Impact of Feeding Schedule on the Growth Performances of Tilapia, Common Carp, and Rice Yield in an Integrated Rice-Fish Farming System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Growth and Yield of Fish
2.3. Water Quality Parameters
2.4. Growth and Yield of Rice
2.5. Statistical Analysis
3. Results
3.1. Growth Performances and Yields of Tilapia and Common Carp
3.2. Water Quality Parameter during Culture Period
3.3. Plant Height of Rice (BRRI dhan29)
3.4. Tillers Number Per Hill of Rice (BRRI dhan29)
3.5. Yield and Yield Contributing Characteristics of Rice (BRRI dhan29)
3.6. Economic Evaluation of Different Feeding Schedules of Tilapia and Common Carp in the Integrated Rice-Fish Farming System
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Riche, M.; Haley, D.I.; Oetker, M.; Garbrecht, S.; Garling, D.L. Effect of feeding frequency on gastric evacuation and the return of appetite in tilapia Oreochromis niloticus (L.). Aquaculture 2004, 234, 657–673. [Google Scholar] [CrossRef]
- Daudpota, A.M.; Abbas, G.; Kalhoro, I.B.; Shah, S.S.A.; Kalhoro, H.; Hafeez-Ur-Rehman, M.; Ghaffar, A. Performance, feed utilization and body composition of juvenile nile tilapia, Oreochromis niloticus (L.) reared in low salinity water. Pak. J. Zool. 2016, 48, 171–177. [Google Scholar]
- Riche, B.M. Food for Thought: Feed Management Strategies, Part 2. Available online: https://www.aquaculturealliance.org/advocate/food-for-thought-feed-management-strategies-part-2/ (accessed on 5 September 2020).
- Folkvord, A.; Otterå, H. Effects of initial size distribution, day length, and feeding frequency on growth, survival, and cannibalism in juvenile Atlantic cod (Gadus morhua L.). Aquaculture 1993, 114, 243–260. [Google Scholar] [CrossRef]
- Munsiri, P.; Lovell, R.T. Comparison of satiate and restricted feeding of channel catfish with diets of varying protein quality in production ponds. J. World Aquac. Soc. 1993, 24, 459–465. [Google Scholar] [CrossRef]
- Biswas, G.; Jena, J.K.; Singh, S.K.; Muduli, H.K. Effect of feeding frequency on growth, survival and feed utilization in fingerlings of Catla catla (Hamilton), Labeo rohita (Hamilton) and Cirrhinus mrigala (Hamilton) in outdoor rearing systems. Aquac. Res. 2006, 37, 510–514. [Google Scholar] [CrossRef]
- Nikki, J.; Pirhonen, J.; Jobling, M.; Karjalainen, J. Compensatory growth in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum), held individually. Aquaculture 2004, 235, 285–296. [Google Scholar] [CrossRef]
- Tian, X.; Qin, J.G. A single phase of food deprivation provoked compensatory growth in barramundi Lates calcarifer. Aquaculture 2003, 224, 169–179. [Google Scholar] [CrossRef]
- Lawrence, C.; Best, J.; James, A.; Maloney, K. The effects of feeding frequency on growth and reproduction in zebrafish (Danio rerio). Aquaculture 2012, 368–369, 103–108. [Google Scholar] [CrossRef]
- Wu, L. Method of Rice-Fish Culture and their Ecological Efficiency. In Rice-Fish Culture in China; Mackay, K.T.I.D.R.C., Ed.; IDRC: Ottawa, ON, Canada, 1995; pp. 91–96. ISBN 13: 9780889367760. [Google Scholar]
- Costa-Bomfim, C.N.; Pessoa, W.V.N.; Oliveira, R.L.M.; Farias, J.L.; Domingues, E.C.; Hamilton, S.; Cavalli, R.O. The effect of feeding frequency on growth performance of juvenile cobia, Rachycentron canadum (Linnaeus, 1766). J. Appl. Ichthyol. 2014, 30, 135–139. [Google Scholar] [CrossRef]
- Jun, Q.; Hui, W.; Rui-Wei, L.; Jun, P. Effects of feeding frequency on growth, body biochemical composition and digestive enzymes of larvae and juvenile of hybrid tilapia (Oreochromis niloticus, O.aureus). J. Zhanjiang Ocean Univ. 2009, 29, 79–83. [Google Scholar]
- Tung, P.-H.; Shiau, S.-Y. Effects of meal frequency on growth performance of hybrid tilapia, Oreochromis niloticus × O. aureus, fed different carbohydrate diets. Aquaculture 1991, 92, 343–350. [Google Scholar] [CrossRef]
- Hancz, C. Preliminary investigations on the feeding frequency and growth of juvenile carp in aquaria. Aquac. Hungarica 1982, 3, 33–35. [Google Scholar]
- Pouomogne, V.; Ombredane, D. Effect of feeding frequency of the growth of tilapia (Oreochromis niloticus) in earthen ponds. Tropicultura 2001, 19, 147–150. [Google Scholar]
- De Silva, S.S.; Anderson, T.A. Fish Nutrition in Aquaculture, 1st ed.; Springer Netherlands: New York, NY, USA, 1995. [Google Scholar]
- Cho, S.H.; Lim, Y.S.; Lee, J.H.; Lee, J.K.; Park, S.; Lee, S.M. Effects of feeding rate and feeding frequency on survival, growth, and body composition of ayu post-larvae plecoglossus altivelis. J. World Aquac. Soc. 2003, 34, 85–91. [Google Scholar] [CrossRef]
- Andrews, J.W.; Page, J.W. The Effects of Frequency of Feeding on Culture of Catfish. Trans. Am. Fish. Soc. 1975, 104, 317–321. [Google Scholar] [CrossRef]
- Hayward, R.S.; Noltie, D.B.; Wang, N. Use of Compensatory Growth to Double Hybrid Sunfish Growth Rates. Trans. Am. Fish. Soc. 1997, 126, 316–322. [Google Scholar] [CrossRef]
- Roy, B.; Das, D.N.; Mukhopadhyay, P.K. Rice-Fish-Vegetable Integrated Farming: Towards a Sustinable Ecosystem. Nage ICLARM Q. 1990, 13, 17–18. [Google Scholar]
- Kamarudin, M.S.; Sulaiman, M.A.; Ismail, M.F.S. Effects of dietary crude fiber level on growth performance, body composition, liver glycogen and intestinal short chain fatty acids of a tropical carp (Barbonymus gonionotus ♀ X Hypsibarbus wetmorei male ♂). J. Environ. Biol. 2018, 39, 813–820. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Waste water, 16th ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 1985. [Google Scholar]
- Rothuis, A.J.; Nam, C.Q.; Richter, C.J.J.; Ollevier, F. Polyculture of silver barb, Puntius gonionotus (Bleeker), Nile tilapia, Oreochromis niloticus (L.), and common carp, Cyprinus carpio L., in Vietnamese ricefields: Fish production parameters. Aquac. Res. 1998, 29, 661–668. [Google Scholar] [CrossRef]
- Lightfoot, C.; Van Dam, A.A.; Costa-Pierce, B.A. What’s happening to the rice yield in rice-fish systems? In Proceedings of the Rice-Fish Research and Development in Asia, ICLARM Conference Proceeding; De la Cruz, C.R., Lightfoot, B.A., Costa-Pierce, V.R.C., Bimbao, M.P., Eds.; Worldfish: Ubon, Thailand, 1992; pp. 24–41, 447. [Google Scholar]
- Yamazaki, M.; Ohtsuka, T.; Kusuoka, Y.; Maehata, M.; Obayashi, H.; Imai, K.; Shibahara, F.; Kimura, M. The impact of nigorobuna crucian carp larvae/fry stocking and rice-straw application on the community structure of aquatic organisms in Japanese rice fields. Fish. Sci. 2010, 76, 207–217. [Google Scholar] [CrossRef]
- Mohanty, R.K. Effects of feed restriction on compensatory growth performance of Indian major carps in a carp-prawn polyculture system: A response to growth depression. Aquac. Nutr. 2015, 21, 464–473. [Google Scholar] [CrossRef]
- Saikia, S.K.; Das, D.N. Potentiality of periphyton-based aquaculture technology in rice-fish environment. J. Sci. Res. 2009, 1, 624–634. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, R.K.; Verma, H.N.; Brahmanand, P.S. Performance evaluation of rice–fish integration system in rainfed medium land ecosystem. Aquaculture 2004, 230, 125–135. [Google Scholar] [CrossRef]
- Mustow, S.E. The effects of shading on phytoplankton photosynthesis in rice–fish fields in Bangladesh. Agric. Ecosyst. Environ. 2002, 90, 89–96. [Google Scholar] [CrossRef]
- Kunda, M.; Azim, M.E.; Wahab, M.A.; Dewan, S.; Roos, N.; Thilsted, S.H. Potential of mixed culture of freshwater prawn (Macrobrachium rosenbergii) and self-recruiting small species mola (Amblypharyngodon mola) in rotational rice–fish/prawn culture systems in Bangladesh. Aquac. Res. 2008, 39, 506–517. [Google Scholar] [CrossRef]
- Björnsson, B. Effects of stocking density on growth rate of halibut (Hippoglossus hippoglossus L.) reared in large circular tanks for three years. Aquaculture 1994, 123, 259–270. [Google Scholar] [CrossRef]
- Mohanty, R.K. Density-dependent growth performance of Indian major carps in rainwater reservoirs. J. Appl. Ichthyol. 2004, 20, 123–127. [Google Scholar] [CrossRef]
- Zolfaghari, M.; Imanpour, M.R.; Najafi, E. Effect of photoperiod and feeding frequency on growth and feed utilization of fingerlings Persian sturgeon (Acipenser persicus). Aquac. Res. 2011, 42, 1594–1599. [Google Scholar] [CrossRef]
- Krogdahl, Å.; Lea, T.B.; Olli, J.J. Soybean proteinase inhibitors affect intestinal trypsin activities and amino acid digestibilities in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. Part A Physiol. 1994, 107, 215–219. [Google Scholar] [CrossRef]
- Okumus, I.; Bascinar, N. The effect of different numbers of feeding days on feed consumption and growth of rainbow trout [Oncorhynchus mykiss (Walbaum)]. Aquac. Res. 2001, 32, 365–367. [Google Scholar] [CrossRef]
- Deng, D.-F.; Koshio, S.; Yokoyama, S.; Bai, S.C.; Shao, Q.; Cui, Y.; Hung, S.S. Effects of feeding rate on growth performance of white sturgeon (Acipenser transmontanus) larvae. Aquaculture 2003, 217, 589–598. [Google Scholar] [CrossRef]
- Wang, N.; Hayward, R.S.; Noltie, D.B. Effect of feeding frequency on food consumption, growth, size variation, and feeding pattern of age-0 hybrid sunfish. Aquaculture 1998, 165, 261–267. [Google Scholar] [CrossRef]
- Xie, S.; Zhu, X.; Cui, Y.; Wootton, R.J.; Lei, W.; Yang, Y. Compensatory growth in the gibel carp following feed deprivation: Temporal patterns in growth, nutrient deposition, feed intake and body composition. J. Fish Biol. 2001, 58, 999–1009. [Google Scholar] [CrossRef]
- Mohanty, R.K. Impact of phased harvesting on population structure, feed intake pattern and growth performance of Macrobrachium rosenbergii DeMan (giant freshwater prawn) in polyculture with carps in concurrent rice–fish culture. Aquac. Int. 2010, 18, 523–537. [Google Scholar] [CrossRef]
- Edwards, P. Aquaculture environment interactions: Past, present and likely future trends. Aquaculture 2015, 447, 2–14. [Google Scholar] [CrossRef]
- Shakir, C.; Lipton, A.P.; Manilal, A.; Sugathan, S.; Selvin, J. Effect of stocking density on the survival rate and growth performance in Penaeusmonodon. J. Basic Appl. Sci. 2014, 10, 231–238. [Google Scholar]
Treatments | Stocking Density m−2 | Tilapia/Carp | Feedstuff | % of Body Weight | Application Day Week−1 | Application Time |
---|---|---|---|---|---|---|
T0 | 6 | 1:1 | – | – | – | – |
T1 | 6 | 1:1 | Traditional feed (rice bran) | 8 | 1 | M |
T2 | 6 | 1:1 | 8 | 2 | N | |
T3 | 6 | 1:1 | 8 | 3 | AN | |
T4 | 6 | 1:1 | 8 | 4 | E | |
T5 | 6 | 1:1 | 8 | 5 | M + E | |
T6 | 6 | 1:1 | Artificial (floating feed) | 8 | 1 | M |
T7 | 6 | 1:1 | 8 | 2 | N | |
T8 | 6 | 1:1 | 8 | 3 | AN | |
T9 | 6 | 1:1 | 8 | 4 | E | |
T10 | 6 | 1:1 | 8 | 5 | M + E |
Treatments | Description |
---|---|
T0 | No feed and no fingerlings |
T1 | Traditional feed (rice bran) + 1 day week−1 in the morning |
T2 | Traditional feed (rice bran) + 2 days week−1 in the noon |
T3 | Traditional feed (rice bran) + 3 days week−1 in the afternoon |
T4 | Traditional feed (rice bran) + 4 days week−1 in the evening |
T5 | Traditional feed (rice bran) + 5 days week−1 in the morning and evening |
T6 | Artificial (floating feed) + 1 day week−1 in the morning |
T7 | Artificial (floating feed) + 2 days week−1 in the noon |
T8 | Artificial (floating feed) + 3 days week−1 in the afternoon |
T9 | Artificial (floating feed) + 4 days week−1 in the evening |
T10 | Artificial (floating feed) + 5 days week−1 in the morning and evening |
Treatments | Initial Weight (g) | Final Weight (g) | Weight Gain (g) | SGR (%) | Survival Rate (%) | Yield (kg ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Carp | Tilapia | Carp | Tilapia | Carp | Tilapia | Carp | Tilapia | Carp | Tilapia | Carp | Tilapia | |
T0 | No fish | No fish | – | – | – | – | – | – | – | – | – | – |
T1 | 25.7 ± 0.5 | 12.5 ± 0.4 | 156.0 ± 4.0 b | 147.3 ± 3.3 f | 130.4 ± 4.0 b | 134.8 ± 3.3 f | 1.7 ± 1.2 b | 1.8 ± 1.1 f | 88.1 ± 4.0 e | 91.0 ± 2.0 c | 4123.1 b | 4021.3 b |
T2 | 25.7 ± 0.5 | 12.5 ± 0.4 | 156.9 ± 0.9 b | 154.4 ± 3.5 e,f | 131.3 ± 0.9 b | 141.9 ± 3.5 e | 1.8 ± 1.4 b | 1.9 ± 1.1 e | 90.2 ± 0.2 d | 90.3 ± 0.3 c | 4245.7 b | 4182.7 b |
T3 | 25.7 ± 0.5 | 12.5 ± 0.4 | 157.5 ± 1.5 b | 157.237.2 e,f | 131.8 ± 1.5 b | 144.7 ± 7.2 e | 1.8 ± 1.1 b | 1.9 ± 1.4 e | 93.3 ± 0.9 a,b | 90.9 ± 0.2 c | 4408.4 ab | 4286.8 b |
T4 | 25.7 ± 0.5 | 12.5 ± 0.4 | 158.1 ± 2.1 b | 167.4 ± 3.4 d,e | 132.4 ± 2.1 b | 154.9 ± 3.4 d | 1.8 ± 1.2 b | 2.1 ± 1.1 d | 92.1 ± 0.1 b | 93.0 ± 0.1 b | 4368.3 ab | 4670.5 b |
T5 | 25.7 ± 0.5 | 12.5 ± 0.4 | 159.0 ± 2.0 b | 175.6 ± 5.0 d | 133.3 ± 2.0 b | 163.1 ± 5.0 d | 1.8 ± 1.4 b | 2.2 ± 1.3 d | 95.8 ± 0.8 a | 94.8 ± 0.8 b | 4197.6 b | 4688.5 b |
T6 | 25.7 ± 0.5 | 12.5 ± 0.4 | 204.1 ± 4.1 a | 292.3 ± 8.3 c | 178.5 ± 4.1 a | 279.8 ± 8.3 c | 2.4 ± 1.4 a | 3.7 ± 1.4 c | 92.1 ± 0.1 b | 92.7 ± 0.7 b,c | 4766.0 a | 7386.7 a |
T7 | 25.7 ± 0.5 | 12.5 ± 0.4 | 205.0 ± 1.0 a | 313.2 ± 3.0 b | 179.3 ± 1.0 a | 300.7 ± 3.0 b | 2.4 ± 1.3 a | 4.0 ± 1.2 b | 93.9 ± 0.9 a,b | 93.6 ± 0.6 b | 4787.3 a | 7938.5 a |
T8 | 25.7 ± 0.5 | 12.5 ± 0.4 | 205.2 ± 0.2 a | 319.4 ± 2.2 a,b | 179.6 ± 0.2 a | 306.9 ± 2.2 b | 2.4 ± 1.2 a | 4.1 ± 1.2 b | 94.7 ± 0.7 a | 93.4 ± 0.4 b | 4795.3 a | 8102.2 a |
T9 | 25.7 ± 0.5 | 12.5 ± 0.4 | 205.6 ± 0.6 a | 330.7 ± 5.2 a | 179.9 ± 0.6 a | 318.1 ± 5.2 a | 2.4 ± 1.3 a | 4.2 ± 1.1 a | 94.9 ± 0.9 a | 94.9 ± 0.9 b | 4803.3 a | 8493.3 a |
T10 | 25.7 ± 0.5 | 12.5 ± 0.4 | 206.5 ± 2.0 a | 335.2 ± 5.0 a | 180.9 ± 2.0 a | 322.7 ± 5.0 a | 2.4 ± 1.3 a | 4.3 ± 1.4 a | 96.0 ± 1.0 a | 96.7 ± 0.7 a | 4938.6 a | 8809.7 a |
Treatment | pH | Dissolved O2 (mg L−1) | Temperature (°C) | Alkalinity (mgL−1) | CO2 (ppm) | NH3-N2 (mg L−1) | NO2-N2 (mg L−1) |
---|---|---|---|---|---|---|---|
T0 | 7.2 ± 0.1 | 5.5 ± 0.1 a | 28.0 ± 0.9 b,c,d | 144.5 ± 3.7 a | 52.0 ± 1.9 b | 0.12 ± 0.02 h | 0.05 ± 0.01 g |
T1 | 7.1 ± 0.1 | 5.4 ± 0.1 a | 28.8 ± 0.3 a,b | 120.0 ± 5.5 e | 40.5 ± 0.7 e | 0.20 ± 0.02 f,g | 0.07 ± 0.00 f |
T2 | 7.1 ± 0.1 | 4.9 ± 0.1 e | 28.5 ± 0.4 a,b,c | 134.5 ± 2.5 b | 86.0 ± 1.1 a | 0.18 ± 0.01 g | 0.11 ± 0.01 d |
T3 | 7.2 ± 0.1 | 5.2 ± 0.1 b,c | 28.3 ± 0.3 a-d | 104.0 ± 1.1 f | 35.0 ± 0.9 f | 0.20 ± 0.00 f,g | 0.14 ± 0.00 b,c |
T4 | 7.1 ± 0.1 | 5.5 ± 0.1 a | 29.0 ± 0.9 a | 119.5 ± 2.2 e | 48.0 ± 0.4 c | 0.21 ± 0.00 e,f | 0.17 ± 0.01 a |
T5 | 7.9 ± 0.2 | 5.1 ± 0.3 d | 27.8 ± 0.3 cd | 135.5 ± 2.1 b | 51.0 ± 1.2 b | 0.26 ± 0.02 b,c | 0.09 ± 0.00 e |
T6 | 7.4 ± 0.1 | 5.3 ± 0.1 b,c | 28.3 ± 0.9 ab | 129.0 ± 4.7 c | 48.0 ± 1.4 c | 0.23 ± 0.02 d,e | 0.14 ± 0.01 b,c |
T7 | 7.3 ± 0.1 | 5.3 ± 0.1 b | 29.0 ± 0.2 a | 127.5 ± 2.8 cd | 49.5 ± 2.3 b,c | 0.27 ± 0.00 a,b,c | 0.13 ± 0.01 c |
T8 | 7.3 ± 0.1 | 5.2 ± 0.1 c,d | 28.0 ± 0.0 b,c,d | 122.5 ± 1.2 d,e | 44.0 ± 0.7 d | 0.29 ± 0.01 a | 0.18 ± 0.02 a |
T9 | 7.2 ± 0.1 | 5.3 ± 0.2 b | 27.8 ± 0.4 c,d | 118.5 ± 0.3 e | 52.0 ± 2.2 b | 0.25 ± 0.01 c,d | 0.15 ± 0.00 b |
T10 | 7.2 ± 0.1 | 5.3 ± 0.1 b | 27.5 ± 0.6 d | 117.3 ± 3.5 e | 51.3 ± 1.3 b | 0.28 ± 0.02 a,b | 0.17 ± 0.01 a |
Treatments | Plant Height (cm) at Various Days Post-Transplantation | |||
---|---|---|---|---|
30 Days | 45 Days | 60 Days | 75 Days | |
T0 | 83.7 ± 5.6 a | 87.7 ± 2.5 a | 98.1 ± 3.2 a | 109.2 ± 7.1 a |
T1 | 75.0 ± 1.5 c | 74.1 ± 4.2 d | 89.3 ± 4.7 c | 97.7 ± 2.0 e |
T2 | 76.8 ± 2.2 c | 74.7 ± 0.9 d | 90.0 ± 2.0 c | 99.7 ± 2.4 d |
T3 | 78.8 ± 2.0 b,c | 79.1 ± 4.7 c | 91.8 ± 3.3 c | 105.7 ± 3.4 b |
T4 | 78.4 ± 2.4 b,c | 79.0 ± 2.7 c | 91.7 ± 0.7 c | 103.7 ± 4.0 c |
T5 | 79.2 ± 1.7 b | 80.8 ± 7.1 c | 92.8 ± 1.6 b,c | 106.2 ± 1.2 ab |
T6 | 77.3 ± 1.8 c | 76.9 ± 1.0 cd | 90.2 ± 0.2 c | 101.7 ± 1.8 c |
T7 | 77.67 ± 1.45 c | 77.5 ± 2.7 b,c,d | 91.1 ± 2.7 c | 102.3 ± 3.9 c |
T8 | 79.3 ± 1.5 b | 81.2 ± 5.6 b,c | 93.6 ± 2.5 b,c | 107.7 ± 1.0 a |
T9 | 81.1 ± 1.7 ab | 83.3 ± 1.7 b | 95.9 ± 1.8 b | 108.7 ± 3.7 a |
T10 | 79.3 ± 1.2 b | 82.1 ± 4.7 b | 94.1 ± 3.8 b | 108.7 ± 3.8 a |
Treatments | Number of Total Tillers Per Hill at Various Days Post-Transplantation | |||
---|---|---|---|---|
30 Days | 45 Days | 60 Days | 75 Days | |
T0 | 11.1 ± 0.2 a | 11.3 ± 0.6 a | 11.8 ± 0.8 a | 12.7 ± 0.3 a |
T1 | 8.3 ± 0.6 f | 8.9 ± 0.5 d | 9.1 ± 0.1 e | 9.3 ± 0.6 e |
T2 | 8.8 ± 0.2 e | 9.0 ± 0.2 d | 9.1 ± 0.2 e | 9.4 ± 0.8 e |
T3 | 9.6 ± 0.7 c | 9.9 ± 0.2 b,c | 10.2 ± 0.2 b | 10.6 ± 0.7 c |
T4 | 9.4 ± 0.5 c | 9.5 ± 0.4 c,d | 9.7 ± 0.9 c | 10.0 ± 0.5 d |
T5 | 9.7 ± 0.3 b,c | 10.3 ± 0.3 b | 10.6 ± 0.5 b | 10.8 ± 0.2 c |
T6 | 8.9 ± 0.5 e | 9.2 ± 0.4 d | 9.3 ± 0.3 d | 9.9 ± 0.5 e |
T7 | 9.0 ± 0.3 d | 9.3 ± 0.6 c,d | 9.6 ± 0.4 c | 10.0 ± 0.7 e |
T8 | 9.9 ± 0.7 b | 10.8 ± 0.7 a,b | 11.0 ± 0.3 a,b | 10.9 ± 0.2 c |
T9 | 10.4 ± 0.2 b | 11.2 ± 0.7 a | 11.7 ± 0.7 a | 12.2 ± 0.2 a |
T10 | 9.9 ± 0.2 b | 11.1 ± 1.0 a | 11.3 ± 0.1 a | 11.6 ± 0.4 b |
Treatments | No. of Effective Tillers∙Hill−1 | No. of Non-Effective Tillers∙Hill−1 | No. Grains∙Panicle−1 | No. of Sterile Spikelets∙Spike−1 | 1000-Grain wt. (g) | Grain Yield (t ha−1) | Straw Yield (t ha−1) | Biological Yield (t ha−1) | Harvest Index (%) |
---|---|---|---|---|---|---|---|---|---|
T0 | 12.7 ± 2.7 a | 0.9 ± 0.1 f | 132.9 ± 13.0 a | 5.0 ± 1.0 f | 17.1 ± 1.1 a | 5.5 ± 0.5 a | 6.8 ± 0.2 a | 12.3 ± 2.7 a | 44.8 ± 1.5 a |
T1 | 8.4 ± 0.4 e | 1.5 ± 0. 2 a | 100.3 ± 0.3 f | 7.4 ± 0.4 a | 14.1 ± 0.1 e | 3.5 ± 0.1 d | 4.6 ± 0.2 d | 8.1 ± 0.3 f | 42.8 ± 0.9 c |
T2 | 8.6 ± 0.1 e | 1.4 ± 0.1 ab | 103.1 ± 2.0 e | 7.3 ± 0.3 a | 14.2 ± 0.2 d | 3.7 ± 0.1 d | 4.9 ± 0.1 d | 8.6 ± 0.1 e | 43.1 ± 0.7 b |
T3 | 10.5 ± 0.5 c | 1.2 ± 0.1 b | 118.8 ± 0.8 b | 6.3 ± 0.3 c | 15.5 ± 0.5 c | 4.6 ± 0.1 b | 5.9 ± 0.1 c | 10.5 ± 0.1 b | 44.0 ± 0.8 a |
T4 | 9.7 ± 0.1 d | 1.3 ± 0.1 b | 114.7 ± 0.7 c | 6.6 ± 0.6 bc | 15.3 ± 0.3 c | 4.3 ± 0.3 b | 5.6 ± 0.2 c | 9.9 ± 0.2 c | 43.6 ± 0.7 b |
T5 | 10.7 ± 0.1 c | 1.2 ± 0.3 b | 125.5 ± 0.5 ab | 6.2 ± 0.2 d | 15.7 ± 0.7 c | 4.9 ± 0.2 b | 6.1 ± 0.1 b | 11.0 ± 0.1 ab | 44.3 ± 0.6 a |
T6 | 9.0 ± 0.2 d | 1.3 ± 0.3 ab | 105.8 ± 1.0 e | 7.0 ± 0.2 b | 14.5 ± 0.5 d | 4.0 ± 0.3 d | 5.2 ± 0.2 c | 9.2 ± 0.2 d | 43.2 ± 1.3 b |
T7 | 9.37 ± 0.37 d | 1.3 ± 0.2 ab | 108.4 ± 2.0 d | 6.9 ± 0.1 b | 14.9 ± 0.1 d | 4.1 ± 0.1 c | 5.4 ± 0.4 c | 9.5 ± 0.3 d | 43.3 ± 2.3 b |
T8 | 11.11 ± 0.11 b | 1.1 ± 0.1 c | 128.3 ± 0.3 a | 5.9 ± 0.1 e | 16.0 ± 0.5 bc | 5.2 ± 0.2 a | 6.5 ± 0.5 ab | 11.6 ± 0.6 ab | 44.3 ± 1.6 a |
T9 | 12.1 ± 0.1 ab | 1.0 ± 0.3 c | 131.4 ± 1.4 a | 5.3 ± 0.1 f | 16.4 ± 0.4 b | 5.4 ± 0.1 a | 6.7 ± 0.1 a | 12.1 ± 0.2 a | 44.6 ± 0.1 a |
T10 | 11.5 ± 0.1 ab | 1.1 ± 0.1 d | 129.8 ± 1.5 a | 5.7 ± 0.3 e | 16.2 ± 0.2 b | 5.3 ± 0.1 a | 6.6 ± 0.2 a | 12.0 ± 0.2 ab | 44.6 ± 1.1 a |
Cost Items | T0 ($ ha−1) | T1 ($ ha−1) | T2 ($ ha−1) | T3 ($ ha−1) | T4 ($ ha−1) | T5 ($ ha−1) | T6 ($ ha−1) | T7 ($ ha−1) | T8 ($ ha−1) | T9 ($ ha−1) | T10 ($ ha−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
A: Variable costs | |||||||||||
Land preparation and dike(ail) production | 1031 | 1031 | 1031 | 1031 | 1031 | 1031 | 1031 | 1031 | 1031 | 1031 | 1031 |
Rice seed | 94 | 94 | 94 | 94 | 94 | 94 | 94 | 94 | 94 | 94 | 94 |
Seed sprouting of rice | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Irrigation | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 |
Weeding | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
Artificial floating fish feed | – | – | – | – | – | – | 1615 | 1615 | 1615 | 1615 | 1615 |
Rice bran | – | 241 | 241 | 241 | 241 | 241 | – | – | – | – | – |
Tilapia fingerlings ($0.03/piece) | – | 900 | 900 | 900 | 900 | 900 | 900 | 900 | 900 | 900 | 900 |
Common carp fingerlings ($0.06/piece) | – | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 |
Hired labor for feeding and harvesting fish and rice | – | 163 | 163 | 163 | 163 | 163 | 163 | 163 | 163 | 163 | 163 |
Post-harvest operation | 188 | 188 | 188 | 188 | 188 | 188 | 188 | 188 | 188 | 188 | 188 |
Miscellaneous | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 |
Subtotal of variable costs | 1638 | 4742 | 4742 | 4742 | 4742 | 4742 | 6116 | 6116 | 6116 | 6116 | 6116 |
B: Fixed costs | |||||||||||
Protection fence by net cover | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
TSP | – | 47 | 47 | 47 | 47 | 47 | 47 | 47 | 47 | 47 | 47 |
Cow dung | – | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
Urea | – | 62 | 62 | 62 | 62 | 62 | 62 | 62 | 62 | 62 | 62 |
Subtotal of fixed costs: | 100 | 224 | 224 | 224 | 224 | 224 | 224 | 224 | 224 | 224 | 224 |
Total Cost (A+B): | 1738 | 4966 | 4966 | 4966 | 4966 | 4966 | 6340 | 6340 | 6340 | 6340 | 6340 |
Tilapia ($1.85/kg) | – | 7439 | 7738 | 7931 | 8640 | 9239 | 13,665 | 14,686 | 14,989 | 15,713 | 16,298 |
Common carp ($3.58/kg) | – | 14,761 | 15,200 | 15,782 | 15,639 | 15,027 | 17,062 | 17,139 | 17,167 | 17,196 | 17,680 |
Total fish income ($/ha) | – | 22,200 | 22,938 | 23,713 | 24,279 | 24,266 | 30,728 | 31,825 | 32,156 | 32,908 | 33,978 |
Grain yield ($370.38 t–1) | 2063 | 1301 | 1388 | 1733 | 1624 | 1830 | 1489 | 1538 | 1931 | 2025 | 1999 |
Straw yield ($61.73 t–1) | 424 | 290 | 306 | 367 | 350 | 384 | 327 | 336 | 404 | 419 | 414 |
Total rice income ($/ha) | 2487 | 1591 | 1693 | 2099 | 1974 | 2214 | 1816 | 1873 | 2336 | 2444 | 2413 |
Gross return (GR)$ | 2487 | 23,791 | 24,631 | 25,812 | 26,253 | 26,480 | 32,544 | 33,698 | 34,492 | 35,352 | 36,391 |
Net return$ (NR = GR − TC) | 749 | 18,825 | 19,665 | 20,846 | 21,287 | 21,514 | 26,204 | 27,358 | 28,152 | 29,012 | 30,051 |
BCR | 1.4 | 3.2 | 3.3 | 3.5 | 3.5 | 3.6 | 3.4 | 3.5 | 3.6 | 3.7 | 3.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Billah, M.M.; Uddin, M.K.; Samad, M.Y.A.; Hassan, M.Z.B.; Anwar, M.P.; Talukder, I.; Shahjahan, M.; Haque, A.N.A. Impact of Feeding Schedule on the Growth Performances of Tilapia, Common Carp, and Rice Yield in an Integrated Rice-Fish Farming System. Sustainability 2020, 12, 8658. https://doi.org/10.3390/su12208658
Billah MM, Uddin MK, Samad MYA, Hassan MZB, Anwar MP, Talukder I, Shahjahan M, Haque ANA. Impact of Feeding Schedule on the Growth Performances of Tilapia, Common Carp, and Rice Yield in an Integrated Rice-Fish Farming System. Sustainability. 2020; 12(20):8658. https://doi.org/10.3390/su12208658
Chicago/Turabian StyleBillah, Md M., Md Kamal Uddin, Mohd Y. A. Samad, Mohd Z. B. Hassan, Md Parvez Anwar, Isa Talukder, Md Shahjahan, and Ahmad Numery Ashfaqul Haque. 2020. "Impact of Feeding Schedule on the Growth Performances of Tilapia, Common Carp, and Rice Yield in an Integrated Rice-Fish Farming System" Sustainability 12, no. 20: 8658. https://doi.org/10.3390/su12208658
APA StyleBillah, M. M., Uddin, M. K., Samad, M. Y. A., Hassan, M. Z. B., Anwar, M. P., Talukder, I., Shahjahan, M., & Haque, A. N. A. (2020). Impact of Feeding Schedule on the Growth Performances of Tilapia, Common Carp, and Rice Yield in an Integrated Rice-Fish Farming System. Sustainability, 12(20), 8658. https://doi.org/10.3390/su12208658