Environmental Impacts of Photoluminescence and Light-Emitting Diode (LED) Lighting Technologies in Horticulture: Case Study on Compact Fluorescent Lamp (CFL) and LED Lights for “Night Break” of Chrysanthemum Cultivation
Abstract
:1. Introduction
2. Method and Materials
2.1. LCA Methodology
2.2. Indicators of Environmental Impact
2.3. Light Selection and Function Unit Definition
2.4. Life Cycle Inventory (LCI) Data Conversion
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thakur, T.; Grewal, H. Influence of Photoperiodic Night Interruption on Sustainable Potted Flower Production of Chrysanthemum cv. Snowball. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1282–1287. [Google Scholar] [CrossRef]
- Schroeter-Zakrzewska, A.; Kleiber, T.; Zakrzewski, P. The response of chrysanthemum (Chrysanthemum x grandiflorum Ramat./Kitam) cv. Covington to a different range of fluorescent and LED light. J. Elem. 2017, 22, 1015–1026. [Google Scholar] [CrossRef]
- Liao, Y.; Suzuki, K.; Yu, W.; Zhuang, D.; Takai, Y.; Ogasawara, R.; Shimazu, T.; Fukui, H. Night Break Effect of LED Light with Different Wavelengths on Floral Bud Differentiation of Chrysanthemum morifolium Ramat ‘Jimba’ and ‘Iwa no hakusen’. Environ. Control Biol. 2014, 52, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Ochiai, M.; Liao, Y.; Shimazu, T.; Takai, Y.; Suzuki, K.; Yano, S.; Fukui, H. Varietal Differences in Flowering and Plant Growth Under Night-Break Treatment with LEDs in 12 Chrysanthemum Cultivars. Environ. Control Biol. 2015, 53, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Thakur, T.; Grewal, H.S. Effect of duration of night interruption on growth and flowering of Chrysanthemum cv Kikiobiory. J. Appl. Nat. Sci. 2016, 8, 894–898. [Google Scholar] [CrossRef] [Green Version]
- Nhut, D.T.; Takamura, T.; Watanabe, H.; Okamoto, K.; Tanaka, M. Responses of strawberry plantlets cultured in vitro under superbright red and blue light emitting diodes (LEDs). Plant Cell Tissue Organ Cult. 2003, 73, 43–52. [Google Scholar] [CrossRef]
- Thinh, V.D.; Viet, P.Q.; Dung, H.C.; Kinh, N.T.B.; Gam, D.T.; Ha, C.H.; Khoi, P.H. Design and Fabrication of a mixed blue, red and warm white LED lighting source for plant tissue and plantlets production in-vitro. Adv. Appl. Eng. Phys. Public House Sci. Technol. 2015, 4, 258–263. [Google Scholar]
- Gam, D.T.; Khoi, P.H.; Ha, C.H.; Ngoc, P.B.; Hung, N.K.; Binh, H.T.T.; Chuong, N.N.; Nam, L.T.; Binh, N.T.T. Anoectochilus roxburghii in vitro: Effect of led light on in-vitro growth and developmentof Anoectochilus roxburghii. J. Biotechnol. 2017, 15, 97–104. [Google Scholar]
- U.S. Department of Energy. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 2: LED Manufacturing and Performance; Technical Report; Pacific Northwest National Laboratory N14 Energy Limited: Richland, WA, USA, June 2012; pp. 1–71.
- U.S. Department of Energy. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, Part 1: Review of the Life-Cycle Energy Consumption of Incandescent, Compact Fluorescent, and LED Lamps; Navigant Consulting, Inc.: Burlington, MA, USA, February 2012; pp. 1–46.
- Helble, P.; Hoff, E.; Stein, A.; Welch, J. Comparative Life Cycle Assessment of Lamps Used in a Classroom at Arizona State University; Final report of Life Cycle Assessment for Civil Systems—Dr. Chester SOS 598; Arizona State University: Phoeniks, AZ, USA, 13 June 2014; pp. 3–17. [Google Scholar]
- Chen, S.; Zhang, J. Environmental Impacts of Compact Fluorescent Lamps and Linear Fluorescent Lamps in China. In Proceedings of the International Conference on Civil, Transportation and Environment (ICCTE 2016), Guangzhou, China, 30–31 January 2016; Atlantis Press: Paris, France, 2016; pp. 1143–1150. [Google Scholar]
- Viet Nam Ministry of Natural Resources and Environment. Notice No. 263/BĐKH-TTBVTOD on Announcement of Emission Factor of Vietnam in 2018; Asian Development Bank: Mandaluyong, Philippines, 12 March 2020.
- Zhang, H.; Burr, J.; Zhao, F. A comparative life cycle assessment of lighting technologies for greenhouse crop production. J. Clean. Prod. 2016, 140, 705–713. [Google Scholar] [CrossRef]
Name | Abbr. | Indicator | Measurement Units |
---|---|---|---|
Air/Climate | |||
Global warming potential | GWP | Greenhouse gas emissions | kg CO2-eq. * |
Acidification potential | AP | Air pollution | kg SO2-eq. |
Photochemical ozone creation potential | POCP | Air pollution | kg O3 formed |
Ozone depleting potential | ODP | Air pollution | kg CFC11-eq. |
Human toxicity potential | HTP | Toxicity | kg 1.4-DCB-eq. |
Water | |||
Freshwater aquatic eco-toxicity potential | FAETP | Water pollution | kg 1.4-DCB-eq. |
Marine aquatic eco-toxicity potential | MAETP | Water pollution | kg 1.4-DCB-eq. |
Eutrophication potential | EP | Water pollution | kg PO4-eq. |
Soil | |||
Land use | LU | Land use | m2a |
Ecosystem damage potential | EDP | Biodiversity impacts | Points |
Terrestrial eco-toxicity potential | TAETP | Soil degradation and contamination | kg 1.4-DCB-eq. |
Resources | |||
Abiotic resource depletion | ARD | Resource depletion | kg Sb-eq. |
Nonhazardous waste landfill | NHWL | Nonhazardous waste | kg waste |
Radioactive waste landfill | RWL | Hazardous waste | kg waste |
Hazardous waste landfill | HWL | Hazardous waste | kg waste |
Characteristics | CFL | H-LED |
---|---|---|
(3U-25 W) | (3U-R-7 W) | |
Power consumption/lamp (W) | 25 | 7 |
Photosynthetic active radiation (PAR) output (μmol/s) | 13.3 | 11.7 |
Efficacy (μmol/s)/W | 0.53 | 1.67 |
Lamp lifetime (hours) | 10,000 | 20,000 |
Total lifetime PAR output (μmol/s)-h | 133,000 | 234,000 |
Number of lamps needed to supply 234,000 (μmol/s)-h | ≈1.8 | ≈1.0 |
Number of lamps needed for illuminating 1000 m2 of greenhouse (lamp) 1 | 255 | 145 |
Total power consumption (kWh) used for illuminating 1000 m2 of greenhouse in 20,000 h | 63,750 | 20,300 |
Life Cycle Assessment (LCA) Phase | Global Warming Potential | Acidification Potential | Photochemical Ozone Creation Potential | Ozone Depleting Potential | Human Toxicity Potential |
---|---|---|---|---|---|
(GWP) | (AP) | (POCP) | (ODP) | (HTP) | |
kg CO2-eq. | kg SO2-eq. | kg Formed O3 | kg CFC-11-eq. | kg 1.4-DCB-eq. | |
CFL 3U-25 W | |||||
Raw materials | 13.243 | 0.36239 | 0.003570 | 0.00000145 | 11.169 |
Manufacturing | 20.534 | 0.10477 | 0.001507 | 0.00000149 | 5.799 |
Use | 1,500.071 | 7.86635 | 0.050348 | 0.00001144 | 224.340 |
Total | 1,533.849 | 8.33351 | 0.055425 | 0.00001438 | 241.309 |
H-LED 3U-R-660-7 W | |||||
Raw materials | 8.416 | 0.07842 | 0.001321 | 0.00000090 | 8.766 |
Manufacturing | 2.277 | 0.02059 | 0.000207 | 0.00000007 | 0.968 |
Use | 136.722 | 0.71697 | 0.004589 | 0.00000104 | 20.447 |
Total | 147.415 | 0.81597 | 0.006117 | 0.00000200 | 30.181 |
LCA Phase | Freshwater Aquatic Eco-Toxicity Potential (FAETP) | Marine Aquatic Eco-Toxicity Potential (MAETP) | Eutrophication Potential (EP) |
---|---|---|---|
kg 1.4-DCB-eq. | kg 1.4-DCB-eq. | kg PO4-eq. | |
CFL 3U-25 W | |||
Raw materials | 0.6426 | 8.5669 | 0.13182 |
Manufacturing | 0.4323 | 2.7597 | 0.04535 |
Use | 21.0558 | 113.0480 | 2.10974 |
Total | 22.1307 | 124.3747 | 2.28692 |
H-LED 3U-R-660-7 W | |||
Raw materials | 0.2485 | 4.2408 | 0.05970 |
Manufacturing | 0.0100 | 0.2111 | 0.00620 |
Use | 1.9191 | 10.3036 | 0.19229 |
Total | 2.1776 | 14.7555 | 0.25819 |
LCA Phase | Land Use (LU) | Ecosystem Damage Potential (EDP) | Terrestrial Eco-Toxicity Potential (TAETP) |
---|---|---|---|
m2a | Points | kg 1.4-DCB-eq. | |
CFL 3U-25 W | |||
Raw materials | 1.2762 | 0.8681 | 0.016294 |
Manufacturing | 0.8947 | 0.6737 | 0.003145 |
Use | 23.0036 | 17.3464 | 0.136689 |
Total | 25.1744 | 18.8882 | 0.156128 |
H-LED 3U-R-660-7 W | |||
Raw materials | 0.2971 | 0.2221 | 0.004618 |
Manufacturing | 0.1775 | 0.1341 | 0.000377 |
Use | 2.0966 | 1.5810 | 0.012458 |
Total | 2.5712 | 1.9372 | 0.017453 |
LCA Phase | Terrestrial Eco-Toxicity Potential (ARD) | Nonhazardous Waste Landfill (NHWL) | Radioactive Waste Landfill (RWL) | Hazardous Waste Landfill (HWL) |
---|---|---|---|---|
kg Sb-eq. | kg Waste | kg Waste | kg Waste | |
CFL 25 W | ||||
Raw materials | 0.10410 | 1.7137 | 0.000993 | 0.001450 |
Manufacturing | 0.10622 | 3.7138 | 0.000296 | 0.000434 |
Use | 8.55496 | 34.7152 | 0.047769 | 0.025497 |
Total | 8.76527 | 40.1427 | 0.049059 | 0.027380 |
H-LED R-660-7 W | ||||
Raw materials | 0.05886 | 2.8670 | 0.000572 | 0.001870 |
Manufacturing | 0.01322 | 0.5196 | 0.000019 | 0.000043 |
Use | 0.77973 | 3.1641 | 0.004354 | 0.002324 |
Total | 0.85181 | 6.5508 | 0.004945 | 0.004238 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang, T.T.L.; Do, T.G.; Nguyen, V.T.; Nguyen, H.C.; Phan, H.K. Environmental Impacts of Photoluminescence and Light-Emitting Diode (LED) Lighting Technologies in Horticulture: Case Study on Compact Fluorescent Lamp (CFL) and LED Lights for “Night Break” of Chrysanthemum Cultivation. Sustainability 2020, 12, 7969. https://doi.org/10.3390/su12197969
Hoang TTL, Do TG, Nguyen VT, Nguyen HC, Phan HK. Environmental Impacts of Photoluminescence and Light-Emitting Diode (LED) Lighting Technologies in Horticulture: Case Study on Compact Fluorescent Lamp (CFL) and LED Lights for “Night Break” of Chrysanthemum Cultivation. Sustainability. 2020; 12(19):7969. https://doi.org/10.3390/su12197969
Chicago/Turabian StyleHoang, Thi Thu Linh, Thi Gam Do, Van Thao Nguyen, Hoai Chau Nguyen, and Hong Khoi Phan. 2020. "Environmental Impacts of Photoluminescence and Light-Emitting Diode (LED) Lighting Technologies in Horticulture: Case Study on Compact Fluorescent Lamp (CFL) and LED Lights for “Night Break” of Chrysanthemum Cultivation" Sustainability 12, no. 19: 7969. https://doi.org/10.3390/su12197969
APA StyleHoang, T. T. L., Do, T. G., Nguyen, V. T., Nguyen, H. C., & Phan, H. K. (2020). Environmental Impacts of Photoluminescence and Light-Emitting Diode (LED) Lighting Technologies in Horticulture: Case Study on Compact Fluorescent Lamp (CFL) and LED Lights for “Night Break” of Chrysanthemum Cultivation. Sustainability, 12(19), 7969. https://doi.org/10.3390/su12197969