Water Scarcity and Wastewater Reuse in Crop Irrigation
Abstract
:1. Water Scarcity
2. Wastewater Reuse in Irrigation, a Sustainable Practice
3. Risks of Irrigation with Untreated Wastewater
3.1. Health and Environmental Risks
3.2. Issues of Irrigation Systems Used in Wastewater Recovery
4. Recent Guidelines for the Safe Reuse of Wastewater Irrigation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Allen, M.R.; Dube, O.P.; Solecki, W.; Aragon-Durand, F.; Cramer, W.; Humphreys, S.; Kainuma, M.; Kala, J.; Mahowald, N.; Mulugetta, Y.; et al. Framing and Context. In Global Warming of 1.5 °C—An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Portner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Pean, C., Pidcock, R., et al., Eds.; IPCC: Geneva, Switzerland, 2018; Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_Chapter1_Low_Res.pdf (accessed on 17 October 2020).
- Gerten, D.; Lucht, W.; Ostberg, S.; Heinke, J.; Kowarsch, M.; Kreft, H.; Kundzewicz, Z.W.; Rastgooy, J.; Warren, R.; Schellnhuber, H.-J. Asynchronous exposure to global warming: Freshwater resources and terrestrial ecosystems. Environ. Res. Lett. 2013, 8, 034032. [Google Scholar] [CrossRef]
- DeNicola, E.; Aburizaiza, O.S.; Siddique, A.; Khwaja, H.A.; Carpenter, D.O. Climate Change and Water Scarcity: The Case of Saudi Arabia. Ann. Glob. Health 2015, 81, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO). Coping with Water Scarcity—Challenge of the Twenty-First Century, World Water Day; FAO: Rome, Italy, 2007; Available online: http://www.fao.org/3/a-aq444e.pdf (accessed on 16 September 2020).
- Winpenny, J.; Heinz, I.; Koo-Oshima, S.; Salgot, M.; Collado, J.; Hernandez, F.; Torricelli, R. The Wealth of Waste. The Economics of Wastewater Use in Agriculture; FAO Water Reports 35; FAO: Rome, Italy, 2010; Available online: http://www.fao.org/3/i1629e/i1629e.pdf (accessed on 16 September 2020).
- European Commission (EC). Water Is Too Precious to Waste. 2018. Available online: http://ec.europa.eu/environment/water/pdf/water_reuse_factsheet_en.pdf (accessed on 2 September 2020).
- Food and Agriculture Organization of the United Nations (FAO). Coping with Water Scarcity—An Action Framework for Agriculture and Food Security; FAO Water Reports 38; FAO: Rome, Italy, 2012; Available online: http://www.fao.org/3/a-i3015e.pdf (accessed on 15 September 2020).
- Sofroniou, A.; Bishop, S.R. Water Scarcity in Cyprus: A Review and Call for Integrated Policy. Water 2014, 6, 2898–2928. [Google Scholar] [CrossRef] [Green Version]
- Becerra-Castro, C.; Lopes, A.R.; Vaz-Moreira, I.; Silva, E.F.; Manaia, C.M.; Nunes, O.C. Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and environmental health. Environ. Int. 2015, 75, 117–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bixio, D.; Thoeye, C.; De Koning, J.; Joksimovic, D.; Savic, D.; Wintgens, T.; Melin, T. Wastewater reuse in Europe. Desalination 2006, 187, 89–101. [Google Scholar] [CrossRef]
- Aquarec. Report on Integrated Water Reuse Concepts; Wintgens, T., Hochstrat, R., Eds.; Sustainable Sanitation Alliance: Eschborn, Germany, 2006; Available online: https://www.susana.org/en/knowledge-hub/resources-and-publications/library/details/551.11 (accessed on 2 September 2020).
- Food and Agriculture Organization of the United Nations (FAO). The Future of Food and Agriculture. Alternative Pathways to 2050; FAO: Rome, Italy, 2018; Available online: http://www.fao.org/3/I8429EN/i8429en.pdf (accessed on 17 September 2020).
- Hofste, R.; Reig, P.; Schleifer, L. 17 Countries, Home to One-Quarter of the World’s Population, Face Extremely High Water Stress; WRI: Washington, DC, USA, 2019; Available online: https://www.wri.org/blog/2019/08/17-countries-home-one-quarter-world-population-face-extremely-high-water-stress (accessed on 17 September 2020).
- World Resources Institute. Aqueduct Country Rankings. 2020. Available online: https://www.wri.org/applications/aqueduct/country-rankings/ (accessed on 3 September 2020).
- Lavrnić, S.; Zapater-Pereyra, M.; Mancini, M.L. Water Scarcity and Wastewater Reuse Standards in Southern Europe: Focus on Agriculture. Water Air Soil Pollut. 2017, 228, 251. [Google Scholar] [CrossRef]
- World Resources Institute. Water. Mapping, Measuring, and Mitigating Global Water Challenge. 2020. Available online: https://www.wri.org/our-work/topics/water (accessed on 3 September 2020).
- European Environment Agency (EEA). Is Europe’s Freshwater Use Sustainable? 2017. Available online: https://www.eea.europa.eu/highlights/world-water-day-is-europe (accessed on 14 September 2020).
- Food and Agriculture Organization of the United Nations (FAO). Irrigation Management—Factsheet; FAO: Rome, Italy, 2020; Available online: http://www.fao.org/3/a-i4591e.pdf (accessed on 13 September 2020).
- Food and Agriculture Organization of the United Nations (FAO). The State of the World’s Land and Water Resources for Food and Agriculture, Managing Systems at Risk; FAO: Rome, Italy, 2011; Available online: http://www.fao.org/3/i1688e/i1688e00.pdf (accessed on 13 September 2020).
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050 (The 2012 Revision); FAO: Rome, Italy, 2012; Available online: http://www.fao.org/fileadmin/templates/esa/Global_persepctives/world_ag_2030_50_2012_rev.pdf (accessed on 13 September 2020).
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Bruinsma, J. The resources outlook: By how much do land, water and crop yields need to increase by 2050? In Looking Ahead in World Food and Agriculture: Perspectives to 2050; Conforti, P., Ed.; FAO: Rome, Italy, 2011. [Google Scholar]
- Hertel, T.W.; Liu, J. Implications of water scarcity for economic growth. OECD Environ. Work. Pap. 2016, 109. [Google Scholar] [CrossRef]
- Nolde, E. Greywater reuse systems for toilet flushing in multi-storey buildings—Over ten years experience in Berlin. Urban Water 2000, 1, 275–284. [Google Scholar] [CrossRef]
- Vo, P.T.; Ngo, H.H.; Guo, W.; Zhou, J.L.; Nguyen, P.D.; Listowski, A.; Wang, X.C. A mini-review on the impacts of climate change on wastewater reclamation and reuse. Sci. Total. Environ. 2014, 494–495, 9–17. [Google Scholar] [CrossRef]
- Endo, A.; Tsurita, I.; Burnett, K.; Orencio, P.M. A review of the current state of research on the water, energy, and food nexus. J. Hydrol. Reg. Stud. 2017, 11, 20–30. [Google Scholar] [CrossRef] [Green Version]
- World Research Institute. Aqueduct Food. 2020. Available online: https://www.wri.org/applications/Aqueduct/food/#/ (accessed on 10 September 2020).
- World Research Institute. Supporting Agriculture, Environment, and Sustainable Development. 2020. Available online: https://www.wri.org/our-work/topics/food (accessed on 10 September 2020).
- Cossio, C.; Perez-Mercado, L.F.; Norrman, J.; Dalahmeh, S.S.; Vinnerås, B.; Mercado, A.; McConville, J. Impact of treatment plant management on human health and ecological risks from wastewater irrigation in developing countries—Case studies from Cochabamba, Bolivia. Int. J. Environ. Health Res. 2019, 29, 1–19. [Google Scholar] [CrossRef] [Green Version]
- De Fraiture, C.; Wichelns, D. Satisfying future water demands for agriculture. Agric. Water Manag. 2010, 97, 502–511. [Google Scholar] [CrossRef]
- Springer, N.P.; Duchin, F. Feeding Nine Billion People Sustainably: Conserving Land and Water through Shifting Diets and Changes in Technologies. Environ. Sci. Technol. 2014, 48, 4444–4451. [Google Scholar] [CrossRef]
- Hussain, M.I.; Muscolo, A.; Farooq, M.; Ahmad, W. Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments. Agric. Water Manag. 2019, 221, 462–476. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Y. Wastewater irrigation: Past, present, and future. Wiley Interdiscip. Rev. Water 2017, 6, e1234. [Google Scholar] [CrossRef]
- Hanjra, M.A.; Blackwell, J.; Carr, G.; Zhang, F.; Jackson, T.M. Wastewater irrigation and environmental health: Implications for water governance and public policy. Int. J. Hyg. Environ. Health 2012, 215, 255–269. [Google Scholar] [CrossRef]
- Alcalde-Sanz, L.; Gawlik, B.M. Minimum Quality Requirements for Water Reuse in Agricultural Irrigation and Aquifer Recharge, Towards a Water Reuse Regulatory Instrument at EU Level; JCR Science for Policy Report, EUR 28962 EN; Publications Office of the European Union: Luxembourg, 2017; Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC109291/jrc109291_online_08022018.pdf (accessed on 4 September 2020).
- Maaß, O.; Grundmann, P. Governing Transactions and Interdependences between Linked Value Chains in a Circular Economy: The Case of Wastewater Reuse in Braunschweig (Germany). Sustainability 2018, 10, 1125. [Google Scholar] [CrossRef] [Green Version]
- Jang, T.; Jung, M.; Lee, E.; Park, S.; Lee, J.; Jeong, H. Assessing environmental impacts of reclaimed wastewater irrigation in paddy fields using bioindicator. Irrig. Sci. 2013, 31, 1225–1236. [Google Scholar] [CrossRef]
- Emongor, V.; Macheng, B.; Kefilwe, S. Effects of secondary sewage effluent on the growth, development, fruit yield and quality of tomatoes (Lycopersicon lycopersicum (L.) karten). Acta Hortic. 2012, 944, 29–40. [Google Scholar] [CrossRef]
- Chojnacka, K.; Witek-Krowiak, A.; Moustakas, K.; Skrzypczak, D.; Mikula, K.; Loizidou, M. A transition from conventional irrigation to fertigation with reclaimed wastewater: Prospects and challenges. Renew. Sustain. Energy Rev. 2020, 130, 109959. [Google Scholar] [CrossRef]
- Drechsel, P.; Mara, D.D.; Bartone, C.R.; Scheierling, S.M. Improving Wastewater Use in Agriculture: An Emerging Priority; World Bank Policy Research Working Paper No. 5412; World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Bedbabis, S.; Ben Rouina, B.; Boukhris, M.; Ferrara, G. Effect of irrigation with treated wastewater on soil chemical properties and infiltration rate. J. Environ. Manag. 2014, 133, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Beltrán, E.M.; Pablos, M.V.; Torija, C.F.; Porcel, M.Á.; González-Doncel, M. Uptake of atenolol, carbamazepine and triclosan by crops irrigated with reclaimed water in a Mediterranean scenario. Ecotoxicol. Environ. Saf. 2020, 191, 110171. [Google Scholar] [CrossRef]
- Farhadkhani, M.; Nikaeen, M.; Yadegarfar, G.; Hatamzadeh, M.; Pourmohammadbagher, H.; Sahbaei, Z.; Rahmani, H.R. Effects of irrigation with secondary treated wastewater on physicochemical and microbial properties of soil and produce safety in a semi-arid area. Water Res. 2018, 144, 356–364. [Google Scholar] [CrossRef]
- Lonigro, A.; Rubino, P.; Lacasella, V.; Montemurro, N. Faecal pollution on vegetables and soil drip irrigated with treated municipal wastewaters. Agric. Water Manag. 2016, 174, 66–73. [Google Scholar] [CrossRef]
- Woldetsadik, D.; Drechsel, P.; Keraita, B.; Itanna, F.; Erko, B.; Gebrekidan, H. Microbiological quality of lettuce (Lactuca sativa) irrigated with wastewater in Addis Ababa, Ethiopia and effect of green salads washing methods. Int. J. Food Contam. 2017, 4, 49. [Google Scholar] [CrossRef] [Green Version]
- Christou, A.; Karaolia, P.; Hapeshi, E.; Michael, C.; Fatta-Kassinos, D. Long-term wastewater irrigation of vegetables in real agricultural systems: Concentration of pharmaceuticals in soil, uptake and bioaccumulation in tomato fruits and human health risk assessment. Water Res. 2017, 109, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Cirelli, G.; Consoli, S.; Licciardello, F.; Aiello, R.; Giuffrida, F.; Leonardi, C. Treated municipal wastewater reuse in vegetable production. Agric. Water Manag. 2012, 104, 163–170. [Google Scholar] [CrossRef]
- Gatta, G.; Libutti, A.; Gagliardi, A.; Beneduce, L.; Brusetti, L.; Borruso, L.; Disciglio, G.; Tarantino, E. Treated agro-industrial wastewater irrigation of tomato crop: Effects on qualitative/quantitative characteristics of production and microbiological properties of the soil. Agric. Water Manag. 2015, 149, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Akponikpè, P.I.; Wima, K.; Yacouba, H.; Mermoud, A. Reuse of domestic wastewater treated in macrophyte ponds to irrigate tomato and eggplant in semi-arid West-Africa: Benefits and risks. Agric. Water Manag. 2011, 98, 834–840. [Google Scholar] [CrossRef]
- Hussain, A.; Priyadarshi, M.; Dubey, S. Experimental study on accumulation of heavy metals in vegetables irrigated with treated wastewater. Appl. Water Sci. 2019, 9, 122–132. [Google Scholar] [CrossRef] [Green Version]
- Balkhair, K.S. Microbial contamination of vegetable crop and soil profile in arid regions under controlled application of domestic wastewater. Saudi J. Biol. Sci. 2016, 23, S83–S92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beneduce, L.; Gatta, G.; Bevilacqua, A.; Libutti, A.; Tarantino, E.; Bellucci, M.; Troiano, E.; Spano, G. Impact of the reusing of food manufacturing wastewater for irrigation in a closed system on the microbiological quality of the food crops. Int. J. Food Microbiol. 2017, 260, 51–58. [Google Scholar] [CrossRef]
- Libutti, A.; Gatta, G.; Gagliardi, A.; Vergine, P.; Pollice, A.; Beneduce, L.; Disciglio, G.; Tarantino, E. Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions. Agric. Water Manag. 2018, 196, 1–14. [Google Scholar] [CrossRef]
- Singh, A.; Agrawal, S.B. Effects of Waste Water Irrigation on Physical and Biochemical Characteristics of Soil and Metal Partitioning in Beta vulgaris L. Agric. Res. 2012, 1, 379–391. [Google Scholar] [CrossRef] [Green Version]
- Rowland, L.S.; Smith, H.K.; Taylor, G. The potential to improve culinary herb crop quality with deficit irrigation. Sci. Hortic. 2018, 242, 44–50. [Google Scholar] [CrossRef]
- Hirzel, D.R.; Steenwerth, K.; Parikh, S.J.; Oberholster, A. Impact of winery wastewater irrigation on soil, grape and wine composition. Agric. Water Manag. 2017, 180, 178–189. [Google Scholar] [CrossRef]
- Petousi, I.; Daskalakis, G.; Fountoulakis, M.; Lydakis, D.; Fletcher, L.; Stentiford, E.; Manios, T. Effects of treated wastewater irrigation on the establishment of young grapevines. Sci. Total. Environ. 2019, 658, 485–492. [Google Scholar] [CrossRef]
- Perulli, G.D.; Gaggia, F.; Sorrenti, G.; Donati, I.; Boini, A.; Bresilla, K.; Manfrini, L.; Baffoni, L.; Di Gioia, D.; Grappadelli, L.C.; et al. Treated wastewater as irrigation source: A microbiological and chemical evaluation in apple and nectarine trees. Agric. Water Manag. 2021, 244, 106403. [Google Scholar] [CrossRef]
- Panigrahi, P.; Raychaudhuri, S.; Thakur, A.; Nayak, A.; Sahu, P.; Ambast, S. Automatic drip irrigation scheduling effects on yield and water productivity of banana. Sci. Hortic. 2019, 257, 108677. [Google Scholar] [CrossRef]
- Pedrero, F.; Alarcón, J.J. Effects of treated wastewater irrigation on lemon trees. Desalination 2009, 246, 631–639. [Google Scholar] [CrossRef]
- Zhang, A.; Cortés, V.; Phelps, B.; Van Ryswyk, H.; Srebotnjak, T. Experimental Analysis of Soil and Mandarin Orange Plants Treated with Heavy Metals Found in Oilfield-Produced Wastewater. Sustainability 2018, 10, 1493. [Google Scholar] [CrossRef] [Green Version]
- Ahmali, A.; Mandi, L.; Loutfi, K.; El Ghadraoui, A.; El Mansour, T.E.; El Kerroumi, A.; Hejjaj, A.; Del Bubba, M.; Ouazzani, N. Agro-physiological responses of Koroneiki olive trees (Olea europaea L.) irrigated by crude and treated mixture of olive mill and urban wastewaters. Sci. Hortic. 2020, 263, 109101. [Google Scholar] [CrossRef]
- Bedbabis, S.; Trigui, D.; Ben Ahmed, C.; Clodoveo, M.L.; Camposeo, S.; Vivaldi, G.A.; Ben Rouina, B. Long-terms effects of irrigation with treated municipal wastewater on soil, yield and olive oil quality. Agric. Water Manag. 2015, 160, 14–21. [Google Scholar] [CrossRef]
- Erel, R.; Eppel, A.; Yermiyahu, U.; Ben-Gal, A.; Levy, G.; Zipori, I.; Schaumann, G.E.; Mayer, O.; Dag, A. Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance. Agric. Water Manag. 2019, 213, 324–335. [Google Scholar] [CrossRef]
- Petousi, I.; Fountoulakis, M.; Saru, M.; Nikolaidis, N.P.; Fletcher, L.R.; Stentiford, E.; Manios, T. Effects of reclaimed wastewater irrigation on olive (Olea europaea L. cv. ‘Koroneiki’) trees. Agric. Water Manag. 2015, 160, 33–40. [Google Scholar] [CrossRef]
- Shilpi, S.; Lamb, D.; Bolan, N.; Seshadri, B.; Choppala, G.; Naidu, R. Waste to watt: Anaerobic digestion of wastewater irrigated biomass for energy and fertiliser production. J. Environ. Manag. 2019, 239, 73–83. [Google Scholar] [CrossRef]
- Ma, S.; Hu, Y.; Zeng, Q.; Xu, Z.; Cui, Y.; Ma, Y.; Su, J.; Nan, Z. Temporal changes of calcareous soil properties and their effects on cadmium uptake by wheat under wastewater irrigation for over 50 years. Chemosphere 2021, 263, 127971. [Google Scholar] [CrossRef]
- Mojid, M.; Biswas, S.; Wyseure, G. Interaction effects of irrigation by municipal wastewater and inorganic fertilisers on wheat cultivation in Bangladesh. Field Crop. Res. 2012, 134, 200–207. [Google Scholar] [CrossRef]
- Singh, P.; Deshbhratar, P.; Ramteke, D. Effects of sewage wastewater irrigation on soil properties, crop yield and environment. Agric. Water Manag. 2012, 103, 100–104. [Google Scholar] [CrossRef]
- Sharma, P.; Poustie, A.; Verburg, P.; Pagilla, K.; Yang, Y.; Hanigan, D. Trace organic contaminants in field-scale cultivated alfalfa, soil, and pore water after 10 years of irrigation with reclaimed wastewater. Sci. Total Environ. 2020, 744, 140698. [Google Scholar] [CrossRef]
- Campi, P.; Navarro, A.; Palumbo, A.D.; Modugno, F.; Vitti, C.; Mastrorilli, M. Energy of biomass sorghum irrigated with reclaimed wastewaters. Eur. J. Agron. 2016, 76, 176–185. [Google Scholar] [CrossRef]
- Chaganti, V.N.; Ganjegunte, G.; Niu, G.; Ulery, A.; Flynn, R.; Enciso, J.M.; Meki, M.N.; Kiniry, J.R. Effects of treated urban wastewater irrigation on bioenergy sorghum and soil quality. Agric. Water Manag. 2020, 228, 105894. [Google Scholar] [CrossRef]
- Biswas, G.C.; Sarkar, A.; Rashid, H.; Shohan, M.H.; Islam, M.; Wang, Q. Assessment of the irrigation feasibility of low-cost filtered municipal wastewater for red amaranth (Amaranthus tricolor L. cv. Surma). Int. Soil Water Conserv. Res. 2015, 3, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Ganjegunte, G.; Ulery, A.; Niu, G.; Wu, Y. Effects of treated municipal wastewater irrigation on soil properties, switchgrass biomass production and quality under arid climate. Ind. Crop. Prod. 2017, 99, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Dorta-Santos, M.; Tejedor, M.; Jiménez, C.; Hernández-Moreno, J.M.; Palacios-Díaz, M.; Diaz, F.J. Evaluating the sustainability of subsurface drip irrigation using recycled wastewater for a bioenergy crop on abandoned arid agricultural land. Ecol. Eng. 2015, 79, 60–68. [Google Scholar] [CrossRef]
- Zema, D.A.; Bombino, G.; Andiloro, S.; Zimbone, S.M. Irrigation of energy crops with urban wastewater: Effects on biomass yields, soils and heating values. Agric. Water Manag. 2012, 115, 55–65. [Google Scholar] [CrossRef]
- Anastasiadis, F.; Archontakis, F.; Banias, G.; Achillas, C. Consumers’ Perception of Wastewater Usage in Agriculture: Evidence from Greece. In Agricultural Cooperative Management and Policy; Springer: Berlin/Heidelberg, Germany, 2014; pp. 137–150. [Google Scholar]
- Ungureanu, N.; Vlăduț, V.; Zăbavă, B.Ș.; Andrei, P.; Constantinescu, M. Current state of wastewater use in irrigated agriculture. Ann. Univ. Craiova Agric. Montanology Cadastre Ser. 2018, 48, 417–424. [Google Scholar]
- Global Water Intelligence. Municipal Water Reuse Markets 2010; Media Anal. Ltd.: Oxford, UK, 2010. [Google Scholar]
- Jimenez, B.; Asano, T. Water reclamation and reuse around the world. In Water Reuse: An International Survey: Common Practices and Current Needs in the World; Jimenez, B., Asano, T., Eds.; IWA Publishing: London, UK, 2008; pp. 3–26. [Google Scholar]
- Jiménez, B.; Asano, T. Water Reuse: An International Survey of Current Practice, Issues and Needs; IWA Publishing: London, UK, 2008. [Google Scholar]
- World Health Organization (WHO). Guidelines for the safe use of wastewater, excreta and greywater. In Wastewater Use in Agriculture; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Ungureanu, N.; Vlăduț, V.; Dincă, M.; Zăbavă, B.Ș. Reuse of wastewater for irrigation, a sustainable practice in arid and semi-arid regions. In Proceedings of the 7th International Conference on Thermal Equipment, Renewable Energy and Rural Development (TE-RE-RD), Drobeta-Turnu Severin, Romania, 31 May–2 June 2018; pp. 379–384. [Google Scholar]
- Hochstrat, R.; Wintgens, T.; Melin, T.; Jeffrey, P. Assessing the European wastewater reclamation and reuse potential—A scenario analysis. Desalination 2006, 188, 1–8. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: Report on the Review of the European Water Scarcity and Droughts Policy. 2012. Available online: https://climate-adapt.eea.europa.eu/metadata/publications/report-on-the-review-of-the-european-water-scarcity-and-drought-policy/11309505 (accessed on 22 October 2020).
- BIO by Deloitte. Optimizing Water Reuse in the EU Public Consultation Analysis Report Prepared for the European Commission (DG ENV). Part I; In Collaboration with ICF and Cranfield University; Publications Office of the European Union: Luxembourg, 2015; Available online: https://ec.europa.eu/environment/water/blueprint/pdf/BIO_Water%20Reuse%20Public%20Consultation%20Report_Final.pdf (accessed on 22 October 2020).
- Lazarova, V. Water Reuse in Europe, Status and Recent Trends in Policy Development. In Proceedings of the Final Conference on the Project LIFE+ ReQpro, Reggio Emilia, Italy, 23 February 2017; Available online: http://reqpro.crpa.it/media/documents/reqpro_www/eventi/20170223_FinalMeeting_RE/Lazarova_LIFE+ReQpro.pdf (accessed on 1 September 2020).
- European Commission (EC). Regulation EU 2020/741 of the European Parliament and of the Council, on Minimum Requirements for Water Reuse; European Commission: Brussels, Belgium, 2020; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R0741&from=EN (accessed on 1 September 2020).
- Norton-Brandão, D.; Scherrenberg, S.M.; Van Lier, J.B. Reclamation of used urban waters for irrigation purposes—A review of treatment technologies. J. Environ. Manag. 2013, 122, 85–98. [Google Scholar] [CrossRef]
- Kamizoulis, G. Setting health based targets for water reuse (in agriculture). Desalination 2008, 218, 154–163. [Google Scholar] [CrossRef]
- Bichai, F.; Polo-López, M.I.; Ibañez, P.F. Solar disinfection of wastewater to reduce contamination of lettuce crops by Escherichia coli in reclaimed water irrigation. Water Res. 2012, 46, 6040–6050. [Google Scholar] [CrossRef] [PubMed]
- Fuhrimann, S.; Knoblauch, A.; Stalder, M.; Niwagaba, C.B.; Babu, M.; Kabatereine, N.B.; Halage, A.A.; Utzinger, J.; Cissé, G.; Nauta, M. Disease burden due to gastrointestinal pathogens in a wastewater system in Kampala, Uganda. Microb. Risk Anal. 2016, 4, 16–28. [Google Scholar] [CrossRef]
- UNICEF. Pneumonia and Diarrhoea: Tackling the Deadliest Diseases for the World’s Poorest Children. 2012. Available online: https://www.unicef.org/publications/index_65491.html (accessed on 3 September 2020).
- Aziz, R.K.; Khalifa, M.M.; Sharaf, R.R. Contaminated water as a source of Helicobacter pylori infection: A review. J. Adv. Res. 2015, 6, 539–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plutzer, J.; Ongerth, J.; Karanis, P. Giardia taxonomy, phylogeny and epidemiology: Facts and open questions. Int. J. Hyg. Environ. Health 2010, 213, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Wu, Y.; Sow, S.; Sur, D.; Breiman, R.F.; et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 2013, 382, 209–222. [Google Scholar] [CrossRef]
- O’Flaherty, E.; Solimini, A.; Pantanella, F.; De Giusti, M.; Cummins, E. Human exposure to antibiotic resistant-Escherichia coli through irrigated lettuce. Environ. Int. 2019, 122, 270–280. [Google Scholar] [CrossRef]
- Mok, H.-F.; Barker, S.F.; Hamilton, A.J. A probabilistic quantitative microbial risk assessment model of norovirus disease burden from wastewater irrigation of vegetables in Shepparton, Australia. Water Res. 2014, 54, 347–362. [Google Scholar] [CrossRef]
- Kaas, L.; Gourinat, A.-C.; Urbès, F.; Langlet, J. A 1-Year Study on the Detection of Human Enteric Viruses in New Caledonia. Food Environ. Virol. 2015, 8, 46–56. [Google Scholar] [CrossRef]
- Qadir, M.; Wichelns, D.; Raschid-Sally, L.; McCornick, P.; Drechsel, P.; Bahri, A.; Minhas, P. The challenges of wastewater irrigation in developing countries. Agric. Water Manag. 2010, 97, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Emmanuel, E.; Pierre, M.G.; Perrodin, Y. Groundwater contamination by microbiological and chemical substances released from hospital wastewater: Health risk assessment for drinking water consumers. Environ. Int. 2009, 35, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Al Omron, A.; El-Maghraby, S.; Nadeem, M.; El-Eter, A.; Al-Mohani, H. Long term effect of irrigation with the treated sewage effluent on some soil properties of Al-Hassa Governorate, Saudi Arabia. J. Saudi Soc. Agric. Sci. 2012, 11, 15–18. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Lu, S.; Jiao, W.; Wang, M.; Chang, A.C. Reclaimed water: A safe irrigation water source? Environ. Dev. 2013, 8, 74–83. [Google Scholar] [CrossRef]
- Chaoua, S.; Boussaa, S.; El Gharmali, A.; Boumezzough, A. Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. J. Saudi Soc. Agric. Sci. 2019, 18, 429–436. [Google Scholar] [CrossRef]
- Mahmood, A.; Malik, R.N. Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arab. J. Chem. 2014, 7, 91–99. [Google Scholar] [CrossRef] [Green Version]
- El-Hassanin, A.S.; Samak, M.R.; Abdel-Rahman, G.N.; Abu-Sree, Y.H.; Saleh, E.M. Risk assessment of human exposure to lead and cadmium in maize grains cultivated in soils irrigated either with low-quality water or freshwater. Toxicol. Rep. 2020, 7, 10–15. [Google Scholar] [CrossRef]
- Arora, M.; Kiran, B.; Rani, S.; Rani, A.; Kaur, B.; Mittal, N. Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem. 2008, 111, 811–815. [Google Scholar] [CrossRef]
- Phogat, V.; Mallants, D.; Cox, J.; Šimůnek, J.; Oliver, D.; Awad, J. Management of soil salinity associated with irrigation of protected crops. Agric. Water Manag. 2020, 227, 105845. [Google Scholar] [CrossRef]
- Elgallal, M.; Fletcher, L.; Evans, B. Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review. Agric. Water Manag. 2016, 177, 419–431. [Google Scholar] [CrossRef]
- Biggs, T.W.; Jiang, B. Soil Salinity and Exchangeable Cations in a Wastewater Irrigated Area, India. J. Environ. Qual. 2009, 38, 887–896. [Google Scholar] [CrossRef]
- Ezlit, Y.D.; Smith, R.J.; Raine, S.R. A Review of Salinity and Sodicity in Irrigation. CRC for Irrigation Futures; Irrigation Matters Series; University of Southern Queensland: Toowoomba, Australia, 2010; Available online: https://eprints.usq.edu.au/23259/1/Review_of_salinity_and_sodicity_in_irrigation.pdf (accessed on 21 October 2020).
- Urbano, V.R.; Mendonça, T.G.; Bastos, R.G.; Souza, C.F. Effects of treated wastewater irrigation on soil properties and lettuce yield. Agric. Water Manag. 2017, 181, 108–115. [Google Scholar] [CrossRef]
- Minhas, P.S.; Ramos, T.B.; Ben-Gal, A.; Pereira, L.S. Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agric. Water Manag. 2020, 227, 105832. [Google Scholar] [CrossRef]
- Muyen, Z.; Moore, G.; Wrigley, R.J. Soil salinity and sodicity effects of wastewater irrigation in South East Australia. Agric. Water Manag. 2011, 99, 33–41. [Google Scholar] [CrossRef]
- Alcívar, M.; Zurita-Silva, A.; Sandoval, M.; Muñoz, C.; Schoebitz, M. Reclamation of Saline-Sodic Soils with Combined Amendments: Impact on Quinoa Performance and Biological Soil Quality. Sustainability 2018, 10, 3083. [Google Scholar] [CrossRef] [Green Version]
- Ganjegunte, G.; Ulery, A.; Niu, G.; Wu, Y. Organic carbon, nutrient, and salt dynamics in saline soil and switchgrass (Panicum virgatum L.) irrigated with treated municipal wastewater. Land Degrad. Dev. 2017, 29, 80–90. [Google Scholar] [CrossRef]
- Keraita, B.; Konradsen, F.; Drechsel, P.; Abaidoo, R.C. Effect of low-cost irrigation methods on microbial contamination of lettuce irrigated with untreated wastewater. Trop. Med. Int. Health 2007, 12, 15–22. [Google Scholar] [CrossRef]
- Morugán-Coronado, A.; García-Orenes, F.; Cerdà, A. Effect of land management on soil properties in flood irrigated citrus orchards in Eastern Spain. SOIL Discuss. 2015, 2, 1–27. [Google Scholar] [CrossRef]
- Yavuz, M.Y.; Demirel, K.; Erken, O.; Bahar, E.; Devecirel, M. Emitter clogging and effects on drip irrigation systems performances. Afr. J. Agric. Res. 2010, 5, 532–538. [Google Scholar]
- Capra, A.; Scicolone, B. Assessing dripper clogging and filtering performance using municipal wastewater. Irrig. Drain. 2005, 54, S71–S79. [Google Scholar] [CrossRef]
- Capra, A.; Scicolone, B. Recycling of poor quality urban wastewater by drip irrigation systems. J. Clean. Prod. 2007, 15, 1529–1534. [Google Scholar] [CrossRef]
- Pedrero, F.; Kalavrouziotis, I.; Alarcón, J.J.; Koukoulakis, P.; Asano, T. Use of treated municipal wastewater in irrigated agriculture—Review of some practices in Spain and Greece. Agric. Water Manag. 2010, 97, 1233–1241. [Google Scholar] [CrossRef]
- Valipour, M.; Singh, V.P. Global Experiences on Wastewater Irrigation: Challenges and Prospects. Extrem. Chang. Clim. 2016, 72, 289–327. [Google Scholar] [CrossRef] [Green Version]
- Li, J.S.; Chen, L.; Li, Y.F. Effect of chlorination on emitter clogging and system performance for drip irrigation with sewage effluent. Trans. Chin. Soc. Agric. Eng. 2010, 26, 7–13. [Google Scholar] [CrossRef]
- Patel, N.; Rajput, T. Effect of drip tape placement depth and irrigation level on yield of potato. Agric. Water Manag. 2007, 88, 209–223. [Google Scholar] [CrossRef]
- Tripathi, V.K.; Rajput, T.B.S.; Patel, N. Biometric properties and selected chemical concentration of cauliflower influenced by wastewater applied through surface and subsurface drip irrigation system. J. Clean. Prod. 2016, 139, 396–406. [Google Scholar] [CrossRef]
- Song, I.; Stine, S.W.; Choi, C.; Gerba, C.P. Comparison of Crop Contamination by Microorganisms during Subsurface Drip and Furrow Irrigation. J. Environ. Eng. 2006, 132, 1243–1248. [Google Scholar] [CrossRef]
- International Water Management Institute. Recycling Realities: Managing Health Risks to Make Wastewater an Asset; Water Policy Briefing 17; IWMI and GWP: Colombo, Sri Lanka, 2006. [Google Scholar]
- Loufty, N.M. Reuse of wastewater in Mediterranean region, Egyptian experience. In The Handbook of Environmental Chemistry; Barcelo, D., Petrovic, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Chibuike, G.U.; Obiora, S.C.; Chibuike, G.U. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Appl. Environ. Soil Sci. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [Green Version]
Organism | No./L of Wastewater | Organism | No./L of Wastewater |
---|---|---|---|
Thermotolerant coliform | 108–1010 | Cryptosporidium parvum | 1–104 |
Salmonella sp. | 1–105 | Entamoeba histolytica | 1–102 |
Shigella sp. | 10–104 | Giardia intestinalis | 102–105 |
Vibrio cholerae | 102–105 | Ascaris lumbricoides | 1–103 |
Enteric viruses | 105–106 | Ancylostoma/Necator | 1–103 |
Rotavirus | 102–105 | Trichuris trichiura | 1–102 |
Minimum Quality Class | Categories of Agricultural Crops 1 | Irrigation Method |
---|---|---|
A | All food crops consumed raw where the edible part is in direct contact with treated water and root crops consumed raw | All irrigation methods |
B | Food crops consumed raw where the edible part is produced above ground and is not in direct contact with treated water, processed food crops and non-food crops including crops used to feed milk or meat-producing animals | All irrigation methods |
C | Food crops consumed raw where the edible part is produced above ground and is not in direct contact with treated water, processed food crops and non-food crops used to feed milk or meat-producing animals | Drip irrigation 2 or other irrigation methods that avoid direct contact with the edible part of the crop |
D | Industrial, energy and seeded crops | All irrigation methods 3 |
Minimum Quality Class | Indicative Technology Target | Quality Requirements | |||
---|---|---|---|---|---|
Escherichia coli [No./100 mL] | Biological Oxygen Demand [mg/L] | Total Suspended Solids [mg/L] | Turbidity [NTU] | ||
A | Secondary treatment, filtration and disinfection | ≤10 | ≤10 | ≤10 | ≤5 |
B | Secondary treatment and disinfection | ≤100 | In accordance with Directive 91/271/EEC | - | |
C | Secondary treatment and disinfection | ≤1000 | - | ||
D | Secondary treatment and disinfection | ≤10,000 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ungureanu, N.; Vlăduț, V.; Voicu, G. Water Scarcity and Wastewater Reuse in Crop Irrigation. Sustainability 2020, 12, 9055. https://doi.org/10.3390/su12219055
Ungureanu N, Vlăduț V, Voicu G. Water Scarcity and Wastewater Reuse in Crop Irrigation. Sustainability. 2020; 12(21):9055. https://doi.org/10.3390/su12219055
Chicago/Turabian StyleUngureanu, Nicoleta, Valentin Vlăduț, and Gheorghe Voicu. 2020. "Water Scarcity and Wastewater Reuse in Crop Irrigation" Sustainability 12, no. 21: 9055. https://doi.org/10.3390/su12219055