Next Article in Journal
Wood-Logging Process Management in Eastern Amazonia (Brazil)
Next Article in Special Issue
An Examination of the Safety Impacts of Bus Priority Routes in Major Israeli Cities
Previous Article in Journal
Sustaining Multilingualism in Chinese Universities: Uzbekistani Students’ Demotivation While Learning Chinese
Previous Article in Special Issue
Road Investment and Traffic Safety: An International Study
Open AccessArticle

Safety Analysis of a Modified Cooperative Adaptive Cruise Control Algorithm Accounting for Communication Delay

School of Transportation, Southeast University, No.2 Southeast University Road, Nanjing 211189, China
*
Author to whom correspondence should be addressed.
Sustainability 2020, 12(18), 7568; https://doi.org/10.3390/su12187568
Received: 15 August 2020 / Revised: 11 September 2020 / Accepted: 11 September 2020 / Published: 14 September 2020
(This article belongs to the Special Issue Traffic Safety within a Sustainable Transportation System)
Cooperative adaptive cruise control (CACC) is a promising technology to improve traffic efficiency and enhance road safety. In this paper, a modified CACC control model considering the communication time delay is proposed, which is used to investigate the longitudinal safety impacts of the communication time delay to the CACC platoon. Then, the communication time delay model is integrated into the CACC model to simulate the realistic information transfer process in the CACC platoon. Then a microscopic CACC platoon simulation is designed and conducted to verify the feasibility and reliability of the modified CACC control algorithm. The obtained results reveal that the modified CACC control algorithm can not only reduce about 96.6% of inter-vehicle spacing error, but also enhance the vehicles’ ability to sense the upstream traffic changes. Furthermore, to quantitatively analyze the longitudinal safety influence of the time delay caused by representative communication systems, sensitivity analysis experiments of headway time were designed and conducted. In the sensitivity analysis, the time exposed time-to-collision (TET) and the time-integrated time-to-collision (TIT) were introduced as the key performance indicators (KPIs) to quantify the rear-end collision risks. Sensitivity analysis results demonstrate that the performance of the CACC platoon is strictly related to the applied wireless communication style. Furthermore, the CACC system supported by the 5th generation (5G) communication system shows great advantages in narrowing the minimal headway time gap and reducing the rear-end collision risks. View Full-Text
Keywords: cooperative adaptive cruise control; communication latency; 5G; rear-end collision risks cooperative adaptive cruise control; communication latency; 5G; rear-end collision risks
Show Figures

Figure 1

MDPI and ACS Style

Liu, Y.; Wang, W.; Hua, X.; Wang, S. Safety Analysis of a Modified Cooperative Adaptive Cruise Control Algorithm Accounting for Communication Delay. Sustainability 2020, 12, 7568.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop