On the Potential Impacts of Smart Traffic Control for Delay, Fuel Energy Consumption, and Emissions: An NSGA-II-Based Optimization Case Study from Dhahran, Saudi Arabia
Abstract
:1. Introduction
2. Related Work
3. Selection of Study Area and Data Collection
4. Methodology
4.1. NSGA-II
4.2. Traffic Simulation Using Synchro
5. Results and Discussions
5.1. Convergence of NSGA-II Curves
5.2. NSGA-II Versus Synchro Optimized Signal Timing Plan
5.3. Comparison of MOEs with Existing Conditions
6. Conclusions and Future Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, S.; Triantis, K.P.; Sarangi, S. A framework for evaluating the dynamic impacts of a congestion pricing policy for a transportation socioeconomic system. Transp. Res. Part A: Policy Pract. 2010, 44, 596–608. [Google Scholar] [CrossRef]
- Kavta, K.; Goswami, A. Traffic Congestion Mitigation: A Research Review of Supply and Demand Approaches. In Proceedings of the Transportation Research Board 97th Annual Meeting, Washington, DC, USA, 7–11 January 2018. [Google Scholar]
- Emo, A.K.; Matthews, G.; Funke, G.J. The slow and the furious: Anger, stress and risky passing in simulated traffic congestion. Transp. Res. Part F Traffic Psychol. Behav. 2016, 42, 1–14. [Google Scholar] [CrossRef]
- Falcocchio, J.C.; Levinson, H.S. The costs and other consequences of traffic congestion. In Road Traffic Congestion: A Concise Guide; Springer: Berlin/Heidelberg, Germany, 2015; pp. 159–182. [Google Scholar]
- Zahid, M.; Chen, Y.; Jamal, A. Freeway Short-Term Travel Speed Prediction Based on Data Collection Time-Horizons: A Fast Forest Quantile Regression Approach. Sustainability 2020, 12, 646. [Google Scholar] [CrossRef] [Green Version]
- Zahid, M.; Chen, Y.; Jamal, A.; Al-Ahmadi, H.M.; Al-Ofi, A.K. Adopting Machine Learning and Spatial Analysis Techniques for Driver Risk Assessment: Insights from a Case Study. Int. J. Environ. Res. Public Health 2020, 17, 5193. [Google Scholar] [CrossRef] [PubMed]
- Zahid, M.; Chen, Y.; Khan, S.; Jamal, A.; Ijaz, M.; Ahmed, T. Predicting Risky and Aggressive Driving Behavior among Taxi Drivers: Do Spatio-Temporal Attributes Matter? Int. J. Environ. Res. Public Health 2020, 17, 3937. [Google Scholar] [CrossRef]
- U.S. Department of Transportation. Fuel Cost and Consumption; Bureau of Transportation Statistics: Washington, DC, USA, 2020. [Google Scholar]
- Economist, T. The Cost of Traffic Jams; The Economist: London, UK, 2014. [Google Scholar]
- Schrank, D.; Eisele, B.; Lomax, T.; Bak, J. 2015 Urban Mobility Scorecard; The Texas A&M Transportation Institute and Inrix: College Station, TX, USA, 2015; Volume 9, p. 10. [Google Scholar]
- Schrank, D.; Lomax, T.; Eisele, B. 2012 Urban Mobility Report; Texas Transportation Institute: College Station, TX, USA, 2012; Available online: http://mobility.tamu.edu/ums/report (accessed on 25 July 2020).
- Levy, J.I.; Buonocore, J.J.; von Stackelberg, K. The Public Health Costs of Traffic Congestion; Harvard Center for Risk Analysis: Boston, MA, USA, 2010. [Google Scholar]
- Dano, U.L.; AlQahtany, A.M. Issues undermining public transport utilization in Dammam city, Saudi Arabia: An expert-based analysis. J. Sustain. Sci. Manag. 2019, 14, 155–169. [Google Scholar]
- Sibai, A. AI Bottleneck Traffic Creates a Heavy Loss of SR 81 Billion; The Saudi Gazette: Riyadh, Saudi Arabia, 2011. [Google Scholar]
- Jamal, A.; Rahman, M.T.; Al-Ahmadi, H.M.; Mansoor, U. The Dilemma of road safety in the eastern provice of Saudi Arabia: Consequences and Prevention strategies. Int. J. Environ. Res. Public Health 2020, 17, 157. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.T.; Jamal, A.; Al-Ahmadi, H.M. Examining Hotspots of Traffic Collisions and their Spatial Relationships with Land Use: A GIS-Based GeographicallyWeighted Regression Approach for Dammam, Saudi Arabia. ISPRS Int. J. Geo-Inf. 2020, 9, 540. [Google Scholar] [CrossRef]
- Bernstein, F.; De Croix, G.; Keskin, N.B. Competition between two-sided platforms under demand and supply congestion effects. Available SSRN 3250224 2019. [Google Scholar] [CrossRef] [Green Version]
- Rao, A.M.; Rao, K.R. Measuring urban traffic congestion—A review. Int. J. Traffic Transp. Eng. 2012, 2, 286–305. [Google Scholar]
- Ullah, I.; Jamal, A.; Subhan, F. Public perception of autonomous car: A case study for Pakistan. Adv. Transp. Stud. 2019, 49, 145–154. [Google Scholar]
- Tollazzi, T.; Guerrieri, M.; Jovanović, G.; Renčelj, M. Functions, Capacities, and Traffic Safety Characteristics of Some Types of Two-Level Roundabouts. Sustainability 2020, 12, 6914. [Google Scholar] [CrossRef]
- Macioszek, E. Roundabout Entry Capacity Calculation—A Case Study Based on Roundabouts in Tokyo, Japan, and Tokyo Surroundings. Sustainability 2020, 12, 1533. [Google Scholar] [CrossRef] [Green Version]
- Macioszek, E.; Świerk, P.; Kurek, A. The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland. Sustainability 2020, 12, 3285. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Wang, K.; Zhang, Y.; Li, M.; Qi, H.; Zhang, Y. Impact Evaluation of Bike-Sharing on Bicycling Accessibility. Sustainability 2020, 12, 6124. [Google Scholar] [CrossRef]
- AbuLibdeh, A. Traffic congestion pricing: Methodologies and equity implications. Urban Transp. Syst. 2017, 203–227. [Google Scholar] [CrossRef] [Green Version]
- Dantsuji, T.; Fukuda, D.; Zheng, N. Simulation-based joint optimization framework for congestion mitigation in multimodal urban network: A macroscopic approach. Transportation 2019, 1–25. [Google Scholar] [CrossRef]
- Wisetjindawat, W.; Derrible, S.; Kermanshah, A. Modeling the effectiveness of infrastructure and travel demand management measures to improve traffic congestion during typhoons. Transp. Res. Rec. 2018, 2672, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Zahid, M.; Chen, Y.; Jamal, A.; Memon, Q.M. Short Term Traffic State Prediction Via Hyperparameter Optimization Based Classifiers. Sensors 2020, 20, 685. [Google Scholar] [CrossRef] [Green Version]
- Albalate, D.; Fageda, X. Congestion, Road Safety, and the Effectiveness of Public Policies in Urban Areas. Sustainability 2019, 11, 5092. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.; Coelho, M.C.; Rouphail, N.M. Assessing the impact of closely-spaced intersections on traffic operations and pollutant emissions on a corridor level. Transp. Res. Part D Transp. Environ. 2017, 54, 304–320. [Google Scholar] [CrossRef]
- Day, C.M.; Bullock, D.M. Optimization of Traffic Signal Offsets with High Resolution Event Data. J. Transp. Eng. Part A Syst. 2020, 146, 04019076. [Google Scholar] [CrossRef]
- Jamal, A.; Rahman, M.T.; Al-Ahmadi, H.M.; Ullah, I.M.; Zahid, M. Intelligent Intersection Control for Delay Optimization: Using Meta-Heuristic Search Algorithms. Sustainability 2020, 12, 1896. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.K.; Liu, Y. Optimization of signalized network configurations using the Lane-based method. PLoS ONE 2019, 14, e0216958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Li, G.; Pang, S.-S.; Yang, X.; Tian, J. Signal timing of intersections using integrated optimization of traffic quality, emissions and fuel consumption: A note. Transp. Res. Part D Transp. Environ. 2004, 9, 401–407. [Google Scholar] [CrossRef]
- Beckmann, M.; McGuire, C.B.; Winsten, C.B. Studies in the Economics of Transportation; RAND: Santa Monica, CA, USA, 1956. [Google Scholar]
- Webster, F.V. Traffic Signal Settings; Department of Scientific and Industrial Research: London, UK, 1958. [Google Scholar]
- Akcelik, R. Traffic Signals: Capacity and Timing Analysis; Australian Road Research Board: Vermont South, Australia, 1981. [Google Scholar]
- Kou, W.; Chen, X.; Yu, L.; Gong, H. Multiobjective optimization model of intersection signal timing considering emissions based on field data: A case study of Beijing. J. Air Waste Manag. Assoc. 2018, 68, 836–848. [Google Scholar] [CrossRef] [Green Version]
- Akçelik, R. Time-Dependent Expressions for Delay, Stop Rate and Queue Length at Traffic Signals; Australian Road Research Board: Vermont South, Australia, 1980. [Google Scholar]
- Rakha, H.; Kang, Y.-S.; Dion, F. Estimating vehicle stops at undersaturated and oversaturated fixed-time signalized intersections. Transp. Res. Rec. 2001, 1776, 128–137. [Google Scholar] [CrossRef]
- Zhou, P.; Fang, Z.; Dong, H.; Liu, J.; Pan, S. Data analysis with multi-objective optimization algorithm: A study in smart traffic signal system. In Proceedings of the 2017 IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA), London, UK, 7–9 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 307–310. [Google Scholar]
- Shafabakhsh, G.; Taghizadeh, S.A.; Kooshki, S.M. Investigation and sensitivity analysis of air pollution caused by road transportation at signalized intersections using IVE model in Iran. Eur. Transp. Res. Rev. 2018, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; Chen, X.; Yu, L.; Wang, X. Arterial Offset Optimization Considering the Delay and Emission of Platoon: A Case Study in Beijing. Sustainability 2019, 11, 3882. [Google Scholar] [CrossRef] [Green Version]
- Rouphail, N.M.; Frey, H.C.; Colyar, J.D.; Unal, A. Vehicle emissions and traffic measures: Exploratory analysis of field observations at signalized arterials. In Proceedings of the 80th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 7–11 January 2001. [Google Scholar]
- Kodjak, D. Policies to reduce fuel consumption, air pollution, and carbon emissions from vehicles in G20 nations. Int. Counc. Clean Transp. 2015, 28, 1–28. [Google Scholar]
- Shaheen, S.A.; Lipman, T.E. Reducing greenhouse emissions and fuel consumption. IATSS Res. 2007, 31, 6–20. [Google Scholar] [CrossRef] [Green Version]
- Demir, E.; Bektaş, T.; Laporte, G. A comparative analysis of several vehicle emission models for road freight transportation. Transp. Res. Part D Transp. Environ. 2011, 16, 347–357. [Google Scholar] [CrossRef]
- Quaassdorff, C.; Smit, R.; Borge, R.; Hickman, M. Comparison of microscale traffic emission models for urban networks. In Proceedings of the 23rd Biennial International Clean Air and Environment Conference—The critical Atmosphere, Brisbane, Australia, 15–18 October 2017. [Google Scholar]
- Liao, T.-Y. A fuel-based signal optimization model. Transp. Res. Part D Transp. Environ. 2013, 23, 1–8. [Google Scholar] [CrossRef]
- Kwak, J.; Park, B.; Lee, J. Evaluating the impacts of urban corridor traffic signal optimization on vehicle emissions and fuel consumption. Transp. Plan. Technol. 2012, 35, 145–160. [Google Scholar] [CrossRef]
- Gao, K.; Zhang, Y.; Sadollah, A.; Su, R. Optimizing urban traffic light scheduling problem using harmony search with ensemble of local search. Appl. Soft Comput. 2016, 48, 359–372. [Google Scholar] [CrossRef]
- Zakariya, A.Y.; Rabia, S.I. Estimating the minimum delay optimal cycle length based on a time-dependent delay formula. Alex. Eng. J. 2016, 55, 2509–2514. [Google Scholar] [CrossRef] [Green Version]
- Lan, C.-J. New optimal cycle length formulation for pretimed signals at isolated intersections. J. Transp. Eng. 2004, 130, 637–647. [Google Scholar] [CrossRef]
- Han, L.D.; Li, J.-M. Short or long—Which is better? Probabilistic approach to cycle length optimization. Transp. Res. Rec. 2007, 2035, 150–157. [Google Scholar] [CrossRef]
- Chang, T.-H.; Lin, J.-T. Optimal signal timing for an oversaturated intersection. Transp. Res. Part B Methodol. 2000, 34, 471–491. [Google Scholar] [CrossRef]
- Zhao, L.; Peng, X.; Li, L.; Li, Z. A fast signal timing algorithm for individual oversaturated intersections. IEEE Trans. Intell. Transp. Syst. 2010, 12, 280–283. [Google Scholar] [CrossRef]
- He, Q.; Head, K.L.; Ding, J. Heuristic Algorithm for Priority Traffic Signal Control. Transp. Res. Rec. 2011, 2259, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Putha, R.; Quadrifoglio, L.; Zechman, E. Comparing Ant Colony Optimization and Genetic Algorithm Approaches for Solving Traffic Signal Coordination under Oversaturation Conditions. Comput. Aided Civ. Infrastruct. Eng. 2012, 27, 14–28. [Google Scholar] [CrossRef]
- Foy, M.D.; Benekohal, R.F. Signal timing determination using genetic algorithms. Transp. Res. Rec. 1993, 1365, 108–115. [Google Scholar]
- Louati, A.; Darmoul, S.; Elkosantini, S.; ben Said, L. An artificial immune network to control interrupted flow at a signalized intersection. Inf. Sci. 2018, 433, 70–95. [Google Scholar] [CrossRef]
- Liang, X.; Du, X.; Wang, G.; Han, Z. A Deep Reinforcement Learning Network for Traffic Light Cycle Control. IEEE Trans. Veh. Technol. 2019, 68, 1243–1253. [Google Scholar] [CrossRef] [Green Version]
- Korkmaz, E.; AKGÜNGÖR, A.P. Delay estimation models for signalized intersections using differential evolution algorithm. J. Eng. Res. 2017, 5, 16–29. [Google Scholar]
- El-Tantawy, S.; Abdulhai, B.; Abdelgawad, H. Design of Reinforcement Learning Parameters for Seamless Application of Adaptive Traffic Signal Control. J. Intell. Transp. Syst. 2014, 18, 227–245. [Google Scholar] [CrossRef]
- Gora, P.; Mozejko, M.; Brzeski, M.; Karnas, K.; Przybyszewski, P.; Klemenko, A.; Kochanski, A.; Dryja, H.; Kukawska, M.; Kopczyk, D. Solving Traffic Signal Setting Problem Using Machine Learning. In Proceedings of the 2019 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Cracow, Poland, 5–7 June 2019; IEEE: Cracow, Poland, 2019; pp. 1–10. [Google Scholar]
- Pandit, K.; Ghosal, D.; Zhang, H.M.; Chuah, C. Adaptive Traffic Signal Control with Vehicular Ad hoc Networks. IEEE Trans. Veh. Technol. 2013, 62, 1459–1471. [Google Scholar] [CrossRef] [Green Version]
- Chiu, S.; Chand, S. Adaptive Traffic Signal Control Using Fuzzy Logic. In Proceedings of the First IEEE Regional Conference on Aerospace Control Systems, Westlake Village, CA, USA, 25–27 May 1993; pp. 122–126. [Google Scholar]
- Nesmachnow, S.; Massobrio, R.; Arreche, E.; Mumford, C.; Olivera, A.C.; Vidal, P.J.; Tchernykh, A. Traffic lights synchronization for Bus Rapid Transit using a parallel evolutionary algorithm. Int. J. Transp. Sci. Technol. 2019, 8, 53–67. [Google Scholar] [CrossRef]
- Ma, D.; Nakamura, H. Cycle length optimization at isolated signalized intersections from the viewpoint of emission. In Traffic and Transportation Studies 2010; ASCE: Reston, VA, USA, 2010; pp. 275–284. [Google Scholar]
- Zhao, H.; He, R.; Su, J. Multi-objective optimization of traffic signal timing using non-dominated sorting artificial bee colony algorithm for unsaturated intersections. Arch. Transp. 2018, 46, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.; Lin, Y.; Luo, Q.; Li, Y.; Miao, H. Multi-objective optimization of urban road intersection signal timing based on particle swarm optimization algorithm. Adv. Mech. Eng. 2019, 11, 1687814019842498. [Google Scholar] [CrossRef] [Green Version]
- Hajbabaie, A.; Benekohal, R.F. Traffic signal timing optimization: Choosing the objective function. Transp. Res. Rec. 2013, 2355, 10–19. [Google Scholar] [CrossRef]
- Yang, H.; Luo, D. Acyclic Real-Time Traffic Signal Control Based on a Genetic Algorithm. Cybern. Inf. Technol. 2013, 13, 111–123. [Google Scholar] [CrossRef]
- Ceylan, H. Optimal Design of Signal Controlled Road Networks Using Differential Evolution Optimization Algorithm. Math. Probl. Eng. 2013, 2013, 696374. [Google Scholar] [CrossRef]
- Bi, Y.; Srinivasan, D.; Lu, X.; Sun, Z.; Zeng, W. Type-2 fuzzy multi-intersection traffic signal control with differential evolution optimization. Expert Syst. Appl. 2014, 41, 7338–7349. [Google Scholar] [CrossRef]
- Robertson, D.I.; Lucas, C.F.; Baker, R.T. Coordinating Traffic Signals to Reduce Fuel Consumption; Traffic Engineering Department Transport and Road Research Laboratory: Crowthorne, Berkshire, 1980. [Google Scholar]
- Rakha, H.; Van Aerde, M.; Ahn, K.; Trani, A. Requirements for Evaluating Traffic Signal Control Impacts on Energy and Emissions Based on Instantaneous Speed and Acceleration Measurements. Transp. Res. Rec. 2000, 1738, 56–67. [Google Scholar] [CrossRef]
- Dissanayake, D.T.; Senanayake, S.M.R.; Divarathne, H.K.D.W.M.M.R.; Samaranayake, B.G.L.T. Real-time dynamic traffic light timing adaptation algorithm and simulation software. In Proceedings of the 2009 International Conference on Industrial and Information Systems (ICIIS), University of Peradeniya, Sri Lanka, 28–31 December 2009; IEEE: Peradeniya, Sri Lanka, 2009; pp. 563–567. [Google Scholar]
- Liu, M.; Oeda, Y.; Sumi, T. Multi-Objective Optimization of Intersection Signal Time Based on Genetic Algorithm. Mem. Fac. Eng. Kyushu Univ. 2018, 78, 14–23. [Google Scholar]
- Sun, D.; Benekohal, R.F.; Waller, S.T. Multiobjective traffic signal timing optimization using non-dominated sorting genetic algorithm. In Proceedings of the IEEE IV2003 Intelligent Vehicles Symposium, Proceedings (Cat. No. 03TH8683), Columbus, OH, USA, 9–11 June 2003; pp. 198–203. [Google Scholar]
- Li, Y.; Yu, L.; Tao, S.; Chen, K. Multi-Objective Optimization of Traffic Signal Timing for Oversaturated Intersection. Math. Probl. Eng. 2013, 2013, 182643. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, Y.; Zietsman, J. Investigating Emission Reduction Benefit From Intersection Signal Optimization. J. Intell. Transp. Syst. 2013, 17, 200–209. [Google Scholar] [CrossRef]
- Lee, J.; Abdulhai, B.; Shalaby, A.; Chung, E.-H. Real-time optimization for adaptive traffic signal control using genetic algorithms. J. Intell. Transp. Syst. 2005, 9, 111–122. [Google Scholar] [CrossRef]
- Abbas, M.M.; Sharma, A. Multiobjective plan selection optimization for traffic responsive control. J. Transp. Eng. 2006, 132, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Guangwei, Z.; Albert, G.; Sherr, L.D. Optimization of adaptive transit signal priority using parallel genetic algorithm. Tsinghua Sci. Technol. 2007, 12, 131–140. [Google Scholar] [CrossRef]
- Zhou, S.; Yan, X.; Wu, C. Optimization Model for Traffic Signal Control with Environmental Objectives. In Proceedings of the 2008 Fourth International Conference on Natural Computation, Jinan, China, 18–20 October 2008; IEEE: Jinan, China, 2008; pp. 530–534. [Google Scholar]
- Salkham, A.; Cunningham, R.; Garg, A.; Cahill, V. A Collaborative Reinforcement Learning Approach to Urban Traffic Control Optimization. In Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Sydney, NSW, Australia, 9–12 December 2008; IEEE: Sydney, Australia, 2008; pp. 560–566. [Google Scholar]
- Dong, C.; Huang, S.; Liu, X. Urban Area Traffic Signal Timing Optimization Based on Sa-PSO. In Proceedings of the 2010 International Conference on Artificial Intelligence and Computational Intelligence, Sanya, China, 23–24 October 2010; IEEE: Sanya, China, 2010; pp. 80–84. [Google Scholar]
- Wu, L.; Wang, Y.; Yuan, X.; Chen, Z. Multiobjective optimization of HEV fuel economy and emissions using the self-adaptive differential evolution algorithm. IEEE Trans. Veh. Technol. 2011, 60, 2458–2470. [Google Scholar] [CrossRef]
- He, J.; Hou, Z. Ant colony algorithm for traffic signal timing optimization. Adv. Eng. Softw. 2012, 43, 14–18. [Google Scholar] [CrossRef]
- Trabelsi, B.; Elkosantini, S.; Darmoul, S. Traffic Control at Intersections Using Artificial Immune System Approach. In Proceedings of the 9th International Conference of Modeling, Optimization and Simulation—MOSIM’12, Bordeaux, France, 6–8 June 2012. [Google Scholar]
- Zhou, Z.; Cai, M. Intersection signal control multi-objective optimization based on genetic algorithm. J. Traffic Transp. Eng. 2014, 1, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Gökçe, M.A.; Öner, E.; Işık, G. Traffic signal optimization with Particle Swarm Optimization for signalized roundabouts. SIMULATION 2015, 91, 456–466. [Google Scholar] [CrossRef]
- Long, Q.; Zhang, J.-F.; Zhou, Z.-M. Multi-objective traffic signal control model for traffic management. Transp. Lett. 2015, 7, 196–200. [Google Scholar] [CrossRef]
- Doğan, E.; Akgüngör, A.P. Optimizing a fuzzy logic traffic signal controller via the differential evolution algorithm under different traffic scenarios. Simulation 2016, 92, 1013–1023. [Google Scholar] [CrossRef]
- Adacher, L.; Gemma, A. A robust algorithm to solve the signal setting problem considering different traffic assignment approaches. Int. J. Appl. Math. Comput. Sci. 2017, 27, 815–826. [Google Scholar] [CrossRef] [Green Version]
- Cakici, Z.; Murat, Y.S. A Differential Evolution Algorithm-Based Traffic Control Model for Signalized Intersections. Adv. Civ. Eng. 2019, 2019. [Google Scholar] [CrossRef]
- Ministry of Interior, M. Statistical Yearbook; General Authority of Statistics: Riyadh, Saudi Arabia, 2018. [Google Scholar]
- Seshadri, A. NSGA-II: A multi-objective optimization algorithm. MAT-Lab Cent. Implementierung 2009. Available online: http://www.mathworks.com/matlabcentral/fileexchange/10429 (accessed on 8 September 2020).
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Emmerich, M.T.; Deutz, A.H. A tutorial on multiobjective optimization: Fundamentals and evolutionary methods. Nat. Comput. 2018, 17, 585–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, X.; Yu, X. Improved Crowding Distance for NSGA-II. arXiv 2018, arXiv:1811.12667. [Google Scholar]
- Gunantara, N. A review of multi-objective optimization: Methods and its applications. Cogent Eng. 2018, 5. [Google Scholar] [CrossRef]
- Zou, Z.-Y.; Chen, S.-K.; GUO, J.; BAI, L.; CHANG, C. Timing Optimization and Simulation on Signalized Intersection by Synchro. J. North. Jiaotong Univ. 2004, 6. [Google Scholar]
- Synchro. Trafficware Synchro Software User Guide 2019; Synchro Software Ltd.: London, UK, 2019. [Google Scholar]
- Benekohal, R.F.; Elzohairy, Y.M.; Saak, J.E. Comparison of delays from Highway Capacity software, Synchro, PASSER II and IV, and CORSIM for urban arterials. Transp. Res. Rec. 2002, 1802, 133–144. [Google Scholar] [CrossRef]
- Kim, B.M.; Kim, Y.B.; Oh, C.H. A study on the convergence of genetic algorithms. Comput. Ind. Eng. 1997, 33, 581–588. [Google Scholar] [CrossRef]
- Poles, S.; Fu, Y.; Rigoni, E. The effect of initial population sampling on the convergence of multi-objective genetic algorithms. In Multiobjective Programming and Goal Programming; Springer: Berlin/Heidelberg, Germany, 2009; pp. 123–133. [Google Scholar]
- Hamdani, T.M.; Won, J.-M.; Alimi, A.M.; Karray, F. Multi-objective feature selection with NSGA II. In Proceedings of the International conference on adaptive and natural computing algorithms; Springer: Berlin/Heidelberg, Germany, 2007; pp. 240–247. [Google Scholar]
- Monsef, H.; Naghashzadegan, M.; Jamali, A.; Farmani, R. Comparison of evolutionary multi objective optimization algorithms in optimum design of water distribution network. Ain Shams Eng. J. 2019, 10, 103–111. [Google Scholar] [CrossRef]
- Branke, J.; Goldate, P.; Prothmann, H. Actuated traffic signal optimization using evolutionary algorithms. In Proceedings of the 6th European Congress and Exhibition on Intelligent Transport Systems and Services, Aalborg, Denmark, 18–20 June 2007; pp. 203–225. [Google Scholar]
Reference | Methods Used | Optimization Objectives Considered | ||||||
---|---|---|---|---|---|---|---|---|
Throughput | Delay | Stops | Queue | FC | Emissions | Travel Time | ||
[81] | GA | ✓ | ||||||
[82] | GA | ✓ | ✓ | |||||
[83] | GA | ✓ | ||||||
[84] | GA | ✓ | ✓ | |||||
[85] | RL | ✓ | ||||||
[86] | PSO | ✓ | ✓ | |||||
[87] | DE | ✓ | ✓ | |||||
[88] | ACO | ✓ | ✓ | ✓ | ||||
[89] | AIS | ✓ | ✓ | |||||
[49] | GA | ✓ | ✓ | |||||
[79] | NSGA | ✓ | ✓ | |||||
[90] | GA | ✓ | ✓ | ✓ | ||||
[91] | PSO | ✓ | ✓ | |||||
[92] | Q-Algorithm | ✓ | ✓ | ✓ | ||||
[93] | DE | ✓ | ✓ | |||||
[94] | GA and PSO | ✓ | ||||||
[68] | ABC | ✓ | ✓ | |||||
[37] | GA | ✓ | ✓ | |||||
[95] | DE | ✓ | ||||||
[69] | PSO | ✓ | ✓ | ✓ | ||||
[31] | GA and DE | ✓ | ||||||
Our Study | NSGA-II | ✓ | ✓ | ✓ | ✓ |
Collected Data | Intersection | East Bound (EB) | North Bound (NB) | West Bound (WB) | South Bound (SB) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Traffic volume (veh. /hr) | Left | Through | Right | Left | Through | Right | Left | Through | Right | Left | Through | Right | |
I | 530 | 1555 | 82 | 65 | 52 | 1320 | 73 | 64 | 52 | ||||
II | 320 | 112 | 192 | 640 | 336 | 818 | 59 | 240 | |||||
Signal timings (sec.) | ϕI | ϕII | ϕIII | ϕIV | |||||||||
I | G = 55; Y = 3; All Red = 2 | G = 15; Y = 3; All Red = 2 | G = 45; Y = 3; All Red = 2 | G = 25; Y = 3; All Red = 2 | |||||||||
II | G = 50; Y = 3; All Red = 2 | G = 15; Y = 3; All Red = 2 | G = 75; Y = 3; All Red = 2 | G = 60; Y = 3; All Red = 2 | |||||||||
Phases sequence | I | | | | | ||||||||
II | | | | |
Symbol | Parameter Description | Parameter Setting |
---|---|---|
Npop | Population size | {30,50,100} |
Pp | Pareto front population fraction | 0.30 |
Genmax. | Maximum generations | 300 |
Pc | Crossover probability | 0.90 |
Cc | Crossover index | 20 |
Pm | Mutation probability | 0.05 |
Cm | Mutation index | 20 |
E | Elitist fraction | 0.5 |
St | Selection strategy | Tournament |
Rb | Recombination | Uniform |
fc | Crossover function | Intermediate |
fm | Mutation function | Gaussian |
Method | Intersection | Cycle Length | ϕI | ϕII | ϕIII | ϕIV |
---|---|---|---|---|---|---|
gI | gII | giII | gIV | |||
Current scheme | I | 160 | 55 | 15 | 45 | 25 |
NSGA-II | 122 (23.75) | 39 (29.10) | 12 (20) | 34 (24.44) | 17 (32) | |
SYNCHRO | 105 (34.37) | 33 (40) | 10 (33.33) | 28 (37.77) | 14 (44) | |
Current scheme | II | 220 | 50 | 15 | 75 | 60 |
NSGA-II | 164 (25.45) | 37 (26) | 11 (26.67) | 52 (30.67) | 44 (26.67) | |
SYNCHRO | 138 (37.27) | 30 (40) | 11 (26.67) | 42 (44) | 35 (41.67) |
Performance Measures/MOEs | Intersection | Existing Conditions | NSGA-II | % Difference | Synchro | % Difference |
---|---|---|---|---|---|---|
Delay | I | 70.2 | 57.8 | 17.67 | 64.5 | 8.12 |
II | 80.4 | 65.1 | 22.78 | 69.8 | 13.18 | |
Stops | I | 1988 | 1698 | 14.59 | 1642 | 17.40 |
II | 2234 | 1816 | 18.71 | 1868 | 16.38 | |
Fuel consumption | I | 354.3 | 266.4 | 24.8 | 300.6 | 15.15 |
II | 382.8 | 304.8 | 20.38 | 338.6 | 11.65 | |
Emissions (CO) | I | 6364 | 4928 | 22.56 | 5255 | 17.42 |
II | 6825 | 5624 | 17.60 | 6014 | 11.88 | |
Emissions (NOx) | I | 1154 | 959 | 16.90 | 992 | 14.04 |
II | 1259 | 1098 | 12.79 | 1118 | 11.20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Turki, M.; Jamal, A.; Al-Ahmadi, H.M.; Al-Sughaiyer, M.A.; Zahid, M. On the Potential Impacts of Smart Traffic Control for Delay, Fuel Energy Consumption, and Emissions: An NSGA-II-Based Optimization Case Study from Dhahran, Saudi Arabia. Sustainability 2020, 12, 7394. https://doi.org/10.3390/su12187394
Al-Turki M, Jamal A, Al-Ahmadi HM, Al-Sughaiyer MA, Zahid M. On the Potential Impacts of Smart Traffic Control for Delay, Fuel Energy Consumption, and Emissions: An NSGA-II-Based Optimization Case Study from Dhahran, Saudi Arabia. Sustainability. 2020; 12(18):7394. https://doi.org/10.3390/su12187394
Chicago/Turabian StyleAl-Turki, Mohammed, Arshad Jamal, Hassan M. Al-Ahmadi, Mohammed A. Al-Sughaiyer, and Muhammad Zahid. 2020. "On the Potential Impacts of Smart Traffic Control for Delay, Fuel Energy Consumption, and Emissions: An NSGA-II-Based Optimization Case Study from Dhahran, Saudi Arabia" Sustainability 12, no. 18: 7394. https://doi.org/10.3390/su12187394
APA StyleAl-Turki, M., Jamal, A., Al-Ahmadi, H. M., Al-Sughaiyer, M. A., & Zahid, M. (2020). On the Potential Impacts of Smart Traffic Control for Delay, Fuel Energy Consumption, and Emissions: An NSGA-II-Based Optimization Case Study from Dhahran, Saudi Arabia. Sustainability, 12(18), 7394. https://doi.org/10.3390/su12187394