# Safety Analysis of a Modified Cooperative Adaptive Cruise Control Algorithm Accounting for Communication Delay

^{*}

## Abstract

**:**

## 1. Introduction

## 2. A Review of Related Work

## 3. Overview of Cruise Control Algorithms

#### 3.1. Longitudinal Control Basic Principles

#### 3.2. The Classical ACC Algorithm

#### 3.3. The PATH CACC Algorithm

## 4. The Modified CACC Algorithm and Surrogate Safety Measures

#### 4.1. The Modified CACC Algorithm

#### 4.2. The Communication Time Delay Model

#### 4.3. Surrogate Safety Measures

## 5. Simulation Experiments and Results Discussion

#### 5.1. Designed Experiment and Tested Scenarios

#### 5.2. Performance of the PATH-ACC System

#### 5.3. Performance of the Modified CACC System

#### 5.4. Sensitivity Analyses

## 6. Conclusions and Recommendations

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- 2018 CMV Traffic Safety Fact Sheet, 2018, USDOT, Washington, DC, USA. Available online: https://www.fmcsa.dot.gov/safety/data-and-statistics/2018-cmv-traffic-safety-fact-sheet (accessed on 1 August 2019).
- Driggs-Campbell, K.; Shia, V.; Bajcsy, R. Improved driver modeling for human-in-the-loop vehicular control. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Washington, DC, USA, 26–30 May 2015; pp. 1654–1661. [Google Scholar]
- Dey, K.C.; Yan, L.; Wang, X.; Wang, Y.; Shen, H.; Chowdhury, M.; Yu, L.; Qiu, C.; Soundararaj, V. A Review of Communication, Driver Characteristics, and Controls Aspects of Cooperative Adaptive Cruise Control (CACC). IEEE Trans. Intell. Transp. Syst.
**2016**, 17, 491–509. [Google Scholar] [CrossRef] - Panwar, N.; Sharma, S.; Singh, A.K. A survey on 5G: The next generation of mobile communication. Phys. Commun.
**2016**, 18, 64–84. [Google Scholar] [CrossRef][Green Version] - Agiwal, M.; Roy, A.; Saxena, N. Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor.
**2016**, 18, 1617–1655. [Google Scholar] [CrossRef] - Oncu, S.; Ploeg, J.; Van De Wouw, N.; Nijmeijer, H. Cooperative Adaptive Cruise Control: Network-Aware Analysis of String Stability. IEEE Trans. Intell. Transp. Syst.
**2014**, 15, 1527–1537. [Google Scholar] [CrossRef][Green Version] - Milanes, V.; Villagra, J.; Perez, J.; Gonzalez, C. Low-Speed Longitudinal Controllers for Mass-Produced Cars: A Comparative Study. IEEE Trans. Ind. Electron.
**2012**, 59, 620–628. [Google Scholar] [CrossRef] - Li, S.E.; Zheng, Y.; Li, K.; Wu, Y.; Hedrick, J.K.; Gao, F.; Zhang, H. Dynamical Modeling and Distributed Control of Connected and Automated Vehicles: Challenges and Opportunities. IEEE Intell. Transp. Syst. Mag.
**2017**, 9, 46–58. [Google Scholar] [CrossRef] - Xu, L.; Wang, L.Y.; Yin, G.; Zhang, H. Communication Information Structures and Contents for Enhanced Safety of Highway Vehicle Platoons. IEEE Trans. Veh. Technol.
**2014**, 63, 4206–4220. [Google Scholar] [CrossRef] - Rajamani, R.; Shladover, S.E. An experimental comparative study of autonomous and co-operative vehicle-follower control systems. Transp. Res. Part C Emerg. Technol.
**2001**, 9, 15–31. [Google Scholar] [CrossRef] - Darbha, S.; Rajagopal, K.R. Intelligent cruise control systems and traffic flow stability. Transp. Res. Part C Emerg. Technol.
**1999**, 7, 329–352. [Google Scholar] [CrossRef][Green Version] - Zhou, Y.; Ahn, S.; Chitturi, M.; Noyce, D.A. Rolling horizon stochastic optimal control strategy for ACC and CACC under uncertainty. Transp. Res. Part C Emerg. Technol.
**2017**, 83, 61–76. [Google Scholar] [CrossRef] - Ochocki, M.; Vukadinovic, V.; Januszewski, M.; De La Iglesia, I. Demo: Communication requirements of CACC for high-density platooning. In Proceedings of the 2016 IEEE Vehicular Networking Conference (VNC), Columbus, OH, USA, 8–10 December 2016; IEEE; pp. 1–2. [Google Scholar]
- Mir, Z.H.; Filali, F. LTE and IEEE 802.11p for vehicular networking: A performance evaluation. Eurasip J. Wirel. Commun. Netw.
**2014**, 89. [Google Scholar] [CrossRef][Green Version] - Rajput, N.S. Measurement of IEEE 802.11p Performance for Basic Safety Messages in Vehicular Communications. In Proceedings of the 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Indore, India, 16–19 December 2018; IEEE: New York, NY, USA, 2018; pp. 1–4. [Google Scholar]
- Wang, Y.; Hu, J.; Zhang, Y.; Xu, C. Reliability Evaluation of IEEE 802.11p-Based Vehicle-to-Vehicle Communication in an Urban Expressway. Tsinghua Sci. Technol.
**2015**, 20, 417–428. [Google Scholar] [CrossRef] - Charitos, M.; Kalivas, G. MIMO HetNet IEEE 802.11p–LTE deployment in a vehicular urban environment. Veh. Commun.
**2017**, 9, 222–232. [Google Scholar] [CrossRef] - Vinel, A. 3GPP LTE Versus IEEE 802.11p/WAVE: Which Technology is Able to Support Cooperative Vehicular Safety Applications? IEEE Wirel. Commun. Lett.
**2012**, 1, 125–128. [Google Scholar] [CrossRef][Green Version] - Möller, A.; Baumgarten, J.; Hameed Mir, Z.; Filali, F.; Kürner, T. Realistic simulation scenario for hybrid LTE/IEEE 802.11p vehicular communication, in 2015 9th European Conference on Antennas and Propagation (EuCAP). In Proceedings of the 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 12–17 April 2015; pp. 1–5. [Google Scholar]
- Ateya, A.A.; Muthanna, A.; Makolkina, M.; Koucheryavy, A. Study of 5G Services Standardization: Specifications and Requirements. In Proceedings of the 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Moscow, Russia, 5–9 November 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Service Requirements for Next Generation New Services and Markets. In 3GPP, Technical Specification TS 22.261. 2017. Available online: https://www.tech-invite.com/index.html (accessed on 1 August 2020).
- Balasubramanian, V.; Otoum, S.; Aloqailyb, M.; Al Ridhawi, I.; Jararweh, Y. Low-latency vehicular edge: A vehicular infrastructure model for 5G. Simul. Model. Pract. Theory
**2020**, 98, 101968. [Google Scholar] [CrossRef] - Sachs, J.; Andersson, L.A.A.; Araujo, J.; Curescu, C.; Lundsjo, J.; Rune, G.; Steinbach, E.; Wikstrom, G. Adaptive 5G Low-Latency Communication for Tactile InternEt Services. Proc. IEEE
**2019**, 107, 325–349. [Google Scholar] [CrossRef] - Study on Communication for Automation in Vertical Domains (CAV). In 3GPP, Technical Specification TS 22.804. 2017. Available online: https://www.tech-invite.com/x0/tinv-ietf-rfcs-88.html (accessed on 1 August 2020).
- Wischhof, L.; Ebner, A.; Rohling, H. Information Dissemination in Self-Organizing Intervehicle Networks. IEEE Trans. Intell. Transp. Syst.
**2005**, 6, 90–101. [Google Scholar] [CrossRef] - Cseh, C. Architecture of the dedicated short-range communications (DSRC) protocol. In Proceedings of the VTC ’98. 48th IEEE Vehicular Technology Conference—Pathway to Global Wireless Revolution (Cat. No.98CH36151), Ottawa, ON, Canada, 21 May 1998; Volume 3, pp. 2095–2099. [Google Scholar]
- Liang, W.; Li, Z.; Zhang, H.; Wang, S.; Bie, R. Vehicular Ad Hoc Networks: Architectures, Research Issues, Methodologies, Challenges, and Trends. Int. J. Distrib. Sens. Netw.
**2015**, 11, 745303. [Google Scholar] [CrossRef] - Milanés, V.; Shladover, S.E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data. Transp. Res. Part C: Emerg. Technol.
**2014**, 48, 285–300. [Google Scholar] - Milanes, V.; Shladover, S.E.; Spring, J.; Nowakowski, C.; Kawazoe, H.; Nakamura, M. Cooperative Adaptive Cruise Control in Real Traffic Situations. IEEE Trans. Intell. Transp. Syst.
**2014**, 15, 296–305. [Google Scholar] [CrossRef][Green Version] - Nieuwenhuijze, M.R.I.; Van Keulen, T.; Oncu, S.; Bonsen, B.; Nijmeijer, H. Cooperative Driving With a Heavy-Duty Truck in Mixed Traffic: Experimental Results. IEEE Trans. Intell. Transp. Syst.
**2012**, 13, 1026–1032. [Google Scholar] [CrossRef] - Treiber, M. Sample Chapter 11 on Car-Following Models based on Driving Strategies. In Traffic Flow Dynamics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 181–204. [Google Scholar]
- Kesting, A.; Treiber, M.; Helbing, D. Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity. Philos. Trans. R. Soc. A
**2010**, 368, 4585–4605. [Google Scholar] [CrossRef] [PubMed][Green Version] - Hult, R.; Sancar, F.E.; Jalalmaab, M.; Vijayan, A.; Severinson, A.; Di Vaio, M.; Falcone, P.; Fidan, B.; Santini, S. Design and Experimental Validation of a Cooperative Driving Control Architecture for the Grand Cooperative Driving Challenge 2016. IEEE Trans. Intell. Transp. Syst.
**2018**, 19, 1290–1301. [Google Scholar] [CrossRef] - Ding, J.; Pei, H.; Hu, J.; Zhang, Y. Cooperative Adaptive Cruise Control in Vehicle Platoon under Environment of i-VICS. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; IEEE: New York, NY, USA, 2018. [Google Scholar]
- Sybis, M.; Vukadinovic, V.; Rodziewicz, M.; Sroka, P.; Langowski, A.; Lenarska, K.; Wesolowski, K. Communication Aspects of a Modified Cooperative Adaptive Cruise Control Algorithm. IEEE Trans. Intell. Transp. Syst.
**2019**, 20, 4513–4523. [Google Scholar] [CrossRef] - Zhao, P.; Lee, C. Assessing rear-end collision risk of cars and heavy vehicles on freeways using a surrogate safety measure. Accid. Anal. Prev.
**2018**, 113, 149–158. [Google Scholar] [CrossRef] - Hayward, J.C. Near-miss determination through use of a scale of danger. Highw. Res. Rec.
**1972**, 384, 24–34. [Google Scholar] - Gettman, D.; Head, L. Surrogate Safety Measures from Traffic Simulation Models. Transp. Res. Rec.
**2003**, 1840, 104–115. [Google Scholar] [CrossRef][Green Version] - Rahman, M.S.; Abdel-Aty, M. Longitudinal safety evaluation of connected vehicles’ platooning on expressways. Accid. Anal. Prev.
**2018**, 117, 381–391. [Google Scholar] [CrossRef] - Li, Y.; Li, Z.; Wang, H.; Wang, W.; Xing, L. Evaluating the safety impact of adaptive cruise control in traffic oscillations on freeways. Accid. Anal. Prev.
**2017**, 104, 137–145. [Google Scholar] [CrossRef] - Tu, Y.; Wang, W.; Li, Y.; Xu, C.; Xu, T.; Li, X. Longitudinal safety impacts of cooperative adaptive cruise control vehicle’s degradation. J. Saf. Res.
**2019**, 69, 177–192. [Google Scholar] [CrossRef] - Li, Y.; Wang, H.; Wang, W.; Xing, L.; Liu, S.; Wei, X. Evaluation of the impacts of cooperative adaptive cruise control on reducing rear-end collision risks on freeways. Accid. Anal. Prev.
**2017**, 98, 87–95. [Google Scholar] [CrossRef] [PubMed] - Li, Y.; Xing, L.; Wang, W.; Liang, M.; Wang, H. Evaluating the impact of Mobike on automobile-involved bicycle crashes at the road network level. Accid. Anal. Prev.
**2018**, 112, 69–76. [Google Scholar] [CrossRef] [PubMed] - Li, Y.; Wang, W.; Xing, L.; Fan, Q.; Wang, H. Longitudinal safety evaluation of electric vehicles with the partial wireless charging lane on freeways. Accid. Anal. Prev.
**2018**, 111, 133–141. [Google Scholar] [CrossRef] [PubMed] - Li, Y.; Wang, H.; Wang, W.; Liu, S.; Xiang, Y. Reducing the risk of rear-end collisions with infrastructure-to-vehicle (I2V) integration of variable speed limit control and adaptive cruise control system. Traffic Inj. Prev.
**2016**, 17, 597–603. [Google Scholar] [CrossRef] [PubMed] - Xu, C.; Tarko, A.P.; Wang, W.; Liu, Z.-H. Predicting crash likelihood and severity on freeways with real-time loop detector data. Accid. Anal. Prev.
**2013**, 57, 30–39. [Google Scholar] [CrossRef] - Standard International Organization For Standardization, Intelligent Transport Systems–Adaptive Cruise Control Systems–Performance Requirements and Test Procedures. In ISO Standard 15622; Artech House: London, UK, 2010.

Information Item | Unit |
---|---|

Longitudinal position (${x}_{k}$) | $m$ |

Current velocity (${v}_{k}$) | $m/s$ |

Real-time acceleration (${a}_{k}$) | ${m/s}^{2}$ |

Corrective Coefficient | Values |
---|---|

Acceleration gains (${\lambda}_{a}$) | 0.2 |

Velocity error (${\lambda}_{v}$) | 0.75 |

Spacing gap error (${\lambda}_{g}$) | 0.25 |

Controller TCC* = 3 s | Latency (ms) | ${\mathit{T}}_{\mathit{g}\mathit{a}\mathit{p}}=1.2\mathit{s}$ | ${\mathit{T}}_{\mathit{g}\mathit{a}\mathit{p}}=1.0\mathit{s}$ | ${\mathit{T}}_{\mathit{g}\mathit{a}\mathit{p}}=0.8\mathit{s}$ | ${\mathit{T}}_{\mathit{g}\mathit{a}\mathit{p}}=0.6\mathit{s}$ | ||||
---|---|---|---|---|---|---|---|---|---|

TET | TIT | TET | TIT | TET | TIT | TET | TIT | ||

DSRC-CACC | 300 | 92.2% | 84.3% | 83.1% | 85.1% | 62.7% | 76.2% | 56.7% | 53.2% |

LTE-CACC | 200 | 95.6% | 94.3% | 84.2% | 87.8% | 74.2% | 82.3% | 63.5% | 70.5% |

Hybrid-CACC | 100 | 99.2% | 99.4% | 97.6% | 93.5% | 85.6% | 89.9% | 79.99% | 80.2% |

5G-CACC | 20 | 100% | 100% | 100% | 100% | 96.6% | 99.8% | 92.7% | 96.3% |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, Y.; Wang, W.; Hua, X.; Wang, S. Safety Analysis of a Modified Cooperative Adaptive Cruise Control Algorithm Accounting for Communication Delay. *Sustainability* **2020**, *12*, 7568.
https://doi.org/10.3390/su12187568

**AMA Style**

Liu Y, Wang W, Hua X, Wang S. Safety Analysis of a Modified Cooperative Adaptive Cruise Control Algorithm Accounting for Communication Delay. *Sustainability*. 2020; 12(18):7568.
https://doi.org/10.3390/su12187568

**Chicago/Turabian Style**

Liu, Yi, Wei Wang, Xuedong Hua, and Shunchao Wang. 2020. "Safety Analysis of a Modified Cooperative Adaptive Cruise Control Algorithm Accounting for Communication Delay" *Sustainability* 12, no. 18: 7568.
https://doi.org/10.3390/su12187568