Physicochemical Characterization and SEM-EDX Analysis of Brewer’s Spent Grain from the Craft Brewery Industry
Abstract
1. Introduction
2. Materials and Methods
2.1. Proximate Analysis
2.2. Chemical Analysis
2.3. Ultimate Analysis
2.4. Higher Heating Value
2.5. Scanning Electron Microscopy
2.6. Energy Dispersive X-ray Fluorescence Spectroscopy Analysis
3. Results and Discussion
3.1. Proximate Analysis
3.2. Chemical Analysis
3.3. Ultimate Analysis
3.4. Higher Heating Value
3.5. Scanning Electron Microscopy
3.6. Energy Dispersive X-ray Fluorescence Spectroscopy Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Willaert, R. The Beer Brewing Process: Wort Production and Beer Fermentation. In Handbook of Food Products Manufacturing, 1st ed.; Hui, Y.H., Ed.; John Wiley & Sons: New Jersey, NJ, USA, 2006; Volume 1, pp. 443–506. [Google Scholar]
- Cabras, I.; Higgins, D.; Preece, D. Brewing, Beers and Pubs: A Global Perspective, 1st ed.; Palgrave McMillan: London, UK, 2016; pp. 30–35. [Google Scholar]
- Forbes. Available online: https://www.forbes.com/sites/taranurin/2016/10/10/its-final-ab-inbev-closes-on-deal-to-buy-sabmiller/#24cde60d432c (accessed on 10 July 2017).
- Barth-Hass Group. The Barth Report; Joh. Barth & Sohn GmbH & Co. KG: Nürnberg, Germany, 2016. [Google Scholar]
- Cerveceros de México. Available online: https://drive.google.com/file/d/0B_0yYb1PC13oNl9Vc3EwaG5IMlU/view (accessed on 11 July 2017).
- Mussato, S.I.; Dragone, G.; Roberto, I.C. Brewers’ spent grain: Generation, characteristics and potentials applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Mathias, T.R.; Moretzsohn, P.P.; Camporese, E.F. Solid wastes in brewing process: A review. J. Brew. Distil 2014, 5, 1–9. [Google Scholar] [CrossRef]
- Lynch, K.M.; Steffen, E.J.; Arendt, E.K. Brewers’ spent grain: A review with an emphasis on food and health. J. Inst. Brew. 2016, 122, 553–568. [Google Scholar] [CrossRef]
- Mallet, J. Malt: A Practical Guide from Field to Brewhouse, 1st ed.; Brewers Publications: Boulder, CO, USA, 2014; pp. 100–120. [Google Scholar]
- Gupta, M.; Abu-Ghannam, N.; Gallaghar, E. Barley for brewing: Characteristic changes during malting, brewing and applications of its by-products. Compr. Rev. Food Sci. 2010, 9, 18–328. [Google Scholar] [CrossRef]
- Palmer, J.J. How to Brew: Everything You Need to Know to Brew Beer Right the First Time, 1st ed.; Brewers Publications: Boulder, CO, USA, 2006; pp. 1–347. [Google Scholar]
- Öztürk, S.; Özboy, Ö.; Cavidoğlu, İ.; Köksel, H. Effects of brewer’s spent grain on the quality and dietary fibre content on cookies. J. Inst. Brew. 2002, 108, 23–27. [Google Scholar] [CrossRef]
- Stojceska, V.; Ainsworth, P.; Plunkett, A.; İbanoğlu, S. The recycling of brewer’s processing by-product into ready-to-eat snacks using extrusion technology. J. Cereal Sci. 2008, 47, 469–479. [Google Scholar] [CrossRef]
- Guo, M.; Du, J.; Zhang, Z.; Zhang, K.; Jin, Y. Optimization of brewer’s spent grain-enriched biscuits processing formula. J. Food Process. Eng. 2014, 37, 122–130. [Google Scholar] [CrossRef]
- Burçin Özvural, E.; Vural, H.; Gökbulut, İ.; Özboy-Özbaş, Ö. Utilization of brewer’s spent grain in the production of Frankfurters. Int. J. Food Sci. Tech. 2009, 44, 1093–1099. [Google Scholar] [CrossRef]
- Choi, M.S.; Choi, Y.S.; Hyun-Wook, K.; Hwang, K.E.; Song, D.H.; Lee, S.Y.; Kim, C.J. Effects of replacing pork back fat with brewer’s spent grain dietary fiber on quality characteristics of reduced-fat chicken sausages. Korean J. Food Sci. An. 2014, 34, 158–165. [Google Scholar] [CrossRef]
- Pejin, J.; Radosavljević, M.; Kocić-Tanackov, S.; Djukić-Vuković, A.; Mohović, L. Lactic acid fermentation of brewer’s spent grain hydrolysate by Lactobacillus rhamnosus with yeast extract addition and pH control. J. Inst. Brew. 2017, 123, 98–104. [Google Scholar] [CrossRef]
- Laine, C.; Kemppainen, K.; Kutti, L.; Varhimo, A.; Asikainen, S.; Grönroo, A.; Määttänen, M.; Buchert, J.; Harlin, A. Extraction of xylan from wood pulp and brewer’s spent grain. Ind. Crop. Prod. 2015, 70, 231–237. [Google Scholar] [CrossRef]
- Liang, S.; Wan, C. Carboxylic acid production from brewer’s spent grain via mixed culture fermentation. Bioresour. Technol. 2015, 182, 179–183. [Google Scholar] [CrossRef]
- Reis, S.F.; Gullón, B.; Gullón, P.; Ferreira, S.; Maia, C.J.; Alonso, J.L.; Domingues, F.C.; Abu-Ghannam, N. Evaluation of the prebiotic potential of arabinoxylans from brewer’s spent grain. Appl. Microbiol. Biot. 2014, 98, 9365–9373. [Google Scholar] [CrossRef]
- Tang, D.S.; Yin, G.M.; He, Y.Z.; Hu, S.Q.; Li, B.; Li, L. Recovery of protein from brewer’s spent grain by ultrafiltration. Biochem. Eng. J. 2009, 48, 1–5. [Google Scholar] [CrossRef]
- Luft, L.; Confortin, T.; Todero, I.; da Silva, J.; Tovar, L.; Kuhn, R.; Jahn, S.; Treichel, H.; Mazutti, M. Ultrasound technology applied to enhance enzymatic hydrolysis of brewer’s spent grain and its potential for production of fermentable sugars. Waste Biomass Valoris. 2018, 10, 2157–2164. [Google Scholar] [CrossRef]
- Mishra, P.K.; Gregor, T.; Wimmer, R. Utilising brewer’s spent grain as a source of cellulose nanofibres following separation of protein-based biomass. Bioresources 2017, 12, 107–116. [Google Scholar] [CrossRef]
- Łaba, W.; Piegza, M.; Kawa-Rygielska, J. Evaluation of brewer’s spent grain as a substrate for production of hydrolytic enzymes by keratinolytic bacteria. J. Chem. Technol. Biot. 2017, 92, 1389–1396. [Google Scholar] [CrossRef]
- Kordialik-Bogacka, E. Saccharomyces pastorianus immobilized on brewer’s spent grain system for lead ion biosorption. Int. Biodeter. Biodegr. 2014, 96, 191–197. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J.H.; Yang, H.J.; Song, K.B. Preparation and characterization of brewer’s spent grain protein-chitosan composite films. J. Food Sci. Tech. 2015, 52, 7549–7555. [Google Scholar] [CrossRef]
- Wang, H.; Tao, Y.; Termudo, M.; Bijl, H.; Kloek, J.; Ren, N.; Van Lier, J.B.; de Kreuk, M. Biomethanation from enzymatically hydrolyzed brewer’s spent grain: Impact of rapid increase in loadings. Bioresour. Technol. 2015, 190, 167–174. [Google Scholar] [CrossRef]
- Bochmann, G.; Drosg, B.; Fuchs, W. Anaerobic digestion of thermal pretreaded brewers’ spent grain. Environ. Prog. Sustain. 2015, 34, 1092–1096. [Google Scholar] [CrossRef]
- Celaya, A.M.; Lade, A.T.; Goldfarb, J.L. Co-combustion of brewer’s spent grains and Ilinois No. 6 coal: Impact of blend ratio on pyrolysis and oxidation behavior. Fuel Process. Technol. 2015, 129, 39–51. [Google Scholar] [CrossRef]
- Wilkinson, S.; Smart, K.A.; James, S.; Cook, D.J. Bioethanol production from brewers spent grains using a fungal consolidated bioprocessing (CBP) approach. Bioenerg. Res. 2017, 10, 146–157. [Google Scholar] [CrossRef]
- Mahmood, A.S.; Brammer, J.G.; Hornung, A.; Steele, A.; Poulston, S. The intermediate pyrolysis and catalytic steam reforming of brewers spent grain. J. Anal. Appl. Pyrol. 2011, 103, 328–342. [Google Scholar] [CrossRef]
- Sanna, A.; Li, S.; Linforth, R.; Smart, K.A.; Andrésen, J.M. Bio-oil and bio-char from low temperature pyrolysis of spent grains using activated alumina. Bioresour. Technol. 2011, 102, 10695–10703. [Google Scholar] [CrossRef]
- Zhang, J.; Zang, L. Enhancement of biohydrogen production from brewer’s spent grain by calcined-red mud pretreatment. Bioresour. Technol. 2016, 209, 73–79. [Google Scholar] [CrossRef]
- Steiner, J.; Procopio, S.; Becker, T. Brewer’s spent grain: Source of value-added polysaccharides for the food industry in reference to the health claims. Eur. Food Res. Technol. 2015, 241, 303–315. [Google Scholar] [CrossRef]
- Xiros, C.; Christakopoulos, P. Biotechnological potential of brewers spent grain and its recent applications. Waste Biomass Valoris. 2012, 3, 2130–2232. [Google Scholar] [CrossRef]
- Fărcaş, A.; Socaci, S.; Francisc, D.; Tofana, M.; Mudura, E.; Diaconeasa, Z. Volatile profile, fatty acids composition and total phenolics content of brewers’ spent grain by-product with potential use in the development of new functional foods. J. Cereal Sci. 2015, 64, 34–42. [Google Scholar] [CrossRef]
- Nascimento, R.P.; Junior, N.A.; Pereira, N., Jr.; Bon, E.P.; Coelho, R.R. Brewer’s spent grain and corn steep liquor as substrates for cellulolytic enzymes production by Streptomyces malaysiensis. Lett. Appl. Microbiol. 2009, 48, 529–535. [Google Scholar] [CrossRef]
- Lee, K. Anaerobic Digestion of Brewer’s Spent Grain in a Novel Plug Flow Reactor System. Master’s Thesis, The University of Georgia, Athens, GA, USA, 2006. Available online: https://athenaeum.libs.uga.edu/handle/10724/26687 (accessed on 22 August 2017).
- Becidan, M.; Skreyberg, Ø.; Hustad, J.E. Products distribution and gas release in pyrolysis of thermally thick biomass residues samples. J. Anal. Appl. Pyrol. 2007, 78, 207–213. [Google Scholar] [CrossRef]
- Balat, M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Convers. Manag. 2011, 52, 858–875. [Google Scholar]
- Wilkinson, S.; Smart, K.; Cook, D. A comparison of dilute acid- and alkali-catalyzed hydrothermal pretreatments for bioethanol production from brewers’ spent grains. J. Am. Soc. Brew. Chem. 2018, 72, 143–153. [Google Scholar] [CrossRef]
- Liguori, R.; Soccol, C.R.; Souza, L.P.; Lorenci, A.; Faraco, V. Second Generation Bioethanol Produnction from Brewers’ Spent Grain. Energies 2015, 8, 2575–2586. [Google Scholar] [CrossRef]
- Dávila, J.; Rosenberg, M.; Cardona, C. A biorefinery approach for the production of xylitol, ethanol and polyhydroxybutyrate from brewer’s spent grain. AIMS Agric. Food 2016, 1, 52–66. [Google Scholar]
- White, J.S.; Yohannan, B.K.; Walker, G. Bioconversion of brewer’s spent grains to bioethanol. FEMS Yeast Res. 2008, 8, 1175–1184. [Google Scholar] [CrossRef]
- Okamoto, K.; Uchii, A.; Kanawaku, T.; Yanase, H. Bioconversion of xylose, hexoses and biomass to ethanol by a new isolate of the white rot basidiomycete Trametes versicolor. Springer Plus 2014, 3, 1–9. [Google Scholar]
- Preparation of Samples for Compositional Analysis. National Renewable Energy Laboratory. Available online: https://www.nrel.gov/docs/gen/fy08/42620.pdf (accessed on 20 August 2017).
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A review of biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar]
- Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples. National Renewable Energy Laboratory. Available online: https://www.nrel.gov/docs/gen/fy08/42621.pdf (accessed on 20 August 2017).
- American Society for Testing and Materials ASTM International. Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels; ASTM: West Conshohocken, PA, USA, 2006; pp. E872–E882. [Google Scholar]
- American Society for Testing and Materials ASTM International. Standard Test Method for Ash in the Analysis Sample of Refuse Derived Fuel; ASTM: West Conshohocken, PA, USA, 2004; pp. E830–E887. [Google Scholar]
- Mariusz, Z.; Pawlowski, A. Biomass for fuels–classification and composition. In Biomass for Biofuels, 1st ed.; Bulkowska, K., Gusiatin, Z.M., Klimiuk, E., Pawlowski, A., Pokoj, Eds.; Taylor & Francis Group: London, UK, 2016; pp. 15–36. [Google Scholar]
- Technical Association of the Pulp and Paper Industry. Preparation of Wood for Chemical Analysis Test Method T264 Cm-07; TAPPI: Peachtree Corners, GA, USA, 2007. [Google Scholar]
- Technical Association of the Pulp and Paper Industry. Water Solubility of Wood and Pulp Test Method T207 cm-99; TAPPI: Peachtree Corners, GA, USA, 1999. [Google Scholar]
- American Society for Testing and Materials ASTM International. D 1106-96 Standard Test Method for Acid-Insoluble Lignin in Wood; ASTM: West Conshohocken, PA, USA, 2001. [Google Scholar]
- American Society for Testing and Materials ASTM International. D 1104-56 Method of Test for Hollocelulose in Wood; ASTM: West Conshohocken, PA, USA, 1985. [Google Scholar]
- Rowell, R.M.; Pettersen, R.; Tshabalala, M.A. Cell Wall Chemistry. In Handbook of Wood Chemistry and Wood Composites, 1st ed.; Rowell, R.M., Ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2013; pp. 33–74. [Google Scholar]
- Sadhukhan, J.; Siew, K.; Martinez, E. Biorefineries and Chemical Processes. Design, Integration and Sustainability Analysis, 1st ed.; John Wiley & Sons: London, UK, 2014; pp. 110–115. [Google Scholar]
- Nhuchhen, D.R.; Abdul, P.S. Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel 2012, 99, 55–63. [Google Scholar] [CrossRef]
- American Society for Testing and Materials ASTM. International Standard Test Method for Gross Calorific Value of Refuse-Derived Fuel by the Bomb Calorimeter; ASTM E711: West Conshohocken, PA, USA, 2004. [Google Scholar]
- Buffington, J. The Economic Potential of Brewer’s Spent Grain (BSG) as a Biomass Feedstock. Adv. Chem. Eng. Sci. 2014, 4, 308–318. [Google Scholar]
- Machado, R.M.; Rodrigues, R.A.; Henriques, C.M.; Gameiro, L.F.; Ismael, M.R.; Reis, M.T.; Freire, J.P.; Carvalho, J.M. Dewatering of brewer’s spent grain using an integrated membrane filter press with vacuum drying capabilities. Sep. Sci Technol. 2016, 51, 692–700. [Google Scholar] [CrossRef]
- Mathias, T.R.; Alexandre, V.M.; Cammarota, M.C.; de Mello, P.P.; Sérvulo, E.F. Characterization and determination of brewer’s solid wastes composition. J. Inst. Brew. 2015, 121, 400–404. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q. Sustainable mechanisms of biochar derived from brewer’s spent grain and sewage sludge for ammonia-nitrogen capture. J. Clean. Prod. 2016, 112, 3927–3934. [Google Scholar] [CrossRef]
- Klímek, P.; Wimmer, R.; Mishra, P.K.; Kúdela, J. Utilizing brewer’s-spent-grain in wood-based particleboard manufacturing. J. Clean. Prod. 2017, 141, 812–817. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Kaur, S.; Brar, S.K. In-vitro decoloration of recalcitrant dyes through an ecofriendly approach using laccase from Trametes versicolor grown on brewer’s spent grain. Int. Biodeter. Biodegr. 2012, 72, 67–75. [Google Scholar] [CrossRef]
- Xiros, C.; Christakopoulos, P. Enhanced ethanol production from brewer’s spent grain by a fusarium oxysporum consolidated system. Biotechnol. Biofuels 2009, 2, 1–12. [Google Scholar]
- Russ, W.; Mörtel, H.; Meyer-Pittroff, R. Application of spent grains to increase porosity in bricks. Constr. Build. Mater. 2005, 19, 117–126. [Google Scholar] [CrossRef]
- Weger, A.; Binder, S.; Franke, M.; Hornung, A.; Rub, W.; Mayer, W. Solid biofuel production by mechanical pre-treatment of brewer’s spent grain. Chem. Eng. Trans. 2014, 37, 661–666. [Google Scholar] [CrossRef]
- Montero, G.; Coronado, M.; Torres, R.; Jaramillo, B.; García, C.; Stoycheva, M.; Vázquez, A.; León, J.; Lambert, A.; Valenzuela, E. Higher heating value determination of wheat straw from Baja California, México. Energy 2016, 109, 612–619. [Google Scholar] [CrossRef]
- Turn, S.Q.; Jenkins, B.M.; Jakeway, L.A.; Blevins, L.G.; Williams, R.B.; Rubenstein, G.; Kinoshita, C.M. Test results from sugar cane bagasse and high fiber cane co-fired with fossil fuels. Biomass Bioenerg. 2006, 30, 565–574. [Google Scholar] [CrossRef]
- Acar, S.; Ayanoglu, A. Determination of higher heating values (HHVs) of biomass fuels. Ener. Educ. Sci. Tech. A 2012, 28, 749–758. [Google Scholar]
- White, C.; Zainasheff, J. Yeast: The Practical Guide to Beer Fermentation, 1st ed.; Brewers Publications: Boulder, CO, USA, 2010; pp. 77–91. [Google Scholar]
Brewery | BSG (Wet Basis) | BSG (Dry Basis) |
---|---|---|
Fauna | 43,727 | 9917 |
Puerco Salvaje | 22,950 | 5205 |
Amante Brew Company | 22,950 | 5205 |
Urbana | 24,296 | 5510 |
Tres B | 27,540 | 6246 |
Legión | 38,250 | 8675 |
Brew Capital Co | 30,600 | 6940 |
Tierra Norte | 18,360 | 4164 |
MUXA Brewing Company | 6120 | 1388 |
Juguete | 11,016 | 2498 |
Once Perros | 11,475 | 2603 |
Averno | 3473 | 788 |
Tridente | 5416 | 1228 |
2-14 Brewing Co | 2295 | 521 |
MalGro | 5814 | 1319 |
Faisán | 3121 | 708 |
686 | 4590 | 1041 |
TOTAL | 281,994 | 63,956 |
Moisture (%) | Volatile Matter (% db) | Ash (% db) | Fixed Carbon (% db) | Reference |
---|---|---|---|---|
77.32 | 78.47 | 4.05 | 17.48 | This work |
78.00 | 77.00 | 3.50 | 19.00 | [35,38] |
70.60 | - | 3.80 | - | [60,61] |
82.60 | - | 3.80 | - | [46,62] |
- | 78.75 | 5.03 | 16.22 | [25,39] |
Lignin (% db) | Cellulose (% db) | Hemicellulose (% db) | Reference |
---|---|---|---|
17.13 | 26.80 | 37.17 | This work |
12.61 | 18.98 | 33.59 | [13,31] |
13.50 | 20.20 | 27.20 | [36,63] |
12.40 | 13.80 | 30.00 | [37,65] |
9.90 | 19.20 | 18.40 | [30,66] |
15.80 | 24.50 | 23.80 | [25,64] |
C (%) | H (%) | O (%) | N (%) | S (%) | Reference |
---|---|---|---|---|---|
43.59 | 6.18 | 37.22 | 3.46 | - | This work |
46.60 | 6.85 | 42.26 | 3.54 | 0.74 | [31] |
49.80 | 6.38 | 39.36 | 4.14 | 0.10 | [32] |
49.70 | 6.54 | 34.87 | 3.86 | 0.33 | [29] |
51.59 | 7.07 | 36.96 | 4.15 | 0.23 | [39] |
HHV (MJ/kg) | Reference |
---|---|
18.70 | This work |
18.55 | [32] |
20.83 | [39] |
20.14 | [67] |
19.60 | [68] |
Analyte | BSG (%) | BSG Ash (%) |
---|---|---|
P | 34.013 | 1.378 |
Si | 29.820 | 1.208 |
Ca | 21.417 | 0.867 |
K | 9.702 | 0.393 |
Fe | 1.876 | 0.076 |
Zn | 1.098 | 0.044 |
Sn | 0.680 | 0.028 |
S | 0.471 | 0.019 |
Mn | 0.406 | 0.016 |
Cu | 0.205 | 0.008 |
Sr | 0.164 | 0.007 |
I | 0.146 | 0.006 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coronado, M.A.; Montero, G.; Montes, D.G.; Valdez-Salas, B.; Ayala, J.R.; García, C.; Carrillo, M.; León, J.A.; Moreno, A. Physicochemical Characterization and SEM-EDX Analysis of Brewer’s Spent Grain from the Craft Brewery Industry. Sustainability 2020, 12, 7744. https://doi.org/10.3390/su12187744
Coronado MA, Montero G, Montes DG, Valdez-Salas B, Ayala JR, García C, Carrillo M, León JA, Moreno A. Physicochemical Characterization and SEM-EDX Analysis of Brewer’s Spent Grain from the Craft Brewery Industry. Sustainability. 2020; 12(18):7744. https://doi.org/10.3390/su12187744
Chicago/Turabian StyleCoronado, Marcos A., Gisela Montero, Daniela G. Montes, Benjamín Valdez-Salas, José R. Ayala, Conrado García, Mónica Carrillo, José A. León, and Abigail Moreno. 2020. "Physicochemical Characterization and SEM-EDX Analysis of Brewer’s Spent Grain from the Craft Brewery Industry" Sustainability 12, no. 18: 7744. https://doi.org/10.3390/su12187744
APA StyleCoronado, M. A., Montero, G., Montes, D. G., Valdez-Salas, B., Ayala, J. R., García, C., Carrillo, M., León, J. A., & Moreno, A. (2020). Physicochemical Characterization and SEM-EDX Analysis of Brewer’s Spent Grain from the Craft Brewery Industry. Sustainability, 12(18), 7744. https://doi.org/10.3390/su12187744