Land-Use and Legislation-Based Methodology for the Implementation of Sustainable Drainage Systems in the Semi-Arid Region of Brazil
Abstract
:1. Introduction
2. Brazilian Context
3. Methodology
3.1. Study Case and Alternatives for SuDS Application
3.2. Sustainable Measures Modelling
3.2.1. Scenarios
3.2.2. Sensitivity Analysis
3.2.3. Analysis
3.2.4. Calibration and Validation
4. Results
4.1. Without SuDS Strategies:
4.2. With SuDS Strategies:
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Nations, U. World Urbanization Prospects: The 2009 Revision. In United Nations Department of Economic and Social Affairs (Population Division); United Nations: New York, NY, USA, 2010. [Google Scholar]
- Poustie, M.S.; Deletic, A.; Brown, R.R.; Wong, T.; De Haan, F.J.; Skinner, R. Sustainable urban water futures in developing countries: The centralised, decentralised or hybrid dilemma. Urban Water J. 2014, 12, 543–558. [Google Scholar] [CrossRef]
- Ahiablame, L.; Shakya, R. Modeling flood reduction effects of low impact development at a watershed scale. J. Environ. Manag. 2016, 171, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Chen, H.; Liao, Z.; Gu, X.; Zhu, D.; Zhang, J. An integrated assessment of urban flooding mitigation strategies for robust decision making. Environ. Model. Softw. 2017, 95, 143–155. [Google Scholar] [CrossRef]
- ARUP. Cities Alive: Water for People; ARUP: London, UK, 2018. [Google Scholar]
- Baptista, M.B.; Nascimento, N.O.; Barraud, S. Técnicas Compensatórias em Drenagem Urbana (Compensatory Techniques for Urban Drainage); ABRH: Porto Alegre, Brazil, 2011. [Google Scholar]
- Qin, H.-P.; He, K.-M.; Fu, G. Modeling middle and final flush effects of urban runoff pollution in an urbanizing catchment. J. Hydrol. 2016, 534, 638–647. [Google Scholar] [CrossRef]
- Xu, P.; Gao, F.; He, J.; Ren, X.; Xi, W. Modelling and optimization of land use/land cover change in a developing urban catchment. Water Sci. Technol. 2017, 75, 2527–2537. [Google Scholar] [CrossRef]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. In A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; p. 582. [Google Scholar]
- Benton-Short, L.; Keeley, M.; Rowland, J. Green infrastructure, green space, and sustainable urbanism: Geography’s important role. Urban Geogr. 2017. [Google Scholar] [CrossRef]
- Roy, A.H.; Wenger, S.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Shuster, W.D.; Thurston, H.W.; Brown, R.R. Impediments and solutions to sustainable, watershed-scale urban stormwater management: Lessons from Australia and the United States. Environ. Manag. 2008, 42, 344–359. [Google Scholar] [CrossRef]
- Melville-Shreeve, P.; Cotterill, S.; Grant, L.; Arahuetes, A.; Stovin, V.; Farmani, R.; Butler, D. State of SuDS delivery in the United Kingdom. Water Environ. J. 2018, 32, 9–16. [Google Scholar] [CrossRef]
- Eggermont, H.; Balian, E.; Azevedo, J.M.N.; Beumer, V.; Brodin, T.; Claudet, J.; Fady, B.; Grube, M.; Keune, H.; Lamarque, P.; et al. Nature-based Solutions: New Influence for Environmental Management and Research in Europe. GAIA Ecol. Perspect. Sci. Soc. 2015, 24, 243–248. [Google Scholar] [CrossRef]
- Liu, J.; Sample, D.J.; Bell, C.; Guan, Y. Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water 2014, 6, 1069–1099. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, K.; Chung, E.-S.; Song, J.-Y.; Shahid, S. Effective Design and Planning Specification of Low Impact Development Practices Using Water Management Analysis Module (WMAM): Case of Malaysia. Water 2017, 9, 173. [Google Scholar] [CrossRef]
- Qin, H.P.; Li, Z.X.; Fu, G. The effects of low impact development on urban flooding under different rainfall characteristics. J. Environ. Manag. 2013, 129, 577–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passeport, E.; Vidon, P.; Forshay, K.J.; Harris, L.; Kaushal, S.S.; Kellog, D.Q.; Lazar, J.; Mayer, P.M.; Stander, E.K. Ecological Engineering Practices for the Reduction of Excess Nitrogen in Human-Influenced Landscapes: A Guide for Watershed Managers. Environ. Manag. 2013, 51, 392–413. [Google Scholar] [CrossRef] [PubMed]
- Martin-Mikle, C.J.; De Beurs, K.M.; Julian, J.P.; Mayer, P.M. Identifying priority sites for low impact development (LID) in a mixed-use watershed. Landsc. Urban Plan. 2015, 140, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Leidel, M.; Niemann, S.; Hagemann, N. Capacity development as a key factor for integrated water resources management (IWRM): Improving water management in the Western Bug River Basin, Ukraine. Environ. Earth Sci. 2012, 65, 1415–1426. [Google Scholar] [CrossRef]
- Webb, J.A.; Watts, R.J.; Allan, C.; Conallin, J.C. Adaptive Management of Environmental Flows. Environ. Manag. 2018, 61, 339–346. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Emmanuel, R.; Loconsole, A. Green infrastructure as an adaptation approach to tackling urban overheating in the Glasgow Clyde Valley Region, UK. Landsc. Urban Plan. 2015, 138, 71–86. [Google Scholar] [CrossRef] [Green Version]
- De Macedo, M.B.; Do Lago, C.A.F.; Mendiondo, E.M. Stormwater volume reduction and water quality improvement by bioretention: Potentials and challenges for water security in a subtropical catchment. Sci. Total Environ. 2019, 647, 923–931. [Google Scholar] [CrossRef]
- Goncalves, M.L.R.; Zischg, J.; Rau, S.; Sitzmann, M.; Rauch, W.; Kleidorfer, M. Modeling the Effects of Introducing Low Impact Development in a Tropical City: A Case Study from Joinville, Brazil. Sustainability 2018, 10, 728. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, C.; Schardong, A.; Garcia, J.; Oliveira, C. Climate Change Impacts and Flood Control Measures for Highly Developed Urban Watersheds. Water 2018, 10, 829. [Google Scholar] [CrossRef] [Green Version]
- Moura, N.C.B.; Pellegrino, P.R.M.; Martins, J.R.S. Best management practices as an alternative for flood and urban storm water control in a changing climate. J. Flood Risk Manag. 2016, 9, 243–254. [Google Scholar] [CrossRef]
- Miguez, M.G.; Rezende, O.M.; Veról, A.P. City Growth and Urban Drainage Alternatives: Sustainability Challenge. J. Urban Plan. Dev. 2015, 141. [Google Scholar] [CrossRef]
- IBGE. Censo Demográfico—2010; Instituto Brasileiro de Geografia e estatística: Rio de Janeiro, Brazil, 2010. [Google Scholar]
- Alvala, R.C.S.; Cunha, A.; Brito, S.S.B.; Seluchi, M.E.; Marengo, J.A.; Moraes, O.L.L.; Carvalho, M.A. Drought monitoring in the Brazilian Semiarid region. An. Acad. Bras. Cienc. 2019, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miguez, M.G.; Mascarenhas, F.C.B.; Magalhães, L.P.C. Multifunctional landscapes for urban flood control in developing countries. Int. J. Sustain. Dev. Plan. 2007, 2, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Tassi, R.; Tassinari, L.C.D.S.; Piccilli, D.G.A.; Persch, C.G. Telhado verde: Uma alternativa sustentável para a gestão das águas pluviais (Green roof: A sustainable alternative to rainwater management). Ambiente Construído 2014, 14, 139–154. [Google Scholar] [CrossRef] [Green Version]
- ANA. Os Efeitos das Mudanças Climáticas Sobre os Recursos Hídricos: Desafios Para A Gestão. Agência Nac. Águas Brasília 2010, 1, 18. [Google Scholar]
- Libanio, P.A.C. The use of goal-oriented strategies in the building of water governance in Brazil. Water Int. 2014, 39, 401–416. [Google Scholar] [CrossRef]
- Brasil. Estabelece Diretrizes Nacionais Para o Saneamento Básico (Establishes Brazilian National Guidelines for Basic Sanitation). In Diário Oficial da União; Secretaria-Geral da Presidência da República Imprensa Nacional: Brasília, Brazil, 2007; p. 3. [Google Scholar]
- Libanio, P.A.C. Two decades of Brazil’s participatory model for water resources management: From enthusiasm to frustration. Water Int. 2018, 43, 494–511. [Google Scholar] [CrossRef]
- Ribeiro, M.M.R. A Few Comments on the Brazilian Water Resource Policy. New Water Policy Pract. J. 2017, 3, 22–32. [Google Scholar]
- Miranda, L.I.B. A Crise Hidrica e a Gestão das Águas Urbanas na Bacia Hidrográfica do Rio Paraíba. In Proceedings of the XVII ENAPUR, São Paulo, Brazil, 20–21 May 2017. [Google Scholar]
- Da Rangel, A.C.L.; Aranha, K.C.; Da Silva, M.C.B.C. Os telhados verdes nas políticas ambientais como medida indutora para a sustentabilidade. Desenvolv. Meio Ambiente 2015, 35. [Google Scholar] [CrossRef] [Green Version]
- Rufino, I.A.A.; Da Silva, S.T. Análise das relações entre dinâmica populacional, clima e vetores de mudança no semiárido brasileiro: Uma abordagem metodológica. Bol. Ciênc. Geod. 2017, 23, 166–181. [Google Scholar] [CrossRef]
- Ramalho, P.B.; Rufino, I.A.A.; Feitosa, P.H.C. Estimativa de Potenciais Problemas na Microdrenagem Urbana a Partir de Uma Avaliação Multicriterial Espacial (Estimation of Potential Problems in Urban Micro-Drainage from a Multicriteria Spatial Assessment). In Proceedings of the 5a Reunião de Estudos Ambientais, Porto-Alegre, Brazil, 18–19 June 2015. [Google Scholar]
- Alves, P.B.R.; Filho, H.M.; Tsuyuguchi, B.B.; Rufino, I.A.A.; Feitosa, P.H.C. Mapping of flood susceptibility in Campina Grande County—PB: A spatial multicriteria approach. Bull. Geod. Sci. 2018, 24, 28–43. [Google Scholar] [CrossRef]
- Santos, K.A.; Rufino, I.A.A.; Filho, M.N.M.B. Impacts of the disordered land occupancy: A study about an urban consolidated area in Campina Grande—PB. Eng. Sanit. Ambient. 2017, 22, 934–952. [Google Scholar] [CrossRef] [Green Version]
- Tsuyuguchi, B.B. Macrodrenagem e Ocupação do Solo no Município de Campina Grande: Caracterização, Simulação e Análises Sistêmicas (Macrodrainage and Occupation of Campina Grande: Characterization, Simulations and Analysis). Master’s Thesis, Federal University of Campina Grande, Campina Grande, Brazil, 2015. [Google Scholar]
- Nobrega, P.V.M. Análise do Sistema de Drenagem de Campina Grande/PB Para Proteção de Áreas de Risco de Inundação (Analysis of Campina Grande’s Drainage System to Protection of Floods Risk Areas). Master’s Thesis, Federal University of Campina Grande, Campina Grande, Brazil, 2012. [Google Scholar]
- ANA. Conjuntura dos recursos hídricos no Brasil 2018: Informe anual. Agência Nac. Águas 2018, 1, 72. [Google Scholar]
- Rêgo, J.C.; Galvão, C.O.; Albuquerque, J.P.T.; Ribeiro, M.M.R.; Nunes, T.H.C. A Gestão de Recursos Hídricos e a Transposição de Águas do Rio São Francisco Para O Açude Epitácio Pessoa—Boqueirão. In Proceedings of the XXII Simpósio Brasileiro de Recursos Hídricos, Florianópolis, Brazil, 26 November–1 December 2017. [Google Scholar]
- Aragão, R.; Figueiredo, E.E.; Srinivasan, V.S. Chuvas Intensas no Estado da Paraíba (Intense Rainfall for Paraiba State). In Proceedings of the V Simpósio de Recursos Hídricos do Nordeste, Natal, RN, Brazil, 4–7 November 2014; pp. 74–85. [Google Scholar]
- Paixão, F.J.R.; Andrade, A.R.S.; Azevedo, C.A.V.; Costa, T.L.; Guerra, H.O.C. Ajuste da curva de infiltração por meio de diferentes modelos empíricos (Infiltration curve adjustment through different models). Pesqui. Apl. Agrotecnol. 2009, 2, 108–112. [Google Scholar]
- Lin, W.; Ry, S.; Park, D.G.; Lee, J.; Cho, Y. Performance Evaluation of the Runoff Reduction with Permeable Pavements using the SWMM Model. Int. J. Highw. Eng. 2015, 17, 11–18. [Google Scholar] [CrossRef]
- Matheus, C.; Caetano, F.D.N.; Morelli, D.D.D.O.; Labaki, L.C. Desempenho térmico de envoltórias vegetadas em edificações no sudeste brasileiro (Thermal performance of vegetated buildings in southeastern of Brazil). Ambiente Construído 2016, 16, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Ishimatsu, K.; Ito, K.; Mitani, Y. Use of rain gardens for stormwater management in urban design and planning. Landsc. Ecol. Eng. 2017, 205. [Google Scholar] [CrossRef]
- Ahmadisharaf, E.; Tajrishy, M.; Alamdari, N. Integrating flood hazard into site selection of detention basins using spatial multi-criteria decision-making. J. Environ. Plan. Manag. 2015, 59, 1397–1417. [Google Scholar] [CrossRef]
- Versini, P.-A.; Jouve, P.; Ramier, D.; Berthier, B.; Gouvello, B. Use of green roofs to solve storm water issues at the basin scale—Study in the Hauts-de-Seine County (France). Urban Water J. 2016, 13, 372–381. [Google Scholar] [CrossRef] [Green Version]
- Elmqvist, T.; Setala, H.; Handel, S.; Ploeg, S.V.D.; Aronson, J.; Blignaut, J.; Gomez-Baggethun, E.; Nowak, D.; Kronenberg, J.; Groot, R. Benefits of restoring ecosystem services in urban areas. Environ. Sustain. 2015, 14, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Song, J.Y.; Chung, E.-S. A Multi-Criteria Decision Analysis System for Prioritizing Sites and Types of Low Impact Development Practices: Case of Korea. Water 2017, 9, 291. [Google Scholar] [CrossRef] [Green Version]
- Leite, B.P.; Fujimira, J.M.; Fernandes, J.S. Avaliação dos impactos na drenagem com a implantação de telhados verdes na UFMT—Campus Cuiabá utilizando o software SWMM (Assessment of green roofs into UFMT campus using SWMM software). In Proceedings of the 6° Simpósio de Geotecnologias no Pantanal, Cuiabá—Embrapa Informática Agropecuária/INPE, Cuiaba, Brazil, 22–26 October 2016; pp. 354–363. [Google Scholar]
- Palla, A.; Gnecco, I.; Lanza, L.G. Compared performance of a conceptual and a mechanistic hydrologic model of a green roof. Hydrol. Process 2012, 26, 73–84. [Google Scholar] [CrossRef]
- Korkealaakso, J.; Kuosa, H.; Niemelainen, E.; Tikanmaki, M. Review of Pervious Pavement Dimensioning, Hydrological Models and Their Parameter Needs. State-of-the-Art; VTT: Espoo, Finland, 2014; p. 63. [Google Scholar]
- Silveira, A.L.L.; Goldenfum, J.A. Metodologia generalizada para pré-dimensionamento de dispositivos de controle pluvial na fonte (Methodology for pre-sizing of rain control devices at source). Rev. Bras. Recur. Hídr. 2007, 12, 157–168. [Google Scholar]
- Rosa, D.J.; Clausen, J.C.; Michael, D. Calibration and Verification of SWMM for Low Impact Development. J. Am. Water Resour. Assoc. 2015, 51, 746–757. [Google Scholar] [CrossRef]
- Matlock, M. Low Impact Development: A Design Manual for Urban Areas. Centre for Agricultural and Rural Sustainability; University of Arkansas Press: Fayetteville, AR, USA, 2010. [Google Scholar]
- Caldas, A.; Pissarra, T.; Costa, R.; Neto, F.; Zanata, M.; Parahyba, R.; Sanches Fernandes, L.; Pacheco, F. Flood Vulnerability, Environmental Land Use Conflicts, and Conservation of Soil and Water: A Study in the Batatais SP Municipality, Brazil. Water 2018, 10, 1357. [Google Scholar] [CrossRef] [Green Version]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Performance and implementation oflow impact development—Areview. Sci. Total Environ. 2017, 413–432. [Google Scholar] [CrossRef]
- Ariza, S.L.J.; Martínez, J.A.; Muñoz, A.F.; Quijano, J.P.; Rodríguez, J.P.; Camacho, L.A.; Díaz-Granados, M. A Multicriteria Planning Framework to Locate and Select Sustainable Urban Drainage Systems (SUDS) in Consolidated Urban Areas. Sustainability 2019, 11, 2312. [Google Scholar] [CrossRef] [Green Version]
- Andrés-Doménech, I.; Perales-Momparler, S.; Morales-Torres, A.; Escuder-Bueno, I. Hydrological Performance of Green Roofs at Building and City Scales under Mediterranean Conditions. Sustainability 2018, 10, 3105. [Google Scholar] [CrossRef] [Green Version]
- Lashford, C.; Rubinato, M.; Cai, Y.; Hou, J.; Abolfathi, S.; Coupe, S.; Charlesworth, S.; Tait, S. SuDS & Sponge Cities: A Comparative Analysis of the Implementation of Pluvial Flood Management in the UK and China. Sustainability 2019, 11, 213. [Google Scholar] [CrossRef] [Green Version]
- Siekmann, T.; Siekmann, M. Resilient urban drainage—Options of an optimized area-management. Urban Water J. 2015, 12, 44–51. [Google Scholar] [CrossRef]
- Coutts, A.M.; Tapper, N.J.; Beringer, J.; Loughnan, M.; Demuzere, M. Watering our cities: The capacity for Water Sensitive Urban Design to support urban cooling and improve human thermal comfort in the Australian context. Progress Phys. Geogr. 2012, 37, 2–28. [Google Scholar] [CrossRef]
- Huang, J.J.; Li, Y.; Niu, S.; Zhou, S.H. Assessing the performances of low impact development alternatives by long-term simulation for a semi-arid area in Tianjin, northern China. Water Sci. Technol. 2014, 70, 1740–1745. [Google Scholar] [CrossRef]
- Bressiani, D.A.; Gassman, P.W.; Fernandes, J.G.; Garbossa, L.H.P.; Srinivasan, R.; Bonumá, N.B. Review of Soil and Water Assessment Tool (SWAT) applications in Brazil: Challenges and prospects. Int. J. Agric. Biol. Eng. 2015, 8, 9–35. [Google Scholar]
- Montenegro, A.; Ragab, R. Hydrological response of a Brazilian semi-arid catchment to different land use and climate change scenarios: A modelling study. Hydrol. Processes 2010, 24, 2705–2723. [Google Scholar] [CrossRef]
- Parkinson, J.; Tayler, K.; Mark, O. Planning and design of urban drainage systems in informal settlements in developing countries. Urban Water J. 2007, 4, 137–149. [Google Scholar] [CrossRef]
- Ako, A.A.; Eyong, G.E.T.; Nkeng, G.E. Water Resources Management and Integrated Water Resources Management (IWRM) in Cameroon. Water Resour. Manag. 2010, 24, 871–888. [Google Scholar] [CrossRef]
- Kalbus, E.; Kalbacher, T.; Kolditz, O.; Krüger, E.; Seegert, J.; Röstel, G.; Teutsch, G.; Borchardt, D.; Krebs, P. Integrated Water Resources Management under different hydrological, climatic and socio-economic conditions. Environ. Earth Sci. 2012, 65, 1363–1366. [Google Scholar] [CrossRef] [Green Version]
Government Levels | Environmental Protection | Water Resources Management | Water Supply and Sanitation |
---|---|---|---|
Federal | Inter states impacts | Federal waters | |
States | Inter municipalities impacts | State waters | Inter municipalities services |
Municipalities | Local impacts | Local services |
Conditioning Factors | Description | Sources |
---|---|---|
Urban development (land-use input) | Residential, commercial, institutional and no use areas. | Obtained from PMCG (2010) |
Physical specificities (hydrological and climate inputs) | Rainfall 1, soil type and infiltration 2 | Aragão, et al. [47] Paixão, et al. [48] |
Drainage system assets | Obtained from PMCG (2019) | |
Climate | Köppen-Geiger Climate Brazilian Guidelines for Buildings 15.220 of 2003 (Brazilian Bioclimatic Zones) | |
Alternatives for SuDS application (governance input) | Suggests sustainable measures for flooding mitigation in the city | Federal level: Basic Sanitation Plan (Federal Law 11.445/2007) |
Mandatory use of green roofs in condominiums with more than three buildings. | State level: Law 10.047/2013 (for Paraíba state) | |
Rate of imperviousness granted according to uses and areas. Max imperviousness: 80%/Min permeability: 20% | Municipal level: Master Plan (Complementary Law 003/2006) |
Input | Parameters | Description | Values |
---|---|---|---|
Sub-catchments or blocks (312 blocks) | Area | Area of the sub-catchment | - |
Width | The maximum length that surface runoff will course inside the sub-catchment | - | |
Slope | The slope of the sub-catchment | - | |
IA | Impermeable area | - | |
NI | Surface roughness (Manning’s n) for the overland flow of impervious portion in a sub-catchment | 0.011 | |
NP | Surface roughness (Manning’s n) for the overland flow of pervious portion in a sub-catchment | 0.04 | |
DI | Depression storage depth of impervious portion of the sub-catchment | 1.01 mm | |
DP | Depression storage depth of pervious portion of the sub-catchment | 5.08 mm | |
AINC | The fraction of the impervious area without depression storage | 10% | |
Rain gauges from real events (IDF—Intense, duration and frequency equation) Source: [47] | K | Local parameter | 334 |
B | Local parameter | 5 | |
n | Local parameter | 0.596 | |
m | Local parameter | 0.227 | |
t | Rainfall duration | 120 min | |
RT | Return period | 2 and 5 years | |
Infiltration (Horton equation) Source: [48] | Initial infiltration capacity (f0) | Maximum infiltration rate | 396.10 mm/h |
Final infiltration capacity (fc) | Minimum infiltration rate | 7.10 mm/h | |
Decay constant (k) | Decay constant specific to the soil | 2.677 l/h |
Input | Parameters | Value | Source |
---|---|---|---|
Green Roof (GR) | Surface depth (mm) | 15 | Adapted from [56,57] |
Surface vegetable cover | 0.11 | ||
Surface Roughness | 0.15 | ||
Surface slope (%) | 2.5 | ||
Drainage thickness (mm) | 3 | ||
Drainage voids index | 0.6 | ||
Drainage roughness | 0.1 | ||
Permeable pavement (PP) | Surface depth (mm) | 10 | Adapted from [58,59] |
Surface Roughness | 0.05 | ||
Surface slope (%) | 6 | ||
Pavement thickness (mm) | 100 | ||
Pavement voids index | 0.2 | ||
Pavement impermeable surface fraction | 0 | ||
Pavement permeability (mm/h) | 5.4 | ||
Pavement clogging | 180 | ||
Storage thickness (mm) | 350 | ||
Storage voids index | 0,6 | ||
Storage filtration index | 7 | ||
Storage clogging | 180 | ||
Rain garden (RG) | Surface depth (mm) | 15 | Adapted from [60,61] |
Surface vegetable cover | 0.11 | ||
Surface Roughness | 0.1 | ||
Surface slope (%) | 1.0 |
SuDS | Cases | SuDS Location: Defined by Legislation in Charge and Land-Use Development | Scenarios: Defined by Legislation in Charge | Return Period |
---|---|---|---|---|
No measures | 1–4 | - | 1 and 2 | 2 and 5 years |
Green roofs (GR) | 5–8 | Condominiums, with more than three constructed buildings (Law 10.047/2013) | 1 and 2 | 2 and 5 years |
9–12 | Institutional/public buildings | 1 and 2 | 2 and 5 years | |
13–16 | Free spaces/no use | 1 and 2 | 2 and 5 years | |
Permeable paving (PP) | 17–20 | Sidewalks of free spaces | 1 and 2 | 2 and 5 years |
21–24 | Every sidewalk | 1 and 2 | 2 and 5 years | |
Rain gardens (RG) | 25–28 | Free spaces/no use | 1 and 2 | 2 and 5 years |
Combination of all | 29–30 | GR in institutional/public buildings | 2 | 2 and 5 years |
PP in every sidewalk | ||||
RG in free spaces/no use |
Cases | Number of Blocks with SuDS Applied | Percentage of Blocks with SuDS Applied (%) | Number of Blocks with Reduced Runoff | Percentage of Blocks with Reduced Runoff (%) |
---|---|---|---|---|
Scenario 1—Current occupation | ||||
GR on condominums | 12 | 41.4 | 29 | 100.0 |
GR on public buildings | 15 | 51.7 | 21 | 72.4 |
GR on free/no use areas | 15 | 51.7 | 28 | 96.6 |
PP on sidewalks of free/no use areas | 17 | 58.6 | 26 | 89.7 |
PP on every sidewalk | 29 | 100.0 | 29 | 100.0 |
RG on free/no use areas | 15 | 51.7 | 28 | 96.6 |
Scenario 2—Legislation upper limit scenario | ||||
GR on condominums | 22 | 44.9 | 33 | 67.3 |
GR on public buildings | 25 | 51.0 | 38 | 77.6 |
GR on free/no use areas | 30 | 61.2 | 39 | 79.6 |
PP on sidewalks of free/no use areas | 32 | 65.3 | 48 | 98.0 |
PP on every sidewalk | 49 | 100.0 | 48 | 98.0 |
RG on free/no use areas | 30 | 61.2 | 40 | 81.6 |
Scenario 1—Current Occupation | ||
Rank | SuDS and Location | Reduction of Severe Flooding Blocks (%) |
1 | PP on every sidewalk | 55.2 |
2 | RG on free/no use areas | 48.3 |
3 | GR on condominiums | 44.8 |
4 | PP on sidewalks of free/no use areas | 34.5 |
5 | GR on free/no use areas | 31.0 |
6 | GR on public buildings | 13.8 |
Scenario 2—Legislation upper Limit Occupation Area | ||
Rank | SuDS and Location | Reduction of Severe Flooding Blocks (%) |
1 | Combination of GR, PP and RG | 85.7 |
2 | GR on public buildings | 24.5 |
3 | RG on free/no use areas | 18.4 |
4 | PP on every sidewalk | 10.2 |
5 | GR on free/no use areas | 8.2 |
6 | GR on condominiums | 4.1 |
7 | PP on sidewalks of free/no use areas | 4.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barros Ramalho Alves, P.; Alexandra Alves Rufino, I.; Hermínio Cunha Feitosa, P.; Djordjević, S.; Javadi, A. Land-Use and Legislation-Based Methodology for the Implementation of Sustainable Drainage Systems in the Semi-Arid Region of Brazil. Sustainability 2020, 12, 661. https://doi.org/10.3390/su12020661
Barros Ramalho Alves P, Alexandra Alves Rufino I, Hermínio Cunha Feitosa P, Djordjević S, Javadi A. Land-Use and Legislation-Based Methodology for the Implementation of Sustainable Drainage Systems in the Semi-Arid Region of Brazil. Sustainability. 2020; 12(2):661. https://doi.org/10.3390/su12020661
Chicago/Turabian StyleBarros Ramalho Alves, Priscila, Iana Alexandra Alves Rufino, Patrícia Hermínio Cunha Feitosa, Slobodan Djordjević, and Akbar Javadi. 2020. "Land-Use and Legislation-Based Methodology for the Implementation of Sustainable Drainage Systems in the Semi-Arid Region of Brazil" Sustainability 12, no. 2: 661. https://doi.org/10.3390/su12020661
APA StyleBarros Ramalho Alves, P., Alexandra Alves Rufino, I., Hermínio Cunha Feitosa, P., Djordjević, S., & Javadi, A. (2020). Land-Use and Legislation-Based Methodology for the Implementation of Sustainable Drainage Systems in the Semi-Arid Region of Brazil. Sustainability, 12(2), 661. https://doi.org/10.3390/su12020661