Physicochemical Characterization and SEM-EDX Analysis of Brewer’s Spent Grain from the Craft Brewery Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proximate Analysis
2.2. Chemical Analysis
2.3. Ultimate Analysis
2.4. Higher Heating Value
2.5. Scanning Electron Microscopy
2.6. Energy Dispersive X-ray Fluorescence Spectroscopy Analysis
3. Results and Discussion
3.1. Proximate Analysis
3.2. Chemical Analysis
3.3. Ultimate Analysis
3.4. Higher Heating Value
3.5. Scanning Electron Microscopy
3.6. Energy Dispersive X-ray Fluorescence Spectroscopy Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Willaert, R. The Beer Brewing Process: Wort Production and Beer Fermentation. In Handbook of Food Products Manufacturing, 1st ed.; Hui, Y.H., Ed.; John Wiley & Sons: New Jersey, NJ, USA, 2006; Volume 1, pp. 443–506. [Google Scholar]
- Cabras, I.; Higgins, D.; Preece, D. Brewing, Beers and Pubs: A Global Perspective, 1st ed.; Palgrave McMillan: London, UK, 2016; pp. 30–35. [Google Scholar]
- Forbes. Available online: https://www.forbes.com/sites/taranurin/2016/10/10/its-final-ab-inbev-closes-on-deal-to-buy-sabmiller/#24cde60d432c (accessed on 10 July 2017).
- Barth-Hass Group. The Barth Report; Joh. Barth & Sohn GmbH & Co. KG: Nürnberg, Germany, 2016. [Google Scholar]
- Cerveceros de México. Available online: https://drive.google.com/file/d/0B_0yYb1PC13oNl9Vc3EwaG5IMlU/view (accessed on 11 July 2017).
- Mussato, S.I.; Dragone, G.; Roberto, I.C. Brewers’ spent grain: Generation, characteristics and potentials applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Mathias, T.R.; Moretzsohn, P.P.; Camporese, E.F. Solid wastes in brewing process: A review. J. Brew. Distil 2014, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lynch, K.M.; Steffen, E.J.; Arendt, E.K. Brewers’ spent grain: A review with an emphasis on food and health. J. Inst. Brew. 2016, 122, 553–568. [Google Scholar] [CrossRef]
- Mallet, J. Malt: A Practical Guide from Field to Brewhouse, 1st ed.; Brewers Publications: Boulder, CO, USA, 2014; pp. 100–120. [Google Scholar]
- Gupta, M.; Abu-Ghannam, N.; Gallaghar, E. Barley for brewing: Characteristic changes during malting, brewing and applications of its by-products. Compr. Rev. Food Sci. 2010, 9, 18–328. [Google Scholar] [CrossRef] [Green Version]
- Palmer, J.J. How to Brew: Everything You Need to Know to Brew Beer Right the First Time, 1st ed.; Brewers Publications: Boulder, CO, USA, 2006; pp. 1–347. [Google Scholar]
- Öztürk, S.; Özboy, Ö.; Cavidoğlu, İ.; Köksel, H. Effects of brewer’s spent grain on the quality and dietary fibre content on cookies. J. Inst. Brew. 2002, 108, 23–27. [Google Scholar] [CrossRef]
- Stojceska, V.; Ainsworth, P.; Plunkett, A.; İbanoğlu, S. The recycling of brewer’s processing by-product into ready-to-eat snacks using extrusion technology. J. Cereal Sci. 2008, 47, 469–479. [Google Scholar] [CrossRef]
- Guo, M.; Du, J.; Zhang, Z.; Zhang, K.; Jin, Y. Optimization of brewer’s spent grain-enriched biscuits processing formula. J. Food Process. Eng. 2014, 37, 122–130. [Google Scholar] [CrossRef]
- Burçin Özvural, E.; Vural, H.; Gökbulut, İ.; Özboy-Özbaş, Ö. Utilization of brewer’s spent grain in the production of Frankfurters. Int. J. Food Sci. Tech. 2009, 44, 1093–1099. [Google Scholar] [CrossRef]
- Choi, M.S.; Choi, Y.S.; Hyun-Wook, K.; Hwang, K.E.; Song, D.H.; Lee, S.Y.; Kim, C.J. Effects of replacing pork back fat with brewer’s spent grain dietary fiber on quality characteristics of reduced-fat chicken sausages. Korean J. Food Sci. An. 2014, 34, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Pejin, J.; Radosavljević, M.; Kocić-Tanackov, S.; Djukić-Vuković, A.; Mohović, L. Lactic acid fermentation of brewer’s spent grain hydrolysate by Lactobacillus rhamnosus with yeast extract addition and pH control. J. Inst. Brew. 2017, 123, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Laine, C.; Kemppainen, K.; Kutti, L.; Varhimo, A.; Asikainen, S.; Grönroo, A.; Määttänen, M.; Buchert, J.; Harlin, A. Extraction of xylan from wood pulp and brewer’s spent grain. Ind. Crop. Prod. 2015, 70, 231–237. [Google Scholar] [CrossRef]
- Liang, S.; Wan, C. Carboxylic acid production from brewer’s spent grain via mixed culture fermentation. Bioresour. Technol. 2015, 182, 179–183. [Google Scholar] [CrossRef]
- Reis, S.F.; Gullón, B.; Gullón, P.; Ferreira, S.; Maia, C.J.; Alonso, J.L.; Domingues, F.C.; Abu-Ghannam, N. Evaluation of the prebiotic potential of arabinoxylans from brewer’s spent grain. Appl. Microbiol. Biot. 2014, 98, 9365–9373. [Google Scholar] [CrossRef]
- Tang, D.S.; Yin, G.M.; He, Y.Z.; Hu, S.Q.; Li, B.; Li, L. Recovery of protein from brewer’s spent grain by ultrafiltration. Biochem. Eng. J. 2009, 48, 1–5. [Google Scholar] [CrossRef]
- Luft, L.; Confortin, T.; Todero, I.; da Silva, J.; Tovar, L.; Kuhn, R.; Jahn, S.; Treichel, H.; Mazutti, M. Ultrasound technology applied to enhance enzymatic hydrolysis of brewer’s spent grain and its potential for production of fermentable sugars. Waste Biomass Valoris. 2018, 10, 2157–2164. [Google Scholar] [CrossRef]
- Mishra, P.K.; Gregor, T.; Wimmer, R. Utilising brewer’s spent grain as a source of cellulose nanofibres following separation of protein-based biomass. Bioresources 2017, 12, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Łaba, W.; Piegza, M.; Kawa-Rygielska, J. Evaluation of brewer’s spent grain as a substrate for production of hydrolytic enzymes by keratinolytic bacteria. J. Chem. Technol. Biot. 2017, 92, 1389–1396. [Google Scholar] [CrossRef]
- Kordialik-Bogacka, E. Saccharomyces pastorianus immobilized on brewer’s spent grain system for lead ion biosorption. Int. Biodeter. Biodegr. 2014, 96, 191–197. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J.H.; Yang, H.J.; Song, K.B. Preparation and characterization of brewer’s spent grain protein-chitosan composite films. J. Food Sci. Tech. 2015, 52, 7549–7555. [Google Scholar] [CrossRef]
- Wang, H.; Tao, Y.; Termudo, M.; Bijl, H.; Kloek, J.; Ren, N.; Van Lier, J.B.; de Kreuk, M. Biomethanation from enzymatically hydrolyzed brewer’s spent grain: Impact of rapid increase in loadings. Bioresour. Technol. 2015, 190, 167–174. [Google Scholar] [CrossRef]
- Bochmann, G.; Drosg, B.; Fuchs, W. Anaerobic digestion of thermal pretreaded brewers’ spent grain. Environ. Prog. Sustain. 2015, 34, 1092–1096. [Google Scholar] [CrossRef]
- Celaya, A.M.; Lade, A.T.; Goldfarb, J.L. Co-combustion of brewer’s spent grains and Ilinois No. 6 coal: Impact of blend ratio on pyrolysis and oxidation behavior. Fuel Process. Technol. 2015, 129, 39–51. [Google Scholar] [CrossRef]
- Wilkinson, S.; Smart, K.A.; James, S.; Cook, D.J. Bioethanol production from brewers spent grains using a fungal consolidated bioprocessing (CBP) approach. Bioenerg. Res. 2017, 10, 146–157. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, A.S.; Brammer, J.G.; Hornung, A.; Steele, A.; Poulston, S. The intermediate pyrolysis and catalytic steam reforming of brewers spent grain. J. Anal. Appl. Pyrol. 2011, 103, 328–342. [Google Scholar] [CrossRef] [Green Version]
- Sanna, A.; Li, S.; Linforth, R.; Smart, K.A.; Andrésen, J.M. Bio-oil and bio-char from low temperature pyrolysis of spent grains using activated alumina. Bioresour. Technol. 2011, 102, 10695–10703. [Google Scholar] [CrossRef]
- Zhang, J.; Zang, L. Enhancement of biohydrogen production from brewer’s spent grain by calcined-red mud pretreatment. Bioresour. Technol. 2016, 209, 73–79. [Google Scholar] [CrossRef]
- Steiner, J.; Procopio, S.; Becker, T. Brewer’s spent grain: Source of value-added polysaccharides for the food industry in reference to the health claims. Eur. Food Res. Technol. 2015, 241, 303–315. [Google Scholar] [CrossRef]
- Xiros, C.; Christakopoulos, P. Biotechnological potential of brewers spent grain and its recent applications. Waste Biomass Valoris. 2012, 3, 2130–2232. [Google Scholar] [CrossRef]
- Fărcaş, A.; Socaci, S.; Francisc, D.; Tofana, M.; Mudura, E.; Diaconeasa, Z. Volatile profile, fatty acids composition and total phenolics content of brewers’ spent grain by-product with potential use in the development of new functional foods. J. Cereal Sci. 2015, 64, 34–42. [Google Scholar] [CrossRef]
- Nascimento, R.P.; Junior, N.A.; Pereira, N., Jr.; Bon, E.P.; Coelho, R.R. Brewer’s spent grain and corn steep liquor as substrates for cellulolytic enzymes production by Streptomyces malaysiensis. Lett. Appl. Microbiol. 2009, 48, 529–535. [Google Scholar] [CrossRef]
- Lee, K. Anaerobic Digestion of Brewer’s Spent Grain in a Novel Plug Flow Reactor System. Master’s Thesis, The University of Georgia, Athens, GA, USA, 2006. Available online: https://athenaeum.libs.uga.edu/handle/10724/26687 (accessed on 22 August 2017).
- Becidan, M.; Skreyberg, Ø.; Hustad, J.E. Products distribution and gas release in pyrolysis of thermally thick biomass residues samples. J. Anal. Appl. Pyrol. 2007, 78, 207–213. [Google Scholar] [CrossRef]
- Balat, M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Convers. Manag. 2011, 52, 858–875. [Google Scholar]
- Wilkinson, S.; Smart, K.; Cook, D. A comparison of dilute acid- and alkali-catalyzed hydrothermal pretreatments for bioethanol production from brewers’ spent grains. J. Am. Soc. Brew. Chem. 2018, 72, 143–153. [Google Scholar] [CrossRef]
- Liguori, R.; Soccol, C.R.; Souza, L.P.; Lorenci, A.; Faraco, V. Second Generation Bioethanol Produnction from Brewers’ Spent Grain. Energies 2015, 8, 2575–2586. [Google Scholar] [CrossRef] [Green Version]
- Dávila, J.; Rosenberg, M.; Cardona, C. A biorefinery approach for the production of xylitol, ethanol and polyhydroxybutyrate from brewer’s spent grain. AIMS Agric. Food 2016, 1, 52–66. [Google Scholar]
- White, J.S.; Yohannan, B.K.; Walker, G. Bioconversion of brewer’s spent grains to bioethanol. FEMS Yeast Res. 2008, 8, 1175–1184. [Google Scholar] [CrossRef]
- Okamoto, K.; Uchii, A.; Kanawaku, T.; Yanase, H. Bioconversion of xylose, hexoses and biomass to ethanol by a new isolate of the white rot basidiomycete Trametes versicolor. Springer Plus 2014, 3, 1–9. [Google Scholar]
- Preparation of Samples for Compositional Analysis. National Renewable Energy Laboratory. Available online: https://www.nrel.gov/docs/gen/fy08/42620.pdf (accessed on 20 August 2017).
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A review of biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar]
- Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples. National Renewable Energy Laboratory. Available online: https://www.nrel.gov/docs/gen/fy08/42621.pdf (accessed on 20 August 2017).
- American Society for Testing and Materials ASTM International. Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels; ASTM: West Conshohocken, PA, USA, 2006; pp. E872–E882. [Google Scholar]
- American Society for Testing and Materials ASTM International. Standard Test Method for Ash in the Analysis Sample of Refuse Derived Fuel; ASTM: West Conshohocken, PA, USA, 2004; pp. E830–E887. [Google Scholar]
- Mariusz, Z.; Pawlowski, A. Biomass for fuels–classification and composition. In Biomass for Biofuels, 1st ed.; Bulkowska, K., Gusiatin, Z.M., Klimiuk, E., Pawlowski, A., Pokoj, Eds.; Taylor & Francis Group: London, UK, 2016; pp. 15–36. [Google Scholar]
- Technical Association of the Pulp and Paper Industry. Preparation of Wood for Chemical Analysis Test Method T264 Cm-07; TAPPI: Peachtree Corners, GA, USA, 2007. [Google Scholar]
- Technical Association of the Pulp and Paper Industry. Water Solubility of Wood and Pulp Test Method T207 cm-99; TAPPI: Peachtree Corners, GA, USA, 1999. [Google Scholar]
- American Society for Testing and Materials ASTM International. D 1106-96 Standard Test Method for Acid-Insoluble Lignin in Wood; ASTM: West Conshohocken, PA, USA, 2001. [Google Scholar]
- American Society for Testing and Materials ASTM International. D 1104-56 Method of Test for Hollocelulose in Wood; ASTM: West Conshohocken, PA, USA, 1985. [Google Scholar]
- Rowell, R.M.; Pettersen, R.; Tshabalala, M.A. Cell Wall Chemistry. In Handbook of Wood Chemistry and Wood Composites, 1st ed.; Rowell, R.M., Ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2013; pp. 33–74. [Google Scholar]
- Sadhukhan, J.; Siew, K.; Martinez, E. Biorefineries and Chemical Processes. Design, Integration and Sustainability Analysis, 1st ed.; John Wiley & Sons: London, UK, 2014; pp. 110–115. [Google Scholar]
- Nhuchhen, D.R.; Abdul, P.S. Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel 2012, 99, 55–63. [Google Scholar] [CrossRef]
- American Society for Testing and Materials ASTM. International Standard Test Method for Gross Calorific Value of Refuse-Derived Fuel by the Bomb Calorimeter; ASTM E711: West Conshohocken, PA, USA, 2004. [Google Scholar]
- Buffington, J. The Economic Potential of Brewer’s Spent Grain (BSG) as a Biomass Feedstock. Adv. Chem. Eng. Sci. 2014, 4, 308–318. [Google Scholar]
- Machado, R.M.; Rodrigues, R.A.; Henriques, C.M.; Gameiro, L.F.; Ismael, M.R.; Reis, M.T.; Freire, J.P.; Carvalho, J.M. Dewatering of brewer’s spent grain using an integrated membrane filter press with vacuum drying capabilities. Sep. Sci Technol. 2016, 51, 692–700. [Google Scholar] [CrossRef]
- Mathias, T.R.; Alexandre, V.M.; Cammarota, M.C.; de Mello, P.P.; Sérvulo, E.F. Characterization and determination of brewer’s solid wastes composition. J. Inst. Brew. 2015, 121, 400–404. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, Q. Sustainable mechanisms of biochar derived from brewer’s spent grain and sewage sludge for ammonia-nitrogen capture. J. Clean. Prod. 2016, 112, 3927–3934. [Google Scholar] [CrossRef]
- Klímek, P.; Wimmer, R.; Mishra, P.K.; Kúdela, J. Utilizing brewer’s-spent-grain in wood-based particleboard manufacturing. J. Clean. Prod. 2017, 141, 812–817. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Kaur, S.; Brar, S.K. In-vitro decoloration of recalcitrant dyes through an ecofriendly approach using laccase from Trametes versicolor grown on brewer’s spent grain. Int. Biodeter. Biodegr. 2012, 72, 67–75. [Google Scholar] [CrossRef]
- Xiros, C.; Christakopoulos, P. Enhanced ethanol production from brewer’s spent grain by a fusarium oxysporum consolidated system. Biotechnol. Biofuels 2009, 2, 1–12. [Google Scholar]
- Russ, W.; Mörtel, H.; Meyer-Pittroff, R. Application of spent grains to increase porosity in bricks. Constr. Build. Mater. 2005, 19, 117–126. [Google Scholar] [CrossRef]
- Weger, A.; Binder, S.; Franke, M.; Hornung, A.; Rub, W.; Mayer, W. Solid biofuel production by mechanical pre-treatment of brewer’s spent grain. Chem. Eng. Trans. 2014, 37, 661–666. [Google Scholar] [CrossRef]
- Montero, G.; Coronado, M.; Torres, R.; Jaramillo, B.; García, C.; Stoycheva, M.; Vázquez, A.; León, J.; Lambert, A.; Valenzuela, E. Higher heating value determination of wheat straw from Baja California, México. Energy 2016, 109, 612–619. [Google Scholar] [CrossRef]
- Turn, S.Q.; Jenkins, B.M.; Jakeway, L.A.; Blevins, L.G.; Williams, R.B.; Rubenstein, G.; Kinoshita, C.M. Test results from sugar cane bagasse and high fiber cane co-fired with fossil fuels. Biomass Bioenerg. 2006, 30, 565–574. [Google Scholar] [CrossRef]
- Acar, S.; Ayanoglu, A. Determination of higher heating values (HHVs) of biomass fuels. Ener. Educ. Sci. Tech. A 2012, 28, 749–758. [Google Scholar]
- White, C.; Zainasheff, J. Yeast: The Practical Guide to Beer Fermentation, 1st ed.; Brewers Publications: Boulder, CO, USA, 2010; pp. 77–91. [Google Scholar]
Brewery | BSG (Wet Basis) | BSG (Dry Basis) |
---|---|---|
Fauna | 43,727 | 9917 |
Puerco Salvaje | 22,950 | 5205 |
Amante Brew Company | 22,950 | 5205 |
Urbana | 24,296 | 5510 |
Tres B | 27,540 | 6246 |
Legión | 38,250 | 8675 |
Brew Capital Co | 30,600 | 6940 |
Tierra Norte | 18,360 | 4164 |
MUXA Brewing Company | 6120 | 1388 |
Juguete | 11,016 | 2498 |
Once Perros | 11,475 | 2603 |
Averno | 3473 | 788 |
Tridente | 5416 | 1228 |
2-14 Brewing Co | 2295 | 521 |
MalGro | 5814 | 1319 |
Faisán | 3121 | 708 |
686 | 4590 | 1041 |
TOTAL | 281,994 | 63,956 |
Moisture (%) | Volatile Matter (% db) | Ash (% db) | Fixed Carbon (% db) | Reference |
---|---|---|---|---|
77.32 | 78.47 | 4.05 | 17.48 | This work |
78.00 | 77.00 | 3.50 | 19.00 | [35,38] |
70.60 | - | 3.80 | - | [60,61] |
82.60 | - | 3.80 | - | [46,62] |
- | 78.75 | 5.03 | 16.22 | [25,39] |
Lignin (% db) | Cellulose (% db) | Hemicellulose (% db) | Reference |
---|---|---|---|
17.13 | 26.80 | 37.17 | This work |
12.61 | 18.98 | 33.59 | [13,31] |
13.50 | 20.20 | 27.20 | [36,63] |
12.40 | 13.80 | 30.00 | [37,65] |
9.90 | 19.20 | 18.40 | [30,66] |
15.80 | 24.50 | 23.80 | [25,64] |
C (%) | H (%) | O (%) | N (%) | S (%) | Reference |
---|---|---|---|---|---|
43.59 | 6.18 | 37.22 | 3.46 | - | This work |
46.60 | 6.85 | 42.26 | 3.54 | 0.74 | [31] |
49.80 | 6.38 | 39.36 | 4.14 | 0.10 | [32] |
49.70 | 6.54 | 34.87 | 3.86 | 0.33 | [29] |
51.59 | 7.07 | 36.96 | 4.15 | 0.23 | [39] |
HHV (MJ/kg) | Reference |
---|---|
18.70 | This work |
18.55 | [32] |
20.83 | [39] |
20.14 | [67] |
19.60 | [68] |
Analyte | BSG (%) | BSG Ash (%) |
---|---|---|
P | 34.013 | 1.378 |
Si | 29.820 | 1.208 |
Ca | 21.417 | 0.867 |
K | 9.702 | 0.393 |
Fe | 1.876 | 0.076 |
Zn | 1.098 | 0.044 |
Sn | 0.680 | 0.028 |
S | 0.471 | 0.019 |
Mn | 0.406 | 0.016 |
Cu | 0.205 | 0.008 |
Sr | 0.164 | 0.007 |
I | 0.146 | 0.006 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coronado, M.A.; Montero, G.; Montes, D.G.; Valdez-Salas, B.; Ayala, J.R.; García, C.; Carrillo, M.; León, J.A.; Moreno, A. Physicochemical Characterization and SEM-EDX Analysis of Brewer’s Spent Grain from the Craft Brewery Industry. Sustainability 2020, 12, 7744. https://doi.org/10.3390/su12187744
Coronado MA, Montero G, Montes DG, Valdez-Salas B, Ayala JR, García C, Carrillo M, León JA, Moreno A. Physicochemical Characterization and SEM-EDX Analysis of Brewer’s Spent Grain from the Craft Brewery Industry. Sustainability. 2020; 12(18):7744. https://doi.org/10.3390/su12187744
Chicago/Turabian StyleCoronado, Marcos A., Gisela Montero, Daniela G. Montes, Benjamín Valdez-Salas, José R. Ayala, Conrado García, Mónica Carrillo, José A. León, and Abigail Moreno. 2020. "Physicochemical Characterization and SEM-EDX Analysis of Brewer’s Spent Grain from the Craft Brewery Industry" Sustainability 12, no. 18: 7744. https://doi.org/10.3390/su12187744
APA StyleCoronado, M. A., Montero, G., Montes, D. G., Valdez-Salas, B., Ayala, J. R., García, C., Carrillo, M., León, J. A., & Moreno, A. (2020). Physicochemical Characterization and SEM-EDX Analysis of Brewer’s Spent Grain from the Craft Brewery Industry. Sustainability, 12(18), 7744. https://doi.org/10.3390/su12187744