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Abstract: Short-term traffic state prediction has become an integral component of an advanced
traveler information system (ATIS) in intelligent transportation systems (ITS). Accurate modeling
and short-term traffic prediction are quite challenging due to its intricate characteristics, stochastic,
and dynamic traffic processes. Existing works in this area follow different modeling approaches
that are focused to fit speed, density, or the volume data. However, the accuracy of such modeling
approaches has been frequently questioned, thereby traffic state prediction over the short-term from
such methods inflicts an overfitting issue. We address this issue to accurately model short-term
future traffic state prediction using state-of-the-art models via hyperparameter optimization. To do
so, we focused on different machine learning classifiers such as local deep support vector machine
(LD-SVM), decision jungles, multi-layers perceptron (MLP), and CN2 rule induction. Moreover,
traffic states are evaluated using traffic attributes such as level of service (LOS) horizons and simple
if–then rules at different time intervals. Our findings show that hyperparameter optimization via
random sweep yielded superior results. The overall prediction performances obtained an average
improvement by over 95%, such that the decision jungle and LD-SVM achieved an accuracy of 0.982
and 0.975, respectively. The experimental results show the robustness and superior performances of
decision jungles (DJ) over other methods.

Keywords: traffic state prediction; spatio-temporal traffic modeling; simulation; machine learning;
hyper parameter optimization; ITS

1. Introduction

Smart cities have emerged at the heart of “next stage urbanization” as they are equipped with
fully digital infrastructure and communication technologies to facilitate efficient urban mobility. The
fundamental enabler of a smart city is dependent on connected devices, though the real concern
is how the collected data are distributed city-wide through sensor technologies via the Internet
of Things (IoT). Heterogeneous vehicular networks in a connected infrastructure network are able
to sense, compute, and communicate information through various access technologies: Universal
Mobile Telecommunications System (UTMS), Fourth Generation (4G), and Dedicated Short-Range
Communications (DSRC) [1,2]. In vehicular sensor networks (VSN) and Internet of vehicles (IOV),
each vehicle act as receivers, senders, and routers simultaneously to transmit data over the network or
to a central transportation agency as an integral part of intelligent transportation systems (ITS) [3,4].
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Furthermore, each and every network node in VSN is assumed to store, carry, and precisely transfer the
data with cooperative behavior. In recent years, following rapid diversification, navigation technologies
and traffic information services enable a large amount of data to be collected from the different devices
such as loop detectors, on-board equipment, speed sensors, remote microwave traffic sensors (RTMS),
and road-side surveillance cameras etc., that have been proactively used for monitoring of traffic
conditions in the ITS domain [5–9]. Sensor networks in the form of road side units (RSUs) offer
numerous applications including broadcasting periodic informatory, warnings, and safety messages
to road users. The data obtained from these different sources have provided myriad opportunities
to estimate and predict travel time and future traffic states through a large number of data-driven
computational and machine learning approaches. Accurate traffic state prediction (TSP) ensures
efficient vehicle route planning, and pro-active real-time traffic management.

TSP is achieved in three distinct steps: (i) prediction of the desired traffic flow parameters
(i.e., volume, speed, and occupancy); (ii) identification of traffic state; and (iii) realizing the traffic
state output. TSP can be classified as either short-term prediction or long-term prediction. In the
former prediction type, short-term changes in traffic status are predicted (e.g., during a 5, 10, 15, or
30 min prediction horizon), and long-term prediction is usually estimated in days and months [10].
Short-term predictions can either be used directly by traffic professionals to take appropriate actions
or can be added as inputs for proactive solutions in congestion management. Short-term prediction
reduces common problems such as traffic congestion, road accidents, and air pollution; meanwhile,
it also offers road users and traffic management agencies with important information to assist in better
decision-making [11]. Three factors affect the quality of prediction in real-time traffic information.
These factors include: (i) variation in data collected from various sources like sensors and other sources;
(ii) dynamic nature of traffic conditions; and (iii) randomness and stochastic nature of traffic appearing
in the supply and demand. However, addressing these factors remained challenging and significant in
the realm of quality prediction for real-time traffic information [12].

In TSP, prediction methodologies are broadly studied into two main categories: parametric and
non-parametric techniques [8]. Parametric methods include auto aggressive integrated moving average
method ARIMA [13], exponential smoothing (ES) [14], and seasonal auto aggressive integrated moving
average method (SARIMA) [15,16]. In their study, Li et al. suggested that a multi-view learning
approach estimates the missing values in traffic-related time series data [17]. Parametric methods
focus on pre-determining the structure of the model based on theoretical or physical assumptions, later
tuning a set of parameters that represent the traffic conditions (i.e., a trend in the actual world) [10,11].
These practices develop a mathematical function between historical and predicted states, for instance,
model-based time series such as ARIMA, which is commonly used for traffic predictions in all
parametric methods [18]. However, autoregressive models provide better accuracy for TSP models,
while considering the traffic information about upstream and downstream locations is accounted for
on freeways [9]. Parametric methods have good accuracy and high computational efficiency and are
highly suited for linear or stationary time-series [19]. On the other hand, non-parametric approaches
provide several advantages such as the ability to avoid model’s strong assumptions and learn from the
implicit dynamic traffic characteristics through archived traffic data. These models have the benefit of
being able to manage non-linear, dynamic tasks, and can also utilize spatial–temporal relationships,
whereas non-parametric methods require a large amount of historical data and training processes.
Non-parametric techniques include artificial neural network (ANN) [20–22]; support vector regression
(SVR) [23,24]; K-nearest neighbor (KNN) [25–29]; and Bayesian models [30,31]. Since non-parametric
techniques yield better prediction accuracy compared to ordinary parametric techniques like time
series as they require significantly high computational effort. Their prediction accuracy is largely
dependent on the quantity and quality of training data [32]. The above-mentioned methods have been
successfully deployed in various transport related applications where predictions are required for
excessive passenger flow at a metro station or in a crowd gathered for a special event [33,34].
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A critical review of literature for TSP indicates that time series and conventional ANN models
have been widely employed for short term TSP. Although these models were aimed to fit the speed,
density, or volume data as they usually inherit an overfitting issue. Thereby, the ability of models
that capture generalized trends for traffic prediction is compromised. Macroscopic traffic parameters
such as traffic flow, traffic speed, and density are the state variables of interest used in TSP, and
are subsequently evaluated using level of service (LOS). However, training and testing the accuracy
for the majority of such modeling approaches is frequently questioned. To overcome this issue, we
incorporated recent AI and machine learning state-of-art-approaches such as decision jungles and
LD-SVM (via hyperparameter optimization) as these methods have been rarely been explored in the
existing works. Data utilized in current study was extracted from traffic simulator ‘VISSIM’, which
realistically simulates complex vehicle interaction in transportation systems. Furthermore, this study
has major contributions in terms of spatiotemporal analysis of different LOS classes (i.e., A-F) under
different data-collection time-intervals. In general, we emphasized short-term prediction, which is
considered useful for improving the productivity of transportation systems, and also beneficial in
reducing both the direct and indirect costs. Moreover, this study reviewed the different techniques and
approaches that have been used for short-term TSP. A comprehensive comparative analysis was also
conducted to evaluate the ability and efficiency of proposed methods in terms of prediction accuracy.
The specific main contributions of this paper are:

• We extend the exploration of decision jungles and locally deep SVM (LD-SVM) for short term
traffic state prediction using hyperparameter optimization (via random sweep).

• A comprehensive comparison was implemented to demonstrate the ability and the effectiveness
of each machine learning model for TSP accuracy.

• Prediction performances were evaluated under different forecasting time-intervals at distinct
time scales.

• Short-term traffic state was taken as a function of level of service (LOS) along a basic freeway
segment. Study results demonstrated that decision jungles were more efficient and stable at
different predicted horizons (time-intervals) than the LD-SVM, MLP, and CN2 rule induction.

The remainder of this paper is organized as follows. Section 2 presents a brief overview of the
methods and techniques for TSP in the existing literature. Section 3 describes the preliminaries for
different machine learning models used in this study. Section 4 presents study area, data description,
and key parameter settings. Section 5 highlights results and discussion. Section 6 includes the
comparison of different models. Finally, Section 7 summarizes the conclusions, presents key study
limitations, and outlook for future studies.

2. Related Work

Since early 1980, non-linear traffic flow prediction has been the focus of several research studies
as it is regarded as extremely useful for real-time proactive traffic control measures [15,16]. From its
inception in the 1980s, artificial neural networks (ANNs) have been widely used for the analysis and
prediction of time series data. They have the ability to perceive the non-linear connection between
features of input and output variables that in turn can produce effective TSP solutions. For example,
Zheng et al. combined Bayesian inference and neural networks to forecast future traffic flow [35].
Ziang and Adeli proposed a time-delay via recurrent wavelet neural network, where the periodicity
demonstrated the significance of traffic flow forecasting [36]. Parametric methods can obtain better
prediction outcomes when the data flow of the traffic varies temporally. These methods assume a
variety of difficult conditions such as residual normalization and predefined system structure and
rarely converged due to the stochastic or non-linear traffic flow characteristics.

To address the limitations of parametric models, different approaches including linear kernel,
polynomial kernel, Gaussian kernel, and optimized multi kernel SVM (MK-SVM) have been proposed
by recent research studies for traffic flow prediction [37–40]. MK-SVM predicted the results by
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mapping the linear parts of historical traffic flow data using the linear kernel, while map residual
was performed using the non-linear kernel. Alternatively, generating if–then rules, also known as
rule induction techniques that search the training data for proposition rules, can also be used. which
CN2 is best-known example of this approach, that have been successfully utilized by previous for
flow prediction [41,42]. Hashemi et al. developed different models for classification based on if–then
rules in the short-term traffic state prediction for a highway segment [43]. In contrast, ANNs’ popular
network structure is multi-layer perceptron (MLP), which has been widely used in many transport
applications due to its simplicity and capacity to conduct non-linear pattern classification and function
approximation. The MLP model generally works well in the capture of complex and non-linear
relations, but it usually requires a large volume of data and complex training. Many researchers,
therefore, consider it as the most commonly implemented network topology [44–46]. Recently, in the
study by Chen et al., they adapted a novel approach using dynamic graph hybrid automata for the
modeling and estimation of density on an urban freeway in the city of Beijing, China [47]. The authors
validated the feasibility of their modeling approach on Beijing’s Third Ring Road. A recent study
conducted by Zahid et al., proposed a new ensemble-based Fast forest quantile regression (FFQR)
method to forecast short-term travel speed prediction [48]. It was concluded that proposed approach
yielded robust speed prediction results, particularly at larger time-horizons.

Aside from the above-mentioned models, decision trees and forests have a rich history in machine
learning and have shown significant progress in TSP, as reported in some of the recent literature [49,50].
Various studies have been conducted to address the shortcomings of traditional decision trees, for
example, their sub-optimal efficiency and lack of robustness [51,52]. Similarly, in another research study,
the researchers investigated the efficacy of the ensemble decision trees for the TSP [50]. It was concluded
that trees generate efficient predictions traditionally. At the same time, researchers have concluded
that learning with ideal decision trees could be problematic due to overfitting [53]. Henceforth, this
approach has some limitations, such that the amount of data to be provided as the number of nodes in
decision trees would increase exponentially with depth, affecting the accuracy [54]. Recently, a study
proposed a novel online seasonal adjustment factors coupled with adaptive Kalman filter (OSAF-AKF)
model for estimating the real-time seasonal heteroscedasticity in traffic flow series [55].

In contrast, machine learning techniques and their performances for classifying different problems
have been encouraging such as decision jungles and LD-SVM, which are heavily dependent on a set of
hyperparameters that, in turn, efficiently describes different aspects of algorithm behavior [54,56,57].
It is important to note that no suitable default configuration exists for all problem domains. Optimizing
the hyperparameter for different models is important in achieving good performance in the realm
of TSP [56]. There are two types of hyperparameter optimization: manual and automatic. Manual
is time-consuming and depends on expert inputs, while an automatic approach removes expert
input. Automatic approaches include the most common practice methods such as grid search and
random search [58]. Several libraries have recently been introduced to optimize hyperparameters.
Hyperopt Library is one of the libraries offering different hyper-optimization algorithms for machine
learning algorithms [59]. Existing techniques for optimizing EC-based hyperparameters [60,61] such as
differential evolution (DE) and particle swarm optimization (PSO) are useful since they are conceptually
easy and can achieve highly competitive output in various fields [62–65]. However, these methods
have a great deal of calculation and a low convergence rate in the iterative process. In contrast,
hyperparameter optimization methods such as random grid, entire grid, and random sweep have
achieved a great deal of attention in hyperparameter optimization. In a random grid, the matrix is
computed for all combinations, and the values are extracted from the matrix by the number of defined
iterations in relation to the entire grid incurred for all possible combinations. The difference between the
random grid and the random sweep is that the latter technique selects random parameter values within
the set, while the former only employs the exact values defined in the algorithm module. With this
understanding, random sweep was chosen for the models conducted in this study for hyperparameter
optimization with the intention of improving the accuracy of short-term TSP.
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3. Preliminaries

Machine learning provides a number of supervised learning techniques for classification and
prediction. The objective of a classification problem is to learn a model, which can predict the value of
the target variable (class label) based on multiple input variables (predictors, attributes). This model is
a function, which maps as an input attribute vector X to the output class label (i.e., Yε {C1, C2, C3, . . . ,
Cn}). The label training set is represented as follows:

(X, Y) =
{
(x0, x1, x2, x3, . . . xn), Y

}
(1)

where Y is the target label class (dependent variable) and vector X is composed of x0, x1, x2, x3, . . . ,
xn. The macroscopic flow, density, and speed obtained from traffic simulation are referred to as input
parameters when fed/imported to machine learning models for short term traffic prediction. The model
learns from these input variables for different time intervals (i.e., 5, 10, and 15 min). Either the next
time interval level of service (LOS) is considered as a class label or target variable. The predicted label
class for time (Time duration = 1), is given in the following form:

(Density1, Speed1, Flow1, Time Duration1, LOS2) (2)

The current study utilized four different machine learning methods for short term TSP. These
methods included LD-SVM, decision jungles, CN2 rule induction, and MLP. The detailed methodology
for each technique is presented below.

3.1. Local Deep Support Vector Machine (LD-SVM)

SVM is based on statistical learning theory as suggested by Vapnik in 1995 for classification
and regression [66]. Local deep kernel learning SVM (LD-SVM) is a scheme for effective non-linear
SVM prediction while preserving classification precision above an acceptable limit. Using a local
kernel function allows the model to learn arbitrary local embedding features including sparse,
high-dimensional, and computationally deep features that bring non-linearity into the model. The
model employs routines that are effective and primarily infused to optimize the space of local
tree-structured embedding features in more than half a million training points for big training sets.
LD-SVM model training is exponentially quicker than traditional SVM models training [57]. LD-SVM
can be used for both linear and non-linear classification tasks. It is considered as a special type of linear
classifier (e.g., logistic regression LG), however, LG is unable to perform sufficiently in complicated
and linear tasks. In addition, LD-SVM model learning is significantly faster and computationally
more efficient than traditional SVM model training. The formulation of a local deep kernel learns a
non-linear kernel K

(
xi, x j

)
= KL

(
xi, x j

)
KG

(
xi, x j

)
, where KL and KG are the local and global kernel.

The product of local kernel KL = φt
LφL and global kernel KG = φt

GφG leads to the prediction function.

y(x) = sign
(
φt

L(x)W
tφG(x)

)
(3)

y(x) = sign


∑

i jk

αi yi φG j (xi)φG j φLk (xi)φLk (x)


 (4)

y(x) = sign
(
Wt(φG(x) ⊗ φL (x))

)
(5)

y(x) = sign
(
φt

L(x)W
tφG(x)

)
(6)

y(x) = sign
(
WtφG(x)

)
(7)
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where Wk=
∑

i αi yi φLk (xi)φG (xi), φLk denote dimension k of φL ∈ RM, W = [w1 . . . . . .wM], W (x) =
WφL(x), and ⊗ is the Kronecker product. φL is the local feature space and φG is the global features space.

φLk (x) = tanh
(
σθ′tk

)
Ik(x) (8)

while training the LD-SVM and smoothing the tree are shown in Figure 1, Equation (1) can further
written as below:

y(x) = sign
[
tanh

(
σvt

1x
)
wt

1x + anh
(
σvt

2x
)
wt

2x) + anh
(
σvt

4x
)
wt

4x
]

(9)

where Ik(x) is the indicator function for each node k in the tree; θ is to go left or right; v stack with
non-linearity; σ is sigmoid sharpness for the parameter scaling and could be set by validation. Higher
values imply that the ‘tanh’ is saturated in the local kernel, while a lower value means a more linear
range of operation for θ. The full optimization formula is given in Equation (10). The local deep kernel
learning (LDKL) primal for jointly learning θ and W from the training data, where

{
(xi, yi)

N
i=1

}
can be

described as:

min
W,θ,θ′

P(W,θ,θ′) =
λw

2
Tr

(
WtW

)
+
λθ
2

Tr
(
θtθ

)
+
λθ′

2
Tr

(
θ′tθ′

)
+

N∑
i=1

L
(
yi,φt

L(xi)Wtxi
)

(10)

where L = max
(
0, 1− yi,φt

L(xi)Wtxi
)
; λw is the weight of the regularization term; and λθ specifies the

amount of space between the region boundary and the nearest data point to be left. λθ′ controls the
curvature amount allowed in the model’s decision boundaries.
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3.2. Decision Jungles

Decision jungles are the latest addition to decision forests. They are comprised of a set of
decision-making acyclic graphs (DAGs). Unlike standard decision trees, the DAG in the decision jungle
enables different paths from root to leaf. A DAG decision has a reduced memory footprint and provides
superior efficiency than a decision tree. Decision jungles are deemed as non-parametric models that
provide integrated feature selection, classification, and are robust in the presence of noisy features.
DAGs have the same structure as decision trees, except that the nodes have multiple parents. DAGs
can limit the memory consumption by specifying a width at each layer in the DAG and potentially help
to reduce overfitting [54]. Considering the nodes set at two consecutive levels of DAGs, Figure 2 shows
that the nodes set consists of child nodes Nc and parent nodes Np. Let θi denote the parameters of
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the split function f for parent node i ε Np. Si denotes the categorized training samples (x, y), where it
reaches node i, and set of samples can be calculated from node i, which travels through its left or right
branches. Given θi and Si, the left and right are computed by SL

i (θi) = ((x, y)ε Si
∣∣∣ f (θi, x) ≤ 0) and

SR
i (θi) = Si/SL

i (θi), respectively. li ε Nc indicates the left outward edge from parental node i ε Np to a
child node, and ri ε Nc denotes the right outward edge. Henceforth, the number of samples reaching
any child node j ε N is given as:

S j({θi}, {li}, {ri}) =

 ∪
i εN

pS .t .li= j
SL

i (θi)

∪
 ∪

i εN
pS .t .ri= j

SR
i (θi)

 (11)
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3.3. CN2 Rule Induction

In this study, rule learning models were also explored for TSP. These models are usually used
for classification and prediction solutions. The CN2 algorithm is a method of classification designed
to induce simple efficiency; “if condition then predicts class,” even in areas where noise may occur.
Inspired by Iterative Dichotomiser 3 (ID3), the original CN2 uses entropy as the function for rule
evaluation; Laplace estimation may be defined as an alternative measure of the rule quality to fix
unpleasant entropy (downward bias), and it is described as follows [67]:

Laplace Estimation (R) =
p + 1

P + n + k
(12)

where ‘p’ represents the number of positive examples in the training set covered by Rule ‘R’; n represents
the number of negative instances covered by R; and ‘k’ is the number of the training classes available
in the training set.

3.4. Multi-Layer Perceptron

The most common ANN model is the multi-layer perceptron (MLP). In MLP, input values are
transformed by activation function f, giving the value as an output from the neuron. The MLP is
made up of various layers including one input layer, one or more hidden layers, and one output
layer. In MLP, parameters such as the number of input variables, number of hidden layers, activation
function, and learning rate play an important role in the design of neural network architecture. The
multi-layer perceptron (MLP) is shown in Figure 3. Neurons have activation functions for both the
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hidden layer and the output layer; neurons receive only the input dataset and have no activation
functions on the input layer. Weights are multiplied with inputs, and are summarized accordingly as;

f (xi) =
n∑

i=1

(wixi) + bias (13)
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Whilst the most commonly applied activation function is logistic function (sigmoid function),
given in following equation:

f (xi) =
1

1 + e−x (14)

4. Study Area

This study was conducted in the city of Beijing, China, which covers an area of 16,410 km2,
and hosts 21.7 million people. Road transportation is an integral part of the city’s routine businesses,
linking most households to workplaces or schools. There are 21,885 km of paved public road in Beijing
(as of June 2016), 982 km of which are classified as highways [68]. According to the Beijing census, the
number of private cars was close to 5.4 million, in addition to 5.3 million other vehicles in different
categories including 330,100 trucks. The Second-Ring Road consists of six percent of the urban space of
Beijing, with clusters of major companies, businesses, and administrative institutions, but generate 30%
of the traffic volume per day [68,69]. Within this perspective, integrated urban planning is becoming
difficult, so much so that 60% of the historical site of the city is lying on the Second Ring Road. Since
the traffic hotspots are concentrated mainly in the center of Beijing, we have chosen an area as the study
area at this location [68,70]. The Second Ring Road is approximately 33 km long including 37 on-ramps
and 53 off-ramps. Figure 4 shows the study area on the Second Ring Road along with other different
ring roads. In this study, a basic freeway segment of the Second Ring (L = 478.5 m) was selected.

Data Collection and Parameters Setting

The first step in preparing the experiment was to develop a microscopic model using VISSIM
(Micro Traffic Simulation Software) to capture all the essential data for the Second Ring Road. When
simulating the field conditions, it is essential to calibrate the driving behavior parameters for the traffic
simulator, and this was accomplished by standard procedures, as reported in the existing work [71].
In doing so, several simulation iterations were performed, incurring a different random seed to ensure
that the model works under the real-time scenario. The proposed methodology for the present study is
presented in Figure 5.
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In this study, macroscopic traffic parameters (volume, speed, density) were obtained from the
VISSIM simulation analysis. Traffic volume or flow rate can be defined as the number of vehicles
that pass through a point on a highway or lane at a specific time, and is usually expressed in units of
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vehicles per hour per lane (v/h/l), while density is referred to the number of vehicles occupying a unit
length of roadway, and is denoted by vehicles per km/mile per lane (v/m/ln). Occupancy is sometimes
synonymously used with density; however, it should be noted that it shows the percentage of time
that a road segment is occupied by vehicles. Traffic speed is another important state parameter, and
can be found by the distance traversed per unit of time, and is typically expressed in km/h. or miles/h.
These parameters are further calculated by using the link evaluation in VISSIM. Once the factual
freeway architecture is achieved, the key macroscopic characteristics are identified in order to adjust
the entire microscopic simulator (e.g., demand flow and split ratio). Demand flow is defined as the
traffic volume as it utilizes the facility, while split ratio is the directional hourly volume (DHV) in the
peak direction, which varies with respect to time, that is, the peak time and off-peak time. Additionally,
the real traffic state of the Second Ring Road in this study was obtained from the Beijing Collaborative
Innovation Center for Metropolitan Transportation. Thereby, the model of the road network deemed
for the Second Ring Road was constructed by VISSIM. It has three lanes, where each lane is designated
with an average width of 3.75 m, as shown in Figure 6. Simulations in the VISSIM were carried for 6 h,
during the period 6:00 am to 12:00 pm, and a congested regime prevailed from 1.5 to 2 h (i.e., between
7:30 am to 9:30 am), leveraging the almost free flow for the remaining hours. Therefore, the transition
state from D to F encountered few labels. Meanwhile, data were collected using different prediction
horizons such as 5, 10, and 15 min.
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words on map indicate names of surrounding infrastructure.

To assess the freeway operations, level-of-service (LOS), a commonly used performance indicator,
was used for qualitative evaluation purposes. The data collected from the VISSIM simulation was
further divided into six levels [72], wherein the LOS defines the traffic state of each level. Traffic state
is usually characterized by traffic-density on a given link, and is directly related with the number of
vehicles occupying the roadway segment. It also represents the transient boundary conditions between
two LOS levels. Moreover, to test the efficacy, classification models were built in python scripting
orange software and azure machine learning to write the required procedures for extracting the traffic
parameters, and level-of-service corresponded to highway capacity manual (HCM) [43,73]. The data
points (in Figure 7) represent different points in time distributed spatially, which together define the
LOS at the road segment. In the mentioned figure, different colors showed the states for 15 min, which
is actually the LOS divided into six sub-levels based on density along the highway segment. We termed
these levels as different states (from A to F) and further evaluated them for 5, 10, and 15 min intervals.
Since stratified K-fold cross validation was opted to address the issue of imbalance data, the method
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aimed to choose the proportionate frequencies for each LOS class. Thus, it is likely that label D or any
other label will be associated with true representative class. The actual density–flow captured on a
segment of the Second Ring was simulated in VISSIM for a prediction horizon of 15 min and is shown
in Figure 7.
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5. Results and Discussion

5.1. K-Fold Cross-Validation

We selected the K-Fold cross-validation method (using k = 10), which is used for a better f-model,
and it provides the appropriate settings for parameters. The original instances were randomly split
into k equal parts. A single part was used for validation from the k split, and the remaining k minus
one (k − 1) parts were used for the training set in order to develop the model. To do so, we revised the
same technique k times. Each time a distinct validation dataset was selected, until the model’s final
accuracy was equal to the average accuracy, that in turn, was achieved in each iteration. This technique
has the advantage over repeated random sub-sampling as all the samples are used for training as well
as in the validation, where each sample is used once for the validation. To avoid the problems of data
imbalance and enhance the prediction accuracy of the proposed methods, several strategies have been
suggested by previous studies. In this study, K-fold cross validation was used to overcome the issues
and bias associated with imbalance and small datasets as the K-fold validation method is more efficient
and robust compared to other conventional techniques, since it preserves the percentage of samples for
each group or class. We tuned the parameters to obtain the best results with accuracy and they were
selected using hyperparameter tuning.

5.2. Model Evaluation

In this study, we selected the most common evaluation metrics in order to assess the performances
of the models known as F score and Accuracy. The F score is a measure of the accuracy of a test, also
known as the F-1 score or F measure. The F− 1 score is defined as the weighted average of recall and
precision. To measure the overall performances of the model, the F-1 score was derived as follows:

F− 1 = 2×
Precison × recall
Precison + recall

(15)
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Accuracy is one of the classifications’ performance measures, which is defined as the ratio of the
correct sample to the total number of samples as follows [74],

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

where P and N denote the number of positive and negative samples, respectively. TP and TN indicate
the true positive and true negative. FP and FN indicate the false positive and false negative, respectively.

5.3. Local Deep Kernel Learning SVM (LD-SVM)

The tuning parameters include LD-SVM tree depth, Lambda W, Lambda theta, Lambda theta
prime, number of iterations, and sigmoid sharpness or sigma. Figure 8a shows the LD-SVM tree depth
impact on accuracy and 92.00% accuracy was achieved when the tree depth was 3. The impact of the
other parameters, Lambda W, Lambda theta, Lambda theta prime, number of iterations, and sigmoid
sharpness or sigma, can be seen in Figure 8c. The best hyperparameter tuned values for these
parameters were 0.00052, 0.34587, 0.1025, 49,247, and 0.0068, which were encircled and obtained using
10-fold cross-validation. Figure 8b shows the predicted state for the next 15 min
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5.4. Decision Jungle

The tuning parameters in the decision jungle model were described by the maximum depth of
the decision (DAGs), number of decision DAGs, number of optimization steps per decision, DAGs
layer, and maximum width of the decision DAGs’. Figure 9b shows the impact of the maximum
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depth of decision DAGs on the accuracy of the model. The accuracy was 92% and was achieved when
the maximum depth of the decision (DAGs) was 77. The best-tuned values for the other parameters
are depicted in Figure 9c (such as the number of decisions DAGs, number of optimization steps per
decision, and maximum width of decision DAGs’ were 22, 5786, and 19, respectively), and were
obtained using 10-fold cross-validation. Since, our study considered 15 min prediction horizons as the
structure of DAG is illustrated in Figure 9d, which shows the number of DAGs is 22 with a maximum
depth of levels 77. The predicted state for 15 min horizons can be seen in Figure 9a.
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5.5. CN2 Rule Induction

CN2 utilizes a statistical significance test in order to ensure that the fresh rule represents a
real correlation between features and classes. In fact, it is a pre-pruning technique that prevents
particular rules after their implementation. Moreover, it performs a sequential covering approach at
the upper stage (also defined as split-and-conquer or cover-and-remove), once used by the algorithm
quasi-optimal (AQ) algorithm. The CN2 rule returns a class distribution in terms of the number
of examples covered and distributed over classes. The distribution in Table 1 and the tables in the
Appendix show that each number corresponded to the number of example(s) that belonged to class
LOS = i, where i = {A, B, C, D, E, F} and “i” is the observed frequency distribution of examples between
different classes. In another words, it represents number of the relevant class membership. The derived
probabilities shown in Table 1 can be used to check the accuracy and efficiency of that particular rule.
We adopted exclusive coverage in our implementation at the upper level such as unordered CN2 [62],
whereas Laplace estimation was used for function evaluation at the lower level. Pre-pruning of rules
was performed using two methods: (i) likelihood ratio statistic (LRS) tests, and (ii) minimum threshold
for coverage of rules. The LRS test indicates two tests: first, a rule’s minimum level of significance α1,
and the second LRS test is likened to its parent rule, as it checks whether the last rule specialization has
a sufficient level of significance α2. The values for the LRS tests and rules for the different prediction
horizons were obtained using 10-fold cross-validation. Figure 10 shows the predicted state for 15 min
intervals. The values of α1 and α2 are listed in Table 2. The rule for the next 5 min and 10 min horizons
is given in Appendix A, whilst the rule for the next 15 min horizons is given in Table 1.

Table 1. Selected rules (for 15-min prediction horizon) with rule quality.

IF Condition Then
(Next State) Distribution Probabilities [%] Rule

Quality
Rule

Length

Time (Seconds) ≤ 13500.0 AND Speed
(Km/h) ≥ 117.83 A [8, 0, 0, 0, 0, 0] 6: 4: 7: 7: 7: 7 0.903 2

Speed (Km/h) ≥ 88.43 AND Volume
(Veh./h/lane) ≥ 723.35 B [0, 45, 0, 0, 0, 0] 2: 90: 2: 2: 2: 2 0.98 2

Time (Seconds)≤9000.0 AND Density
(Veh/Km/lane) ≥ 11.54 C [0, 0, 3, 0, 0, 0] 11: 11: 44: 11: 11: 11 0.805 2

Density (Veh/Km/lane) ≤ 22.19 AND
Density (Veh/Km/lane) ≥ 17.85 D [0, 0, 0, 4, 1, 0] 9: 9: 9: 45: 18: 9 0.715 2

Speed (Km/h) ≥ 36.91 AND Density
(Veh/Km/lane) ≥ 22.19 E [0, 0, 0, 0, 3, 0] 11: 11: 11: 11: 44: 11 0.805 2

Density (Veh/Km/lane) ≥ 32.09 F [0, 0, 0, 0, 0, 4] 10: 10: 10: 10: 10: 50 0.855 1
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Table 2. CN2 rule setting parameter values.

Time Intervals (min) α1 α2

5 0.05 0.03

10 0.05 0.02

15 0.05 0.03

5.6. Multi-Layer Perceptron (MLP)

In neural networks, learning includes adjusting the connection weights between neurons and each
functional neuron’s threshold. We considered one input layer and one hidden layer with 35 neurons.
The input layer had four nodes: speed, density, flow, and time duration (interval). The accuracy
achieved using 10-fold cross-validation for different prediction horizons was compared (shown in
Table 3) against the learning rate, momentum, activation function, and epochs. Figure 11a shows the
predicted state for the next 15 min horizons. The input layer, hidden layers with neurons, and output
layers for the MLP network are depicted in Figure 11b.

Table 3. Configuration of the parameters for the multi-layer perceptron (MLP).

Prediction
Horizons Algorithm Hidden

Layers
Hidden
Neurons

Activation
Function Epochs Learning

Rate Momentum Accuracy

5 min MLP 01 35 Sigmoid 500 0.2 0.2 0.949

10 min MLP 01 35 Sigmoid 500 0.2 0.2 0.924

15 min MLP 01 35 Sigmoid 500 0.3 0.2 0.875
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6. Model Comparison

The weighted average F-1 score and accuracy were evaluated in order to assess the performances
of different models. The results suggest that decision jungles outperformed the LD-SVM, CN2, and
MLP, as shown in Figure 12. Additionally, the decision jungles and LD-SVM achieved a higher
weighted average F-1 score. In particular, the decision jungle was found to have improved results
over the LD-SVM, CN2, and MLP, and obtained high F-1 scores of 0.9777, 0.952, and 0.915 were
predicated for time horizons of 15, 10, and 5 min, respectively. Similarly, the LD-SVM was slightly
better than the MLP and CN2 as the F1-score was higher (0.904, 0.926, 0.946) for the 15, 10, and 5 min
prediction horizons. However, the CN2 rule induction performed better, except for decision jungles,
while the other models failed to achieve a higher F–1 score for the same prediction horizon. On the
other hand, Figure 13a,b shows that decision jungles and LD-SVM also achieved higher accuracy when
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compared to the remaining models such as CN2 rule induction and MLP. It can be noted that as the
prediction horizons increases, the F-1 score and accuracy decreases. This indicates that decision jungles
were stable when compared to the results in accordance with time horizons of 15, 10, and 5. Unlike
the LD-SVM, MLP and CN2 were found to be less effective at maintaining the stability of accuracy
in different time horizons. However, the CN2 rule induction in Figure 13c,d) performed well and
provided stable results only for the 10, and 15 min prediction horizons.
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Figure 12. Model comparison. Weighted average F-1 score for decision jungles; weighted average
F-1 score for LD-SVM; weighted average F-1 score for MLP; weighted average F-1 score for CN2
rule induction.

The experimental results are summarized in Tables 4 and 5, where the models’ performances
were computed using F-1 score and the average accuracy for different prediction horizons, respectively.
It can be clearly seen that decision jungles achieved a higher F-1 score and gained a higher accuracy
when compared to the other models for different prediction horizons. This shows that decision jungles
achieved an average improvement of 95% and outperformed the remaining models. However, the
LD-SVM performed better than the MLP and CN2 rule induction.

Table 4. F-1 score for the different model comparisons.

F-1 Score
Prediction Horizons (min)

5 10 15

Decision Jungle 0.976683061 0.951784174 0.915209941

LD-SVM 0.946083305 0.926083351 0.904265873

MLP 0.949 0.926 0.879

CN2 Rule Induction 0.92 0.91 0.910

Table 5. Accuracy for different models comparisons.

Accuracy Prediction Horizons (min)

5 10 15

Decision Jungle 0.992212 0.984277 0.972222

LD-SVM 0.982866 0.974843 0.967593

MLP 0.983262872 0.973 0.9577

CN2 Rule Induction 0.975 0.97183 0.9581
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7. Conclusions

In this study, we improvised machine learning models with hyperparameter tuning optimization
for short term TSP. Different schemes offered in parameter tuning were examined by performing the
number of simulation iterations incurring different random seeds to ensure that the model worked
efficiently under a real-time scenario. To do so, a comprehensive demonstration and the ability of
different machine learning models were evaluated using different forecasting time-intervals at distinct
time scales. The short-term traffic state was taken as a function of level-of-service (LOS) on a basic
freeway segment along Second Ring Road in Beijing, China. Simulation of a transportation road
demonstrated that decision jungles were more efficient and stable at different predicted horizons
(time intervals) than the LD-SVM, MLP, and CN2 rule induction. Data utilized in this study was
collected from traffic simulator VISSIM. Actual density–flow was captured on freeway segment via
different prediction horizons of 15, 10, and 5 min. The experimental results showed and demonstrated
the superior and robust performance of decision jungles compared to the LD-SVM, CN2 rule induction,
and MLP. The overall performance of prediction results were improved by over 95 percent on average,
which led to an accuracy of 0.982 and 0.975 for the decision jungle and LD-SVM. Moreover, the
prediction performance for CN2 rule induction were also observed to be improved based on if–then
rules in terms of the traffic patterns for different prediction horizons.

This study has some limitations that must be acknowledged. First, the proposed study was
deployed in a developed urban freeway network model, so the simulated data need to be enhanced in
future studies. Second, instead of justifying the efficacy of the suggested techniques using microscopic
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simulation platform via VISSIM, forthcoming studies may focus on investigating and verifying the
performance of proposed methods with an improved model on real traffic data.

In the future, studies may focus on long-term traffic state prediction (hours, days, weeks),
which could also be divided into different LOS groups. The study area can be extended from the basic
freeway segment to weaving, merging, and diverging segments that cover the entire network range of
the Second Ring Road. Studies could incorporate temperature, air quality, weather, and other external
factors that are likely to affect travel demand, thus, enhance prediction accuracy. In addition, it could
rely on considering larger and various types of traffic datasets to analyze various combinations of flow,
occupancy, speed, and other characteristics of road traffic to improve the predictive accuracy by using
improved machine learning methods for prediction and analytics.
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Appendix A

Table A1. If–then rules for the next 5-min horizon.

IF Conditions THEN
(Next State) Distribution Probabilities [%] Rule

Quality
Rule

Length

Density (Veh/Km/lane) ≤ 7.03 A [95, 1, 0, 0, 0, 0] 94: 2: 1: 1: 1: 1 0.98 1

Speed (Km/hr) ≥ 105.65 AND Volume
(veh/h/lane) ≥ 847.03 B [0, 38, 0, 0, 0, 0] 2: 89: 2: 2: 2: 2 0.975 2

Density (Veh/Km/lane) ≥ 7.03 AND
Speed (Km/h) ≥ 85.03 B [0, 39, 1, 0, 0, 0] 2: 87: 4: 2: 2: 2 0.952 2

Density (Veh/Km/lane) ≥ 11.45 AND
Speed (Km/h) ≥ 64.05 C [0, 0, 9, 0, 0, 0] 7: 7: 67: 7: 7: 7 0.909 2

Density (Veh/Km/lane)≤ 22.26 AND
Density (Veh/Km/lane) ≥ 16.84 D [0, 0, 0, 7, 1, 0] 7: 7: 7: 57: 14: 7 0.8 2

Speed (Km/h) ≥ 37.3 AND Density
(Veh/Km/lane) ≥ 22.26 E [0, 0, 0, 0, 3, 0] 11: 11: 11: 11: 44: 11 0.8 2

Density (Veh/Km/lane) ≥ 29.64 F [0, 0, 0, 0, 0, 19] 4: 4: 4: 4: 4: 80 0.952 1

Table A2. If–then rules for the next 10-min horizon.

IF Conditions THEN
(Next State) Distribution Probabilities [%] Rule

Quality
Rule

Length

Time (Seconds) ≤ 8400.0 AND Speed
(Km/h) ≥ 118.5 A [14, 0, 0, 0, 0, 0] 75: 5: 5: 5: 5: 5 0.938 2

Density (Veh/Km/lane) ≥ 6.04 A [7, 1, 0, 0, 0, 0] 57: 14: 7: 7: 7: 7 0.8 1

Speed (Km/h) ≥ 87.12 AND Density
(Veh/Km/lane) ≥ 6.04 B [0, 56, 0, 0, 0, 0] 2: 92: 2: 2: 2: 2 0.983 2

Density (Veh/Km/lane) ≤ 16.59 AND
Density (Veh/Km/lane) ≥ 11.01 C [0, 0, 12, 1, 0, 0] 5: 5: 68: 11: 5: 5 0.867 2

Density (Veh/Km/lane) ≤ 23.65 AND
Density (Veh/Km/lane) ≥ 16.59 D [0, 0, 0, 6, 1, 0] 8: 8: 8: 54: 15: 8 0.778 2

Speed (Km/h) ≥ 43.9 AND Density
(Veh/Km/lane) ≥ 23.65 E [0, 0, 0, 0, 2, 0] 12: 12: 12: 12: 38: 12 0.75 2

Density (Veh/Km/lane) ≥ 28.42 F [0, 0, 0, 0, 0, 7] 8: 8 :8 :8 :8 :62 0.889 1
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