Improving the Water-Use Efficiency and the Agricultural Productivity: An Application Case in a Modernized Semiarid Region in North-Central Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Irrigation Module
2.2. Agroclimatic Features
2.3. Hydraulic Infrastructure
2.4. Crops
2.5. Parameters to Evaluate the Water Productivity
3. Results and Discussion
3.1. Cropping Patterns
3.2. Irrigation Module Operation System
3.3. Water Productivity
3.4. Integrating Actions for the Mexican Water User Associations (Wua)
4. Conclusions
- -
- To reconsider adjusting the granted volume through an exhaustive analysis depending on the irrigated area;
- -
- Is essential that the Water User Associations consider having an exclusive office with the suitable personnel, mainly technicians (with knowledge on irrigation, agricultural water management, or agronomy), non-technicians, and administration, in order to operate the irrigated area;
- -
- Within the agricultural technician/manager´s activities, the following most be considered: obtaining the irrigation schedule following the Et0, the plant status, the soil properties (essential to know them), or a combination among them, to control and record the extracted volumes at each farm continuously, to continue with the maintenance labors of the main and secondary channels/pipes to ensure a good efficiency of the whole irrigation system;
- -
- To consider the crop rotation;
- -
- To consider the modernization at the plot level.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Horst, M.G.; Shamutalov, S.S.; Goncalves, J.M.; Pereira, L.S. Assessing impact of Surface flow irrigation on water saving and productivity of cotton. Agric. Water Manag. 2007, 87, 115–127. [Google Scholar] [CrossRef]
- Baltazar, M.B. Diversidad Genética del cultivo del Chile (Capsicum spp.) Determinada por Isoencimas y RFLP’S Tipos: Serrano, Jalapeño, Manzano y Silvestre en su Área de Distribución; Informe de investigación: Texcoco, Edo. México, México, 1997. [Google Scholar]
- Ayars, J.E.; Christen, E.W.; Soppe, R.W.; Meyer, W.S. The resource potential of in situ shallow ground water use in irrigated agriculture. Irrig. Sci. 2006, 24, 147–160. [Google Scholar] [CrossRef]
- ONU. Población. Available online: https://www.un.org/es/sections/issues-depth/population/index.html (accessed on 20 March 2020).
- Anthony, D. On farm water productivity, current and potential: Options, outcomes, costs, irrigation. Australia 1995, 10, 20–23. [Google Scholar]
- Borrego-Marín, M.M.; Berbel, J. Cost-benefit analysis of irrigation modernization in Guadalquivir River Basin. Agric. Water Manag. 2019, 212, 416–423. [Google Scholar] [CrossRef]
- Tarjuelo, J.M.; Rodriguez-Diaz, J.A.; Abadía, R.; Camacho, E.; Rocamora, C.; Moreno, M.A. Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies. Agric. Water Manag. 2015, 162, 67–77. [Google Scholar] [CrossRef]
- Playán, E.; Mateos, L. Modernization and optimization of irrigation systems to increase water productivity. Agric. Water Manag. 2006, 80, 100–116. [Google Scholar] [CrossRef] [Green Version]
- Fernández García, J.A.; Rodríguez Díaz, E.; Camacho, P.; Montesinos, P.; Berbel, J. Effects of modernization and medium term perspectives on water and energy use in irrigation districts. Agric. Syst. 2014, 131, 56–63. [Google Scholar] [CrossRef]
- ESYRCE. Encuesta de superficies y rendimientos de cultivos en España; Ministerio de Agricultura y Pesca Alimentación y Medio Ambiente—MAPAMA: Madrid, España, 2017; p. 101. [Google Scholar]
- Waldron, S.; Brown, C.; Longworth, J. A critique of high-value supply chains as a means of modernizing agriculture in China: The case of the beef industry. Food Policy 2010, 35, 479–487. [Google Scholar] [CrossRef]
- Koopmans, M.E.; Rogge, E.; Mettepenningen, E.; Knickel, K.; Sumane, S. The role of multi-actor governance in aligning farm modernization and sustainable rural development. J. Rural Stud. 2018, 59, 252–262. [Google Scholar] [CrossRef]
- Adalja, A.; Lichtenberg, E. Implementation challenges of the food safety modernization act: Evidence from a national survey of produce growers. Food Control 2018, 89, 62–71. [Google Scholar] [CrossRef]
- World Bank. Agricultura, Valor Agregado. Available online: https://datos.bancomundial.org/indicador/NV.AGR.TOTL.ZS (accessed on 2 August 2020).
- World Bank. Empleo en Agricultura. Available online: https://datos.bancomundial.org/indicator/SL.AGR.Empl.Zs (accessed on 2 August 2020).
- INEGI. Available online: https://www.inegi.org.mx/temas/agricultura/ (accessed on 2 August 2020).
- SIAP. Available online: https://nube.siap.gob.mx/gobmx_publicaciones_siap/pag/2018/Atlas-Agroalimentario-2018 (accessed on 2 August 2020).
- El Economista Newspaper. Available online: https://www.eleconomista.com.mx/empresas/Mexico-ingresa-al-top-10-de-exportadores-agroalimentarios-20190805-0122.html (accessed on 2 August 2020).
- CONAGUA. Capítulo 4: Infraestructura Hidráulica. Available online: https://www.gob.mx/conagua/acciones-y-programas/infraestructura-hidroagricola (accessed on 2 August 2020).
- AQUASAT. Area Equipped for Full Control Irrigation. Available online: http://www.fao.org/nr/water/aquastat/data/query/results.html (accessed on 16 September 2020).
- FAO. Update of the Digital Global Map of Irrigation Areas (GMIA) to Version 5. Institute of Crop Science and Resource Conservation Rheinische Friedrich-Wilhelms-Universität Bonn, Germany. Available online: http://www.fao.org/3/I9261EN/i9261en.pdf (accessed on 2 August 2020).
- Galindo, G.; Alexander, F.J.; De León, M.B. Organización de Usuarios y Planes Directores en Unidad de Riego; Congreso Nacional de Irrigación: Acapulco, Guerrero, México, 2006. [Google Scholar]
- Chávez, C.D. Organización de la operación de la sección 04 del módulo de riego Presa Leobardo Reynoso, Fresnillo, Zacatecas. Master’s Thesis, Universidad Autónoma de Zacatecas, Zacatecas, México, 2001. [Google Scholar]
- González, T.J.; Júnez, F.H.E.; Pacheco, G.A.I.; Bautista, C.C.F.; Chávez, C.D. Proyecto De Modernización De La Red De Conducción Y Distribución Parcelaria Del Módulo De Riego Presa Leobardo Reynoso, Fresnillo, Zacatecas. Informe Técnico Para La Asociación De Usuarios (AUPLR, S.A); Universidad Autónoma de Zacatecas: Zacatecas, México, 2013. [Google Scholar]
- Doorenbos, S.; Pruitt, W.O. Crop water requirements. Irrig. Drain. 1977, 24, 144. [Google Scholar]
- Instituto Mexicano de Tecnología del Agua (IMTA). Riego por Gravedad. Jiutepec, Morelos, México. Available online: www.imta.gob.mx (accessed on 2 April 2013).
- Arid Land Agricultural Research center. WinSrf User Manual DRAFT. © USDA/ARS/Arid-Land; Agricultural Research Center: Giza, Egypt, 2006. [Google Scholar]
- Smith, M. CROPWAT: A computer program for irrigation Turner, N.C. 1986 Crop water deficits: A decade of progress. Adv. planning and management. FAO Irrig. Drain. Agron. 1992, 39, 1–51. [Google Scholar]
- Córcoles, J.I.; de Juan, J.A.; Ortega, J.F.; Tarjuelo, J.M.; Moreno, M.A. Management evaluation of Water Users Associations using benchmarking Techniques. Agric. Water Manag. 2010, 98, 1–11. [Google Scholar] [CrossRef]
- Soto-García, M.; Martínez-Alvarez, V.; García-Bastida, P.A.; Alcon, F.; Martin-Gorriz, B. Effect of water scarcity and modernization on the performance of irrigation districts in south-eastern Spain. Agric. Water Manag. 2013, 124, 11–19. [Google Scholar] [CrossRef]
- Huttunen, S. Revisiting agricultural modernisation: Interconnected farming practices driving rural development at the farm level. J. Rural Stud. 2019, 71, 36–45. [Google Scholar] [CrossRef]
- Velde, P.; Barré, P. Soils, Plants and Clay Minerals– Mineral and Biologic Interactions; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Gillies, M.H.; Smith, R.J. Infiltration parameters from Surface irrigation advance and runoff data. Irrig. Sci. 2005, 24, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Velez, E.; Palacios-Sanchez, L.A.; Espinosa-Espinosa, J.L. Evaluation of water use efficiency in irrigated agriculture supported by satellite images. Water Technol. Sci. 2018, 9, 31–38. (In Spanish) [Google Scholar] [CrossRef]
- Playán, E.; Slatni, A.; Castillo, R.; Faci, J.M. A case study for irrigation modernization: II Scenario analysis. Agric. Water Manag. 2000, 42, 335–354. [Google Scholar]
- Bautista, E.; Warrick, A.W.; Schlegel, J.L.; Thorp, K.R.; Hunsaker, D.J. Approximate furrow infiltration model for time-variable ponding depth. J. Irrig. Drain. Eng. 2016, 142, 04016045. [Google Scholar] [CrossRef] [Green Version]
- Hossain, A. Fundamentals of Irrigation and On-farm Water Management: Volume 1; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Mojarro, D.F.; González, T.J.; Gutiérrez, N.J.; Toledo, B.A.; y Araiza, E.J.A. Software PIREZ; Proyecto Integral de Riego para el Estado de Zacatecas: Zacatecas, México, 2004. [Google Scholar]
- FIRA. Fideicomiso Instituidos en Relación con la Agricultura; Agrocostos: Mexico City, México, 2016; Available online: www.fira.gob.mx (accessed on 20 August 2020).
- Escobedo, G.F. Evaluación De La Productividad Del Chile Regado a Través De Métodos De Riego Por Gravedad. Master’s Thesis, Unidad Académica de Ingeniería, Universidad Autónoma de Zacatecas, Zacatecas, México, 2009. [Google Scholar]
Month | Average Temperature (°C) | Average Precipitation (mm) | Air Humidity (%) | Wind Velocity (m/s) | Sunstroke (hours) | ETo (mm/day) | Effective Rain * (mm) |
---|---|---|---|---|---|---|---|
January | 10.7 | 13.1 | 50 | 2.8 | 7.7 | 2.9 | 0.0 |
February | 12.5 | 8.4 | 44 | 3.5 | 7.0 | 3.7 | 0.0 |
March | 15.1 | 3.5 | 33 | 3.5 | 8.4 | 5.0 | 0.0 |
April | 18.2 | 4.7 | 32 | 3.2 | 8.6 | 5.7 | 0.0 |
May | 20.2 | 13.0 | 40 | 2.6 | 9.2 | 5.6 | 0.0 |
June | 20.4 | 61.1 | 56 | 2.2 | 9.1 | 5.0 | 26.7 |
July | 18.8 | 92.3 | 70 | 1.9 | 9.3 | 4.5 | 49.8 |
August | 18.5 | 93.5 | 72 | 1.5 | 9.0 | 4.2 | 50.8 |
September | 17.4 | 72.8 | 77 | 1.2 | 8.3 | 3.7 | 34.2 |
October | 15.7 | 34.0 | 69 | 1.4 | 8.1 | 3.2 | 10.4 |
November | 12.4 | 9.4 | 56 | 1.9 | 7.5 | 2.8 | 0.0 |
December | 10.7 | 11.8 | 50 | 2.5 | 7.6 | 2.8 | 0.0 |
Average | 15.9 | 54 | 2.4 | 8.3 | 4.1 | ||
Seasonal | 417.6 | 171.9 * |
Crop | Irrigated Land in a Regular Year (ha) | Irrigated Surface in a Dry Year (ha) |
---|---|---|
Corn | 2310 | 934 |
Oat | 830 | |
Bean | 100 | 150 |
Chili | 70 | 25 |
Onion | 120 | |
Red Tomato | 460 | 143 |
Green Tomato | 460 | 107 |
Alfalfa | 200 | |
Vine | 110 | 110 |
Total | 4660 | 1554 |
Parameter | Unit | Classification | Description and Estimation |
---|---|---|---|
Conduction and distribution efficiency system Vt/Vs | % | Operation of the system | Vt/Vs (percentage), where Vt is the volume gauged at the intake site and Vs is the volume served at the parcel |
Seasonal irrigation water supplied to the users by unit of irrigated land | m3/ha | Operation of the system | Vs/Sr, where Vs is the irrigation volume supplied to the users and Sr is the total irrigated area of the crops |
Relative annual irrigation supply (ARIS) | - | Operation of the system | VS/(ETc − Pef), where VS is the annual volume of irrigation supplied to users, Pef represents the annual effective rainfall, and ETc is the annual evapotranspiration demand. |
Total MOM cost per unit volume supplied to users (MOMVS) | US$/m3 | Financial | MOM/VS, where MOM is the annual management, operation, and maintenance cost of providing the irrigation service, and VS is the annual volume of irrigation supplied to users. |
Output per unit irrigation supplied to users (VPVS) | US$/m3 | Production | VP/VS, where VP is the total annual value of agricultural production and VS is the annual volume of irrigation supplied to users. |
Gross Margin per unit volume supplied to users (GMVS) | US$/m3 | Production | GM/VS, where GM is the total annual gross margin of agricultural production and VS is the annual volume of irrigation supplied to users. |
Gross Margin per unit irrigated area (GMSr) | US$/ha1 | Production | GM/Sr, where GM is the total annual gross margin of agricultural production, and Sr is the total annual irrigated crop area. |
Irrigation Date | Total Volume Available—Vt (m3) | Delivered Volume—Vs (m3) | System Conduction and Distribution Efficiency (%) |
---|---|---|---|
11–20 April | 115,680 | 76,773 | 66 |
20–30 April | 329,150 | 289,793 | 88 |
30 April–10 May | 756,220 | 544,340 | 72 |
10–20 May | 725,220 | 600,679 | 83 |
20–31 May | 418,670 | 411,007 | 98 |
31 May–10 June | 381,270 | 290,253 | 76 |
10–20 June | 297,970 | 284,951 | 95 |
20–30 June | 335,070 | 308,177 | 92 |
01–10 July | 151,170 | 145,420 | 96 |
10–20 July | - * | - | - |
20–30 July | 10,620 | 9500 | 84 |
31 July–10 August | 934,740 | 788,029 | 75 |
10–20 August | 1,089,760 | 816,683 | 95 |
20–31 August | 437,900 | 415,071 | 95 |
31 August–10 September | - α | - | - |
10–21 September | 82,910 | 78,060 | 94 |
Crop | Production Cost (USD/ha) | Irrigated Surface (ha) | Volume of Water Applied (m3/ha)—Vs/Sr- | Crop Yield (kg/ ha) | Irrigation Method | ARIS (–) | MOMVS (USD/m3) | VPVS (USD/m3) | GMSr (USD/ha) |
---|---|---|---|---|---|---|---|---|---|
Dry Chili | 2619 | 25 | 4500 | 3000 | Drip | 0.63 | 0.02328 | 0.79365 | 38.0971 |
Corn | 858 | 934 | 4000 | 15,000 | Furrow and drip irrigation | 0.78 | 0.02619 | 0.71428 | 2.14040 |
Bean | 714 | 150 | 3500 | 3500 | Furrow irrigation | 0.62 | 0.02993 | 0.45238 | 5.79555 |
Red Tomato | 9635 | 143 | 3000 | 88,000 | Drip | 0.66 | 0.03492 | 4.88888 | 35.18648 |
Vine | 1300 | 110 | 8000 | 22,000 | Furrow and drip irrigation | 0.53 | 0.01309 | 0.48452 | 23.41991 |
Green Tomato | 2026 | 107 | 3000 | 27,128 | Drip | 0.66 | 0.03492 | 1.92479 | 35.03159 |
Peach | 667 | 15 | 6000 | 3200 | Furrow and drip irrigation | 0.68 | 0.01746 | 0.30952 | 79.34285 |
Alfalfa | 810 | 30 | 10,000 | 30,000 | Furrow and drip irrigation | 0.55 | 0.01047 | 0.32857 | 82.52380 |
Apple | 548 | 10 | 7000 | 8000 | Furrow and drip irrigation | 0.77 | 0.01496 | 0.65306 | 402.34286 |
Onion | 857 | 30 | 4000 | 70,000 | Drip | 0.66 | 0.02619 | 1.33333 | 149.21111 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Trinidad, J.; Júnez-Ferreira, H.E.; Bautista-Capetillo, C.; Ávila Dávila, L.; Robles Rovelo, C.O. Improving the Water-Use Efficiency and the Agricultural Productivity: An Application Case in a Modernized Semiarid Region in North-Central Mexico. Sustainability 2020, 12, 8122. https://doi.org/10.3390/su12198122
González-Trinidad J, Júnez-Ferreira HE, Bautista-Capetillo C, Ávila Dávila L, Robles Rovelo CO. Improving the Water-Use Efficiency and the Agricultural Productivity: An Application Case in a Modernized Semiarid Region in North-Central Mexico. Sustainability. 2020; 12(19):8122. https://doi.org/10.3390/su12198122
Chicago/Turabian StyleGonzález-Trinidad, Julián, Hugo Enrique Júnez-Ferreira, Carlos Bautista-Capetillo, Laura Ávila Dávila, and Cruz Octavio Robles Rovelo. 2020. "Improving the Water-Use Efficiency and the Agricultural Productivity: An Application Case in a Modernized Semiarid Region in North-Central Mexico" Sustainability 12, no. 19: 8122. https://doi.org/10.3390/su12198122
APA StyleGonzález-Trinidad, J., Júnez-Ferreira, H. E., Bautista-Capetillo, C., Ávila Dávila, L., & Robles Rovelo, C. O. (2020). Improving the Water-Use Efficiency and the Agricultural Productivity: An Application Case in a Modernized Semiarid Region in North-Central Mexico. Sustainability, 12(19), 8122. https://doi.org/10.3390/su12198122