, A.; Al-Yassin, A.; Benbelkacem, A.; et al. Plant breeding and climate changes. J. Agric. Sci. 2010, 148, 627–637. [Google Scholar] [CrossRef]
- Murphy, K.M.; Carter, A.H.; Jones, S.S. Evolutionary breeding and climate change. In Genomics and Breeding for Climate-Resilient Crops; Springer: Berlin, Germany, 2013; pp. 377–389. [Google Scholar]
- Suneson, C.A. An Evolutionary Plant Breeding Method1. Agron. J. 1956, 48, 188. [Google Scholar] [CrossRef]
- Murphy, K.; Lammer, D.; Lyon, S.; Carter, B.; Jones, S.S. Breeding for organic and low-input farming systems: An evolutionary–participatory breeding method for inbred cereal grains. Renew. Agric. Food Syst. 2005, 20, 48–55. [Google Scholar] [CrossRef]
- Döring, T.F.; Annicchiarico, P.; Clarke, S.; Haigh, Z.; Jones, H.E.; Pearce, H.; Snape, J.; Zhan, J.; Wolfe, M.S. Comparative analysis of performance and stability among composite cross populations, variety mixtures and pure lines of winter wheat in organic and conventional cropping systems. Field Crops Res. 2015, 183, 235–245. [Google Scholar] [CrossRef]
- Döring, T.; Wolfe, M.; Jones, H.; Pearce, H.; Zhan, J. Breeding for resilience in wheat-Nature’s choice. In Proceedings of the Breeding for Resilience: A Strategy for Organic and Low-Input Farming Sytems? Eucarpia 2nd Conference of the Organic and Low-Input Agriculture Section, Paris, France, 1–3 December 2010; pp. 47–50. [Google Scholar]
- Soliman, K.M.; Allard, R.W. Grain Yield of Composite Cross Populations of Barley: Effects of Natural Selection. Crop Sci. 1991, 31, 705. [Google Scholar] [CrossRef]
- Lammerts van Bueren, E.T.; Jones, S.S.; Tamm, L.; Murphy, K.M.; Myers, J.R.; Leifert, C.; Messmer, M.M. The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. NJAS—Wagening. J. Life Sci. 2011, 58, 193–205. [Google Scholar] [CrossRef]
- Brumlop, S.; Pfeiffer, T.; Finckh, M.R. Evolutionary Effects on Morphology and Agronomic Performance of Three Winter Wheat Composite Cross Populations Maintained for Six Years under Organic and Conventional Conditions. Org. Farming 2017, 3, 34–50. [Google Scholar] [CrossRef] [Green Version]
- Zenghelis, D. Stern Review: The Economics of Climate Change; HM Treasury: London, UK, 2006; pp. 686–702. [Google Scholar]
- Schillinger, W.F.; Papendick, R.I.; Guy, S.O.; Rasmussen, P.E. Dryland Agriculture, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 2006; Volume 23. [Google Scholar]
- Peterson, C.J.; Allan, R.E.; Rubenthaler, G.L.; Line, R.F. Registration of ‘Eltan’wheat. Crop Sci. 1991, 31, 1704. [Google Scholar]
- Peterson, C.J.; Allan, R.E.; Rubenthaler, G.L.; Hoffmann, J.A.; George, D.W.; Vogel, O.A. Lewjain wheat. Crop Sci. 1983, 23, 1014. [Google Scholar] [CrossRef]
- Kronstad, W.E.; Rohde, C.R.; Kolding, M.F.; Metzger, R.J. Registration of Stephens Wheat1 (Reg. No. 614). Crop Sci. 1978, 18, 1097. [Google Scholar] [CrossRef]
- Cavanagh, C.R.; Chao, S.; Wang, S.; Huang, B.E.; Stephen, S.; Kiani, S.; Forrest, K.; Saintenac, C.; Brown-Guedira, G.L.; Akhunova, A. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc. Natl. Acad. Sci. USA 2013, 110, 8057–8062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Yearly Data | AgWeatherNet at Washington State University. Available online: http://weather.wsu.edu/?p=93250 (accessed on 26 November 2019).
- Divisional Data Select. Available online: https://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp# (accessed on 16 July 2020).
- Knott, C.A. AGR-224: Identifying Wheat Growth Stages; University of Kentucky: Lexington, KY, USA, 2016. [Google Scholar]
- Line, R.F.; Qayoum, A. Virulence, Aggressiveness, Evolution and Distribution of Races of Puccinia striiformis (the Cause of Stripe Rust of Wheat) in North America, 1968–1987; Technical Bulletin USA; United States Department of Agriculture: Washington, DC, USA, 1992. [Google Scholar]
- Peterson, R.F.; Campbell, A.B.; Hannah, A.E. A Diagrammatic Scale for Estimating Rust Intensity on Leaves and Stems of Cereals. Can. J. Res. 1948, 26c, 496–500. [Google Scholar] [CrossRef]
- Robinson, G.K. That BLUP is a Good Thing: The Estimation of Random Effects. Stat. Sci. 1991, 6, 15–32. [Google Scholar] [CrossRef]
- De Mendiburu, F.; de Mendiburu, M.F. Package ‘agricolae: Statistical Procedures for Agricultural Research’; R Package Version 2019, 1.3-1; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Alvarado, G.; López, M.; Vargas, M.; Pacheco, Á.; Rodríguez, F.; Burgueño, J.; Crossa, J. META-R (Multi Environment Trail Analysis with R for Windows); Version 6.04; CIMMYT Research Data and Software Repository Network: Mexico City, Mexico, 2019. [Google Scholar]
- Purchase, J.L. Parametric Analysis to Describe Genotype × Environment Interaction and Yield Stability in Winter Wheat. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 1997. [Google Scholar]
- Shukla, G.K. Some statistical aspects of partitioning genotype environmental components of variability. Heredity 1972, 29, 237–245. [Google Scholar] [CrossRef]
- Wricke, G. On a method of understanding the biological diversity in field research. Z Pflanzenzucht 1962, 47, 92–96. [Google Scholar]
- Eberhart, S.T.; Russell, W.A. Stability parameters for comparing varieties 1. Crop Sci. 1966, 6, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.S. Simultaneous selection for yield and stability in crop performance trials: Consequences for growers. Agron. J. 1993, 85, 754–757. [Google Scholar] [CrossRef]
- Dia, M.; Wehner, T.C.; Arellano, C. RGxE: An R Program for Genotype x Environment Interaction Analysis. Am. J. Plant. Sci. 2017, 8, 1672–1698. [Google Scholar] [CrossRef] [Green Version]
- Olivoto, T.; Lúcio, A.D. metan: An R package for multi-environment trial analysis. Methods Ecol. Evol. 2020, 11, 783–789. [Google Scholar] [CrossRef]
- Dia, M.; Wehner, T.C.; Hassell, R.; Price, D.S.; Boyhan, G.E.; Olson, S.; King, S.; Davis, A.R.; Tolla, G.E.; Bernier, J. Value of Locations for Representing Mega-Environments and for Discriminating Yield of Watermelon in the US. Crop Sci. 2016, 56, 1726–1735. [Google Scholar] [CrossRef]
- Dia, M.; Wehner, T.C.; Perkins-Veazie, P.; Hassell, R.; Price, D.S.; Boyhan, G.E.; Olson, S.M.; King, S.R.; Davis, A.R.; Tolla, G.E. Stability of fruit quality traits in diverse watermelon cultivars tested in multiple environments. Hortic. Res. 2016, 3, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, W. Crop Variety Trials: Data Management and Analysis; John Wiley & Sons, Blackwell: Hoboken, NJ, USA, 2014; ISBN 978-1-118-68856-4. [Google Scholar]
- Luu, K.; Bazin, E.; Blum, M.G.B. pcadapt: An R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Resour. 2017, 17, 67–77. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Pearson Education Limited: Harlow Essex, England, 1996. [Google Scholar]
- Bernardo, R. breeding for Quantitative Traits in Plants, 2nd ed.; Stemma Press: Woodbury, MN, USA, 2010; ISBN 978-0-9720724-1-0. [Google Scholar]
- Carver, B.F. Wheat: Science and Trade; Wiley-Blackwell: Ames, IA, USA, 2009. [Google Scholar]
- Case, A.J.; Naruoka, Y.; Chen, X.; Garland-Campbell, K.A.; Zemetra, R.S.; Carter, A.H. Mapping Stripe Rust Resistance in a BrundageXCoda Winter Wheat Recombinant Inbred Line Population. PLoS ONE 2014, 9, e91758. [Google Scholar] [CrossRef] [Green Version]
- Jackson, L.F. Conservation of Scald Resistance in Barley Composite Cross Populations. Phytopathology 1978, 68, 645. [Google Scholar] [CrossRef]
- Buzzell, R.I.; Haas, J.H. Natural and Mass Selection Estimates of Relative Fitness for the Soybean rps Gene 1. Crop Sci. 1972, 12, 75–76. [Google Scholar] [CrossRef]
- Hartwig, E.E.; Kilen, T.C.; Young, L.D.; Edwards, C.J., Jr. Effects of Natural Selection in Segregating Soybean Populations Exposed to Phytophthora Rot or Soybean Cyst Nematodes 1. Crop Sci. 1982, 22, 588–590. [Google Scholar] [CrossRef]
- Muona, O.; Allard, R.W.; Webster, R.K. Evolution of resistance to Rhynchosporium secalis (Oud.) Davis in barley composite cross II. Theor. Appl. Genet. 1982, 61, 209–214. [Google Scholar] [CrossRef]
- Dudley, J.W. From Means to QTL: The Illinois Long-Term Selection Experiment as a Case Study in Quantitative Genetics. Crop Sci. 2007, 47, S-20–S-31. [Google Scholar] [CrossRef]
- Flores, F.; Moreno, M.T.; Cubero, J.I. A comparison of univariate and multivariate methods to analyze G × E interaction. Field Crops Res. 1998, 56, 271–286. [Google Scholar] [CrossRef]
- Dia, M.; Wehner, T.C.; Hassell, R.; Price, D.S.; Boyhan, G.E.; Olson, S.; King, S.; Davis, A.R.; Tolla, G.E. Genotype × environment interaction and stability analysis for watermelon fruit yield in the United States. Crop Sci. 2016, 56, 1645–1661. [Google Scholar] [CrossRef]
- Choi, H.; Esser, A.; Murphy, K.M. G × E interaction and stability of β-glucan content in barley in the palouse region of Eastern Washington. Crop Sci. 2020, 60. [Google Scholar] [CrossRef]
- Frey, K.J.; Maldonado, U. Relative Productivity of Homogeneous and Heterogeneous Oat Cultivars in Optimum and Suboptimum Environments 1. Crop Sci. 1967, 7, 532–535. [Google Scholar] [CrossRef]
- Mundt, C.C. Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol. 2002, 40, 381–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, L.H.; Atkins, R.E. Effect of natural selection in segregating generations upon bulk populations in barley. Iowa St. Coll. J. Sci. 1954, 29, 147–162. [Google Scholar]
- Hockett, E.A.; Eslick, R.F.; Qualset, C.O.; Dubbs, A.L.; Stewart, V.R. Effects of Natural Selection in Advanced Generations of Barley Composite Cross II 1. Crop Sci. 1983, 23, 752–756. [Google Scholar] [CrossRef]
Population | Pedigree | Environmental Suitability of Parents |
---|---|---|
101 * | Eltan/WA007933 | Low Precipitation |
102 * | Lewjain/WA007933 | Low Precipitation |
103 † | equal parts Eltan/WA007933 and Lewjain/WA007933 | Low Precipitation |
104 * | Albion/WA007933 | High Precipitation |
105 * | Stephens/WA007933 | High Precipitation |
106 † | equal parts Albion/WA007933 and Stephens/WA007933 | High Precipitation |
107 * | WA007933/Sorbas | - |
Location | 2011 | 2012 | |
---|---|---|---|
Pullman | Precipitation | 423.67 mm Precipitation | 496.32 mm Precipitation |
Temperature | 7.7 °C | 8.8 °C | |
Central Ferry | Precipitation | 600 mm Irrigated 219.5 mm Precipitation | 600 mm Irrigated 352.0 Precipitation |
Temperature | 9.7 °C | 10.7 °C | |
Lind | Precipitation | 163.83 mm Precipitation | 308.10 mm Precipitation |
Temperature | 9.0 °C | 10.1 °C |
YIELD † | HD | PH | TW | PROT | HARD | IT | SEV | |
---|---|---|---|---|---|---|---|---|
Year | 2.09 | 12,229.97 *** | 1.61.98 *** | 10.47 ** | 2.02 | 35.30 *** | 53.37 *** | 175.08 *** |
Location | 1897.24 *** | 21,159.68 *** | 1282.93 *** | 214.28 *** | 664.95 *** | 746.81 *** | 55.56 *** | 164.14 *** |
Genotype | 7.89 *** | 46.60 *** | 32.04 *** | 3.44 *** | 3.14 *** | 38.05 *** | 4.72 *** | 19.93 *** |
Block | 7.06 *** | 15.37 *** | 47.06 *** | 36.55 *** | 21.06 *** | 24.58 *** | 8.06 *** | 77.30 *** |
Year:Genotype | 1.98 ** | 1.67 * | 1.72 * | 0.47 | 0.95 | 1.92 ** | 2.44 *** | 3.63 *** |
Location:Genotype | 2.66 *** | 1.71 ** | 2.55 *** | 1.19 | 1.06 | 0.91 | 0.88 | 3.47 *** |
Year:Location:Genotype | 2.20 *** | 1.17 | 1.10 | 0.46 | 1.00 | 1.17 | 1.68 * | 8.54 *** |
R2 | 0.90 | 0.99 | 0.90 | 0.71 | 0.83 | 0.90 | 0.52 | 0.86 |
DF | 300 | 300 | 300 | 150 | 150 | 150 | 200 | 200 |
Mean | 4865.00 | 158.00 | 48.00 | 76.20 | 12.20 | 37.40 | 4.80 | 19.00 |
CV | 10.00 | 0.61 | 4.80 | 2.40 | 5.50 | 9.50 | 25.00 | 30.00 |
LSD | 319.00 | 0.64 | 1.50 | 1.50 | 0.5 | 2.9 | 0.94 | 4.50 |
Heritability | 0.63 | 0.92 | 0.90 | 0.73 | 0.71 | 0.92 | 0.38 | 0.78 |
Location | YIELD † | HD | PH | TW | PROT | HARD | IT | SEV |
---|---|---|---|---|---|---|---|---|
Central Ferry | 4268 *** | 153 ** | 47 *** | 73.0 *** | 13.9 *** | 47.7 *** | 4 *** | 20 *** |
Lind | 3537 * | 151 * | 42 *** | 77.9 ** | 12.4 *** | 36.7 *** | 5 *** | 12 *** |
Pullman | 6792 * | 171 | 55 *** | 77.4 *** | 10.5 | 28.2 *** | 6 *** | 22 *** |
Pullman. | YIELD † | HD | PH | TW | PROT | HARD | IT | SEV |
Year | 0.07 | 8330.80 *** | 350.44 *** | 460.42 *** | 168.84 *** | 97.34 *** | 5.87 * | 135.99 *** |
Genotype | 7.29 *** | 27.99 *** | 43.84 *** | 26.68 *** | 2.42 ** | 18.34 *** | 1.55 | 6.66 *** |
Block | 3.67 ** | 1.37 | 1.31 | 4.31 * | 17.96 *** | 2.67 | 12.08 *** | 2.02 |
Year:Genotype | 1.79 * | 1.47 | 1.59 * | 4.32 *** | 1.14 | 1.09 | 1.37 | 3.36 *** |
R2 | 0.55 | 0.98 | 0.90 | 0.91 | 0.66 | 0.83 | 0.30 | 0.75 |
DF | 128.00 | 128.00 | 128.00 | 64.00 | 64.00 | 64.00 | 64.00 | 64.00 |
Mean | 6792.00 | 171.00 | 55.00 | 77.00 | 10.00 | 28.00 | 5.80 | 22.00 |
CV | 5.90 | 0.41 | 2.70 | 0.54 | 4.00 | 11.00 | 25.00 | 26.00 |
LSD | 461.00 | 0.80 | 1.70 | 0.59 | 0.59 | 4.20 | 2.00 | 7.90 |
Lind | YIELD | HD | PH | TW | PROT | HARD | IT | SEV |
Year | 42.29 *** | 6167.22 *** | 152.25 *** | 200.40 *** | 40.15 *** | 49.02 *** | - | - |
Genotype | 2.14 ** | 11.36 *** | 13.52 *** | 6.66 *** | 3.94 *** | 11.20 *** | 1.96 * | 6.12 *** |
Block | 3.80 ** | 0.98 | 9.83 *** | 8.59 *** | 4.42 | 3.21 * | 2.23 | 11.04 *** |
Year:Genotype | 2.56 *** | 1.76 * | 2.47 *** | 1.05 | 0.90 | 2.42 ** | - | - |
R2 | 0.41 | 0.97 | 0.76 | 0.75 | 0.50 | 0.76 | 0.25 | 0.65 |
DF | 128.00 | 128.00 | 128.00 | 64.00 | 64.00 | 64.00 | 64.00 | 64.00 |
Mean | 3537.00 | 151.00 | 42.00 | 78.00 | 12.00 | 37.00 | 5.20 | 12.00 |
CV | 8.50 | 0.67 | 3.90 | 0.70 | 3.20 | 9.10 | 15.00 | 45.00 |
LSD | 342.00 | 1.20 | 1.90 | 0.77 | 0.57 | 4.70 | 1.20 | 8.70 |
Central Ferry | YIELD | HD | PH | TW | PROT | HARD | IT | SEV |
Year | 9.51 ** | 3480.64 *** | 195.52 *** | 78.73 *** | 45.80 *** | 133.51 *** | 42.97 *** | 889.59 |
Genotype | 2.93 *** | 11.14 *** | 3.07 *** | 1.23 | 1.27 | 12.92 *** | 2.11 ** | 9.04 |
Block | 6.57 *** | 19.87 *** | 4.77 ** | 12.75 *** | 5.60 ** | 3.52 * | 3.35 * | 6.94 |
Year:Genotype | 1.86 ** | 1.57* | 0.77 | 0.40 | 1.01 | 1.58 | 1.27 | 7.93 |
R2 | 0.38 | 0.95 | 0.58 | 0.41 | 0.33 | 0.81 | 0.33 | 0.88 |
DF | 128.00 | 128.00 | 128.00 | 64.00 | 64.00 | 64.00 | 128.00 | 128.00 |
Mean | 4268.00 | 153.00 | 47.00 | 73.00 | 13.90 | 47.70 | 4.00 | 20.00 |
CV | 16.00 | 0.75 | 9.60 | 4.40 | 7.10 | 8.50 | 34.00 | 31.00 |
LSD | 798.00 | 1.30 | 5.20 | 4.5 | 1.4 | 5.8 | 1.60 | 7.10 |
Grain Yield (kg ha−1) | Grain Protein Concentration (g kg−1) | Disease Severity (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotype | (ASV) | (ASV) | (ASV) | |||||||||
8BPCF101 | 6 | 14 | 7 | 5 | 7 | 7 | 2 | 4 | 11 | 7 | 20 | 3 |
8BPCF102 | 18* | 13 | 6 | 7 | 24 | 15 | 9 | 19 | 10 | 8 | 17 | 1 |
8BPCF103 | 21 | 19 | 14 | 16 | 16 | 8 | 3 | 16 | 15 | 9 | 5 | 14 |
8BPCF104 | 13 | 22 | 21 | 13 | 22 | 13 | 6 | 26 | 14 | 11 | 3 | 18 |
8BPCF105 | 19* | 12 | 17 | 17 | 1 | 3 | 11 | 1 | 16 | 14 | 11 | 10 |
8BPCF106 | 14 | 17 | 10 | 10 | 19 | 24 | 21 | 12 | 17 | 24* | 23 | 19 |
8BPCF107 | 23 ** | 25 ** | 24 | 15 | 15 | 14 | 19 | 9 | 2 | 6 | 12 | 17 |
8BPL101 | 15 | 10 | 3 | 2 | 20 | 19 | 20 | 21 | 13 | 21 | 14 | 7 |
8BPL102 | 5 | 15 | 13 | 9 | 8 | 4 | 4 | 13 | 8 | 15 | 7 | 6 |
8BPL103 | 12 | 7 | 15 | 22 | 25 | 9 | 7 | 23 | 7 | 18 | 13 | 8 |
8BPL104 | 4 | 2 | 19 | 11 | 10 * | 21 | 17 | 2 | 12 | 4 | 1 | 5 |
8BPL105 | 11 | 16 | 12 | 18 | 9 | 11 | 12 | 10 | 23 | 2 | 19 | 15 |
8BPL106 | 22* | 21 | 18 | 24 | 6 | 22 | 25 | 11 | 21 | 16 | 8 | 4 |
8BPL107 | 10 | 23 | 22 | 4 | 18 ** | 17 | 10 | 24 | 6 | 20 | 16 | 20 |
8BPP101 | 2 | 1 | 8 | 6 | 17 | 18 | 23 | 20 | 1 | 5 | 6 | 11 |
8BPP102 | 20 | 6 | 4 | 19 | 14 | 5 | 18 | 18 | 22 ** | 25 * | 22 | 13 |
8BPP103 | 17 | 5 | 2 | 14 | 4 | 10 | 15 | 7 | 9 | 19 | 10 | 9 |
8BPP104 | 9 | 9 | 11 | 8 | 11 | 20 | 14 | 3 | 19 | 23 | 18 | 22 |
8BPP105 | 8 | 3 | 9 | 12 | 3 | 6 | 13 | 17 | 20 | 17 | 9 | 12 |
8BPP106 | 1 | 11 | 5 | 3 | 12 | 2 | 1 | 8 | 3 | 1 | 4 | 2 |
8BPP107 | 3 | 8 | 1 | 1 | 2 | 1 | 8 | 5 | 5 | 3 | 2 | 16 |
Albion | 7 | 4 | 25 | 23 | 26 | 23 | 26 | 25 | 26 | 22 | 24 | 25 |
Eltan | 24 ** | 20 | 20 | 21 | 21 | 16 | 16 | 22 | 25 * | 26 ** | 25 | 21 |
Lewjain | 16 | 18 | 16 | 20 | 23 * | 25 | 22 | 14 | 24 | 10 | 26 | 26 |
Stephens | 25 ** | 26 ** | 26 | 25 | 13 | 26 | 24 | 6 | 18 | 12 | 15 | 23 |
WA007933 | 26 * | 24 * | 23 | 26 | 5 | 12 | 5 | 15 | 4 | 13 | 21 | 24 |
Grain Yield (kg ha−1) | Grain Protein Concentration (g kg−1) | Disease Severity (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotype | Mean | Rank | YSi | AYSI | Mean | Rank | YSi | AYSI | Mean | Rank | YSi | AYSI |
8BPCF101 | 4868 defghi | 13 | 15 + | 13 | 12.2 bcdef | 13 | 13 | 16 | 20 def | 9 | 17 + | 10 |
8BPCF102 | 4584 ijkl | 23 | 3 | 23 | 12.1 bcdef | 18 | 8 | 17 | 22 de | 10 | 18 + | 9 |
8BPCF103 | 5089 cde | 6 | 22 + | 6 | 12.3 bc | 6 | 22 + | 5 | 15 ghij | 21 | 5 | 21 |
8BPCF104 | 4771 efghij | 14 | 12 | 14 | 12.0 bcdef | 21 | 5 | 10 | 27 bc | 2 | 27 + | 3 |
8BPCF105 | 5119 cd | 5 | 23 + | 5 | 12.1 bcdef | 17 | 9 | 19 | 18 efgh | 17 | 9 | 18 |
8BPCF106 | 5063 cde | 7 | 21 + | 7 | 12.1 bcdef | 15 | 11 | 6 | 22 de | 8 | 18 + | 6 |
8BPCF107 | 4461 jkl | 24 | −3 | 24 | 13.0 a | 2 | 27 + | 2 | 10 k | 25 | 0 | 25 |
8BPL101 | 4741 fghijk | 16 | 10 | 16 | 12.4 bc | 5 | 23 + | 4 | 16 fghi | 19 | 7 | 20 |
8BPL102 | 4962 cdefg | 10 | 18 + | 10 | 12.1 bcdef | 19 | 7 | 21 | 18 efgh | 15 | 11 | 14 |
8BPL103 | 4450 kl | 25 | 0 | 25 | 12.3 bcde | 9 | 19 + | 18 | 19 defgh | 13 | 13 + | 11 |
8BPL104 | 4599ijk | 22 | 4 | 22 | 12.3 bcde | 8 | 20 + | 12 | 23 cd | 5 | 23 + | 8 |
8BPL105 | 4741 fghijk | 15 | 11 | 15 | 12.3 bcde | 10 | 18 + | 11 | 20 def | 12 | 16 + | 13 |
8BPL106 | 5200 bc | 3 | 25 + | 3 | 11.9 cdefg | 22 | 2 | 22 | 22 de | 7 | 21 + | 7 |
8BPL107 | 4621 ijk | 21 | 5 | 21 | 13.1 a | 1 | 28 + | 1 | 12 ijk | 23 | 2 | 23 |
8BPP101 | 4995 cdefg | 9 | 19 + | 9 | 12.2 bcdef | 14 | 12 | 9 | 11 jk | 24 | 1 | 24 |
8BPP102 | 5018 cdef | 8 | 20 + | 8 | 12.3 bcd | 7 | 21 + | 14.5 | 20 defg | 14 | 10 | 15 |
8BPP103 | 4894 cdefghi | 12 | 16 + | 12 | 12.2 bcdef | 11 | 17 + | 8 | 16 ghij | 20 | 6 | 19 |
8BPP104 | 4734 fghijk | 17 | 9 | 17 | 12.2 bcdef | 12 | 14 + | 13 | 28 b | 3 | 26 + | 4 |
8BPP105 | 4947 cdefgh | 11 | 17 + | 11 | 12.1 bcdef | 16 | 10 | 14.5 | 21 def | 11 | 17 + | 12 |
8BPP106 | 4696 ghijk | 18 | 8 | 18 | 12.1 bcdef | 20 | 6 | 20 | 17 fghi | 18 | 8 | 17 |
8BPP107 | 4629 hijk | 20 | 6 | 20 | 12.5 b | 3 | 25 + | 3 | 14 hijk | 22 | 3 | 22 |
Albion | 4278 l | 26 | −9 | 26 | 11.8 efg | 24 | 0 | 24 | 42 a | 1 | 21 + | 1 |
Eltan | 5137 cd | 4 | 24 + | 4 | 11.8 defg | 23 | 3 | 25 | 15 ghij | 16 | 2 | 16 |
Lewjain | 4681 ghijk | 19 | 7 | 19 | 11.7 fg | 25 | 1 | 23 | 27 bc | 4 | 17 + | 2 |
Stephens | 5503 ab | 2 | 19 + | 2 | 11.4 g | 26 | −3 | 26 | 23 cd | 6 | 22 + | 5 |
WA007933 | 5716 a | 1 | 25 + | 1 | 12.4 bc | 4 | 24 + | 7 | 4 l | 26 | −4 | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merrick, L.F.; Lyon, S.R.; Balow, K.A.; Murphy, K.M.; Jones, S.S.; Carter, A.H. Utilization of Evolutionary Plant Breeding Increases Stability and Adaptation of Winter Wheat Across Diverse Precipitation Zones. Sustainability 2020, 12, 9728. https://doi.org/10.3390/su12229728
Merrick LF, Lyon SR, Balow KA, Murphy KM, Jones SS, Carter AH. Utilization of Evolutionary Plant Breeding Increases Stability and Adaptation of Winter Wheat Across Diverse Precipitation Zones. Sustainability. 2020; 12(22):9728. https://doi.org/10.3390/su12229728
Chicago/Turabian StyleMerrick, Lance F., Steven R. Lyon, Kerry A. Balow, Kevin M. Murphy, Stephen S. Jones, and Arron H. Carter. 2020. "Utilization of Evolutionary Plant Breeding Increases Stability and Adaptation of Winter Wheat Across Diverse Precipitation Zones" Sustainability 12, no. 22: 9728. https://doi.org/10.3390/su12229728
APA StyleMerrick, L. F., Lyon, S. R., Balow, K. A., Murphy, K. M., Jones, S. S., & Carter, A. H. (2020). Utilization of Evolutionary Plant Breeding Increases Stability and Adaptation of Winter Wheat Across Diverse Precipitation Zones. Sustainability, 12(22), 9728. https://doi.org/10.3390/su12229728