Atmospheric Micro and Nanoplastics: An Enormous Microscopic Problem
Abstract
:1. Introduction
2. Discussion
2.1. The Plastic Cycle
2.2. Critical Review on Sampling Methodology and Analysis
2.2.1. Sampling
2.2.2. Purification
2.2.3. Analysis
2.3. Occurrence of Microplastics in the Atmospheric Deposition
2.4. Microplastics Degradation
2.5. Smaller the Size, Higher the Occurrence? Nanoplastics
3. Conclusions and Environmental Implications
Author Contributions
Funding
Conflicts of Interest
References
- PlasticsEurope. Plastics the Facts—2019; PlasticsEurope: Brussels, Belgium, 2020. [Google Scholar]
- Li, W.C.; Tse, H.F.; Fok, L. Plastic waste in the marine environment: A review of sources, occurrence and effects. Sci. Total Environ. 2016, 566–567, 333–349. [Google Scholar] [CrossRef] [PubMed]
- Merrell, T.R. Accumulation of plastic litter on beaches of Amchitka Island, Alaska. Mar. Environ. Res. 1980, 3, 171–184. [Google Scholar] [CrossRef]
- Scott, P.G. Plastics packaging and coastal pollution. Int. J. Environ. Stud. 1972, 3, 35–36. [Google Scholar] [CrossRef]
- Cundell, A.M. Plastics in the marine environment. Environ. Conserv. 1974, 1, 63–68. [Google Scholar] [CrossRef]
- Costa, M.F.; Pinto da Costa, J.; Duarte, A.C. “Sampling of micro(nano)plastics in environmental compartments: How to define standard procedures?”. Curr. Opin. Environ. Sci. Health 2018, 1, 36–40. [Google Scholar] [CrossRef]
- Frias, J.; Nash, R. Microplastics: Finding a consensus on the definition. Mar. Poll. Bull. 2019, 138, 145–147. [Google Scholar] [CrossRef]
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are we speaking the same language? recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef] [Green Version]
- Kershaw, P.; Rochman, C. Sources, fate and effects of microplastics in the marine environment: Part 2 of a global assessment. In Reports and Studies-IMO/FAO/Unesco-IOC/WMO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) Eng No. 93; International Maritime Organization: London, UK, 2015. [Google Scholar]
- Hernandez, L.M.; Yousefi, N.; Tufenkji, N. Are there nanoplastics in your personal care products? Environ. Sci. Technol. Lett. 2017, 4, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Alimi, O.S.; Farner Budarz, J.; Hernandez, L.M.; Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada. Microbeads—A Science Summary; Department of the Environment: Gatineau, QC, Canada, 2015.
- Kooi, M.; Reisser, J.; Slat, B.; Ferrari, F.F.; Schmid, M.S.; Cunsolo, S.; Brambini, R.; Noble, K.; Sirks, L.-A.; Linders, T.E. The effect of particle properties on the depth profile of buoyant plastics in the ocean. Sci. Rep. 2016, 6, 33882. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Huang, J.; Zheng, Y.; Yang, Y.; Zhang, Y.; He, F.; Chen, H.; Quan, G.; Yan, J.; Li, T. Environmental occurrences, fate, and impacts of microplastics. Ecotoxicol. Environ. Saf. 2019, 184, 109612. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, X.; Li, Y.; Powell, T.; Wang, X.; Wang, G.; Zhang, P. Microplastics as contaminants in the soil environment: A mini-review. Sci. Total Environ. 2019, 691, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yang, X.; Chen, L.; Chao, J.; Teng, J.; Wang, Q. Microplastics in soils: A review of possible sources, analytical methods and ecological impacts. J. Chem. Technol. Biotechnol. 2020. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, T.; Kang, S.; Sillanpää, M. Importance of atmospheric transport for microplastics deposited in remote areas. Environ. Pollut. 2019, 254, 112953. [Google Scholar] [CrossRef] [PubMed]
- Anbumani, S.; Kakkar, P. Ecotoxicological effects of microplastics on biota: A review. Environ. Sci. Pollut. Res. 2018, 25, 14373–14396. [Google Scholar] [CrossRef] [PubMed]
- Koelmans, A.A.; Mohamed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef]
- Li, C.; Busquets, R.; Campos, L.C. Assessment of microplastics in freshwater systems: A review. Sci. Total Environ. 2019. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Mirande, C.; Mandin, C.; Guerrouache, M.; Langlois, V.; Tassin, B. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ. Pollut. 2017, 221, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Wang, J.; Peng, J.; Tan, Z.; Zhan, Z.; Tan, X.; Chen, Q. Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: Preliminary research and first evidence. Environ. Sci. Pollut. Res. 2017, 24, 24928–24935. [Google Scholar] [CrossRef]
- Ter Halle, A.; Jeanneau, L.; Martignac, M.; Jardé, E.; Pedrono, B.; Brach, L.; Gigault, J. Nanoplastic in the North Atlantic subtropical gyre. Environ. Sci. Technol. 2017, 51, 13689–13697. [Google Scholar] [CrossRef]
- Lehner, R.; Weder, C.; Petri-Fink, A.; Rothen-Rutishauser, B. Emergence of nanoplastic in the environment and possible impact on human health. Environ. Sci. Technol. 2019, 53, 1748–1765. [Google Scholar] [CrossRef] [PubMed]
- Horton, A.A.; Dixon, S.J. Microplastics: An introduction to environmental transport processes. WIREs Water 2018, 5, e1268. [Google Scholar] [CrossRef] [Green Version]
- Bank, M.S.; Hansson, S.V. The Plastic Cycle: A novel and holistic paradigm for the anthropocene. Environ. Sci. Technol. 2019, 53, 7177–7179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattsson, K.; Jocic, S.; Doverbratt, I.; Hansson, L.-A. Nanoplastics in the aquatic environment. In Microplastic Contamination in Aquatic Environments; Elsevier: Amsterdam, The Netherlands, 2018; pp. 379–399. [Google Scholar] [CrossRef]
- Thibodeaux, L.J. Environmental Chemodynamics: Movement of Chemicals in Air, Water, and Soil, 2nd ed.; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Lagarde, F.; Olivier, O.; Zanella, M.; Daniel, P.; Hiard, S.; Caruso, A. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ. Pollut. 2016, 215, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.; Fischer, E.K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany. Sci. Total Environ. 2019, 685, 96–103. [Google Scholar] [CrossRef]
- Sleiman, M.; de Sainte Claire, P.; Richard, C. Heterogeneous photochemistry of agrochemicals at the leaf surface: A case study of plant activator Acibenzolar-S-methyl. J. Agric. Food Chem. 2017, 65, 7653–7660. [Google Scholar] [CrossRef]
- Scheurer, M.; Bigalke, M. Microplastics in Swiss floodplain soils. Environ. Sci. Technol. 2018, 52, 3591–3598. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Durántez Jiménez, P.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef]
- Bergmann, M.; Mützel, S.; Primpke, S.; Tekman, M.B.; Trachsel, J.; Gerdts, G. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 2019, 5, eaax1157. [Google Scholar] [CrossRef] [Green Version]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar. Poll. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef]
- Dehghani, S.; Moore, F.; Akhbarizadeh, R. Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environ. Sci. Pollut. Res. 2017, 24, 20360–20371. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wang, X.; Fang, T.; Xu, P.; Zhu, L.; Li, D. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Sci. Total Environ. 2019, 675, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.; Keshavarzi, B.; Moore, F.; Delshab, H.; Soltani, N.; Sorooshian, A. Investigation of microrubbers, microplastics and heavy metals in street dust: A study in Bushehr city, Iran. Environ. Earth Sci. 2017, 76, 798. [Google Scholar] [CrossRef]
- Abbasi, S.; Keshavarzi, B.; Moore, F.; Turner, A.; Kelly, F.J.; Dominguez, A.O.; Jaafarzadeh, N. Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environ. Pollut. 2019, 244, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Sommer, F.; Dietze, V.; Baum, A.; Sauer, J.; Gilge, S.; Maschowski, C.; Gieré, R. Tire abrasion as a major source of microplastics in the environment. Aerosol Air Qual. Res. 2018, 18, 2014–2028. [Google Scholar] [CrossRef]
- Rezaei, M.; Riksen, M.J.; Sirjani, E.; Sameni, A.; Geissen, V. Wind erosion as a driver for transport of light density microplastics. Sci. Total Environ. 2019, 669, 273–281. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Liu, K.; Zhu, L.; Song, Z.; Li, D. Atmospheric microplastic over the South China Sea and East Indian Ocean: Abundance, distribution and source. J. Hazard. Mater. 2020, 389, 121846. [Google Scholar] [CrossRef]
- Wright, S.L.; Ulke, J.; Font, A.; Chan, K.L.A.; Kelly, F.J. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ. Int. 2020, 136, 105411. [Google Scholar] [CrossRef]
- Ganguly, M.; Ariya, P.A. Ice nucleation of model nanoplastics and microplastics: A novel synthetic protocol and the influence of particle capping at diverse atmospheric environments. ACS Earth Space Chem. 2019, 3, 1729–1739. [Google Scholar] [CrossRef]
- Brandon, J.; Goldstein, M.; Ohman, M.D. Long-term aging and degradation of microplastic particles: Comparing in situ oceanic and experimental weathering patterns. Mar. Poll. Bull. 2016, 110, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Vicente, J.S.; Gejo, J.L.; Rothenbacher, S.; Sarojiniamma, S.; Gogritchiani, E.; Wörner, M.; Kasper, G.; Braun, A.M. Oxidation of polystyrene aerosols by VUV-photolysis and/or ozone. Photochem. Photobiol. Sci. 2009, 8, 944. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.R.; Mitchell, S.A.; Bradley, R.H. Surface studies of low molecular weight photolysis products from UV-ozone oxidised polystyrene. Surf. Sci. 2005, 581, 169–177. [Google Scholar] [CrossRef]
- Klein, R.J.; Fischer, D.A.; Lenhart, J.L. Systematic oxidation of polystyrene by ultraviolet-ozone, characterized by near-edge X-ray absorption fine structure and contact angle. Langmuir 2008, 24, 8187–8197. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; He, Q.; Wang, C.; Sun, S. Surface modification of polystyrene microsphere using ozone treatment. Ferroelectrics 2018, 530, 130–135. [Google Scholar] [CrossRef]
- Bianco, A.; Sordello, F.; Ehn, M.; Vione, D.; Passananti, M. Degradation of nanoplastics in the environment: Reactivity and impact on atmospheric and surface waters. Sci. Total Environ. 2020. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T. Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends Anal. Chem. 2019, 110, 150–159. [Google Scholar] [CrossRef]
- Stock, F.; Kochleus, C.; Bänsch-Baltruschat, B.; Brennholt, N.; Reifferscheid, G. Sampling techniques and preparation methods for microplastic analyses in the aquatic environment—A review. TrAC Trends Anal. Chem. 2019, 113, 84–92. [Google Scholar] [CrossRef]
- Asmi, A.; Wiedensohler, A.; Laj, P.; Fjaeraa, A.-M.; Sellegri, K.; Birmili, W.; Weingartner, E.; Baltensperger, U.; Zdimal, V.; Zikova, N.; et al. Number size distributions and seasonality of submicron particles in Europe 2008–2009. Atmos. Chem. Phys. 2011, 11, 5505–5538. [Google Scholar] [CrossRef] [Green Version]
- Parshintsev, J.; Ruiz-Jimenez, J.; Petäjä, T.; Hartonen, K.; Kulmala, M.; Riekkola, M.-L. Comparison of quartz and Teflon filters for simultaneous collection of size-separated ultrafine aerosol particles and gas-phase zero samples. Anal. Bioanal. Chem. 2011, 400, 3527–3535. [Google Scholar] [CrossRef]
- Liu, K.; Wu, T.; Wang, X.; Song, Z.; Zong, C.; Wei, N.; Li, D. Consistent transport of terrestrial microplastics to the ocean through atmosphere. Environ. Sci. Technol. 2019, 53, 10612–10619. [Google Scholar] [CrossRef]
- Prata, J.C.; Castro, J.L.; da Costa, J.P.; Duarte, A.C.; Cerqueira, M.; Rocha-Santos, T. An easy method for processing and identification of natural and synthetic microfibers and microplastics in indoor and outdoor air. MethodsX 2020, 7, 100762. [Google Scholar] [CrossRef] [PubMed]
- Eisentraut, P.; Dümichen, E.; Ruhl, A.S.; Jekel, M.; Albrecht, M.; Gehde, M.; Braun, U. Two birds with one stone—Fast and simultaneous analysis of microplastics: Microparticles derived from thermoplastics and tire wear. Environ. Sci. Technol. Lett. 2018, 5, 608–613. [Google Scholar] [CrossRef]
- Hermabessiere, L.; Himber, C.; Boricaud, B.; Kazour, M.; Amara, R.; Cassone, A.-L.; Laurentie, M.; Paul-Pont, I.; Soudant, P.; Dehaut, A.; et al. Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics. Anal. Bioanal. Chem. 2018, 410, 6663–6676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kühn, S.; van Oyen, A.; Booth, A.M.; Meijboom, A.; van Franeker, J.A. Marine microplastic: Preparation of relevant test materials for laboratory assessment of ecosystem impacts. Chemosphere 2018, 213, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.R.; Horgen, F.D.; Orski, S.V.; Rodriguez, C.V.; Beers, K.L.; Balazs, G.H.; Jones, T.T.; Work, T.M.; Brignac, K.C.; Royer, S.-J.; et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar. Poll. Bull. 2018, 127, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Käppler, A.; Fischer, M.; Scholz-Böttcher, B.M.; Oberbeckmann, S.; Labrenz, M.; Fischer, D.; Eichhorn, K.-J.; Voit, B. Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sedimnts. Anal. Bioanal. Chem 2018, 410, 5313–5327. [Google Scholar] [CrossRef]
- Chen, G.; Feng, Q.; Wang, J. Mini-review of microplastics in the atmosphere and their risks to humans. Sci. Total Environ. 2020, 703, 135504. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Allen, S.; Allen, D.; Gao, T.; Sillanpää, M. Atmospheric microplastics: A review on current status and perspectives. Earth-Sci. Rev. 2020, 203, 103118. [Google Scholar] [CrossRef]
- Peeken, I.; Primpke, S.; Beyer, B.; Gütermann, J.; Katlein, C.; Krumpen, T.; Bergmann, M.; Hehemann, L.; Gerdts, G. Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Su, J.; Xiong, X.; Wu, X.; Wu, C.; Liu, J. Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China. Environ. Pollut. 2016, 219, 450–455. [Google Scholar] [CrossRef]
- Jiang, C.; Yin, L.; Li, Z.; Wen, X.; Luo, X.; Hu, S.; Yang, H.; Long, Y.; Deng, B.; Huang, L. Microplastic pollution in the rivers of the Tibet Plateau. Environ. Pollut. 2019, 249, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Evangeliou, N.; Grythe, H.; Klimont, Z.; Heyes, C.; Eckhardt, S.; Lopez-Aparicio, S.; Stohl, A. Atmospheric transport is a major pathway of microplastics to remote regions. Nat. Commun. 2020, 11, 3381. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Tian, C.; Luo, Y. Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere. Chin. Sci. Bull. 2017, 62, 3902–3909. [Google Scholar] [CrossRef] [Green Version]
- Stanton, T.; Johnson, M.; Nathanail, P.; MacNaughtan, W.; Gomes, R.L. Freshwater and airborne textile fibre populations are dominated by ‘natural’, not microplastic, fibres. Sci. Total Environ. 2019, 666, 377–389. [Google Scholar] [CrossRef] [PubMed]
- El Hadri, H.; Gigault, J.; Maxit, B.; Grassl, B.; Reynaud, S. Nanoplastic from mechanically degraded primary and secondary microplastics for environmental assessments. NanoImpact 2020, 17, 100206. [Google Scholar] [CrossRef]
- da Costa, J.P.; Santos, P.S.; Duarte, A.C.; Rocha-Santos, T. (Nano) plastics in the environment–sources, fates and effects. Sci. Total Environ. 2016, 566, 15–26. [Google Scholar] [CrossRef]
- Dawson, A.L.; Kawaguchi, S.; King, C.K.; Townsend, K.A.; King, R.; Huston, W.M.; Nash, S.M.B. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 2018, 9, 1001. [Google Scholar] [CrossRef]
- Lambert, S.; Sinclair, C.J.; Bradley, E.L.; Boxall, A.B. Effects of environmental conditions on latex degradation in aquatic systems. Sci. Total Environ. 2013, 447, 225–234. [Google Scholar] [CrossRef]
- Gomiero, A. Plastics in the Environment; IntechOpen: London, UK, 2019. [Google Scholar]
- Gewert, B.; Plassmann, M.M.; MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts 2015, 17, 1513–1521. [Google Scholar] [CrossRef] [Green Version]
- Hurley, R.R.; Nizzetto, L. Fate and occurrence of micro(nano)plastics in soils: Knowledge gaps and possible risks. Curr. Opin. Environ. Sci. Health 2018, 1, 6–11. [Google Scholar] [CrossRef]
- Oberbeckmann, S.; Löder, M.G.J.; Labrenz, M. Marine microplastic-associated biofilms—A review. Environ. Chem. 2015, 12, 551–562. [Google Scholar] [CrossRef]
- Levin, P.A.; Angert, E.R. Small but mighty: Cell size and bacteria. CSH Perspect. Biol. 2015, 7, a019216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadare, O.O.; Wan, B.; Guo, L.-H.; Xin, Y.; Qin, W.; Yang, Y. Humic acid alleviates the toxicity of polystyrene nanoplastic particles to Daphnia Magna. Environ. Sci. Nano 2019, 6, 1466–1477. [Google Scholar] [CrossRef]
- Nasser, F.; Lynch, I. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna. J. Proteom. 2016, 137, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, J.; Stoll, S.; Slaveykova, V.I. Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton. Environ. Pollut. 2019, 252, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-S.; Le, C.; Chiu, M.-H.; Chin, W.-C. The impact of nanoplastics on marine dissolved organic matter assembly. Sci. Total Environ. 2018, 634, 316–320. [Google Scholar] [CrossRef]
- Gateuille, D.; Dusaucy, J.; Gillet, F.; Gaspéri, J.; Dris, R.; Tourreau, G.; Naffrechoux, E. Microplastic Contamination in Remote Alpine Lakes; EGU, Sharing geoscience online: Vienna, Austria, 2020. [Google Scholar] [CrossRef]
Spectroscopic Techniques | Spectrometric Techniques | ||
---|---|---|---|
pros | cons | pros | cons |
not destructive | are destructive | ||
size limited (>20 µm) | the analysis is independent of the shape and size of the particle/fiber | detection depends on the particle/fiber mass | |
require sample purification and sample handling | sample preparation and handling are limited | ||
need only few minutes for the acquisition of the signal | require a longer acquisition (~30 to 100 min) | ||
organic additives can perturb the analysis | organic additives can be analyzed simultaneously | ||
inorganic contaminations do not disturb | |||
Sampling Site | Reference | Method | Shape | Abundance | Size (µm) | Composition | |
---|---|---|---|---|---|---|---|
Urban | Paris, France | [35] | Stereomicroscope + µFT-IR | Fragments (10%) | 2.1–355.4 (# m−2 d−1) | 200–1400 | Natural fibers, industrially modified natural polymers, PET, PA |
Fibers (90%) | |||||||
Urban | Hamburg, Germany | [30] | µRaman | Fragments (90%) | 136.5–512.0 (# m−2 d−1) | 63–300 | PE, EVAC, PTFE, PVA |
Fibers (10%) | |||||||
Urban | Dongguan, China | [22] | Stereomicroscope + µFT-IR | Fibers (80%) | 175–313 (# m−2 d−1) | 200–700 | PE, PP, PS |
Foam | |||||||
Films | |||||||
Urban | Shanghai, China | [37] | Stereomicroscope + µFT-IR | Fibers (67%) | 1.42 ± 1.42 (# m−3) | 23–500 | PET, PE, PES, PAN, PAA |
Fragments (30%) | |||||||
Granules (3%) | |||||||
Urban | Yantai, China | [68] | Stereomicroscope + µFT-IR | Fibers (95%) | 115–602 (# m−2 d−1) | <500 | PET, PVC, PE, PS |
Foam and films | 40 (# m−2 d−1) | ||||||
Urban | Nottingham, UK | [69] | Stereomicroscope + ATR-FTIR | Fibers | 0–31 (# m−2 d−1) | 38–5000 | Acrylic, PA, PES, PP |
Remote | Pyrenees mountains | [33] | Stereomicroscope + µRaman | Fragments (68%) | 249 (# m−2 d−1) | <50 | PS, PE, PP, PVC, PET |
Films (20%) | 73 (# m−2 d−1) | 50–150 | |||||
Fibers (12%) | 44 (# m−2 d−1) | 100–300 | |||||
Remote | Artic snow | [34] | µRaman + µFT-IR | Fragments | 1.76 × 103 (# L−1) | <100 | Varnish, nitrile rubber, PE |
Fibers | 1.38 × 103 (# L−1) | 65–14,000 | |||||
Remote | European snow | [34] | µRaman + µFT-IR | Fragments | 24.6 × 103 (# L−1) | <100 | Varnish, nitrile rubber, PE |
Fibers | 1.43 × 103 (# L−1) | 65–14,000 | |||||
Remote | West Pacific Ocean | [55] | Stereomicroscope + µFT-IR | Fibers | 0–1.37 (# m−3) | 16–2087 μm | PET, PE, PP |
Fragments | 142 ± 99 μm | ||||||
Granules | 94 ± 33 μm | ||||||
Microbeads | 39 ± 22 μm | ||||||
Remote | Karimata Strait | [42] | Stereomicroscope + µFT-IR | Fibers | 0–0.08 (# 100 m−3) | 382 | PET, PP, PA, PEP, PAN, PR |
Pearl River Estuary | Fibers | 3–7.7 (# 100 m−3) | 288–1118 | ||||
East Indian Ocean | Fibers (80%), fragments | 0–0.8 (# 100 m−3) | 59–988 | ||||
South China Sea | Fibers (80%), fragments | 0–3.1 (# 100 m−3) | 286–1862 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianco, A.; Passananti, M. Atmospheric Micro and Nanoplastics: An Enormous Microscopic Problem. Sustainability 2020, 12, 7327. https://doi.org/10.3390/su12187327
Bianco A, Passananti M. Atmospheric Micro and Nanoplastics: An Enormous Microscopic Problem. Sustainability. 2020; 12(18):7327. https://doi.org/10.3390/su12187327
Chicago/Turabian StyleBianco, Angelica, and Monica Passananti. 2020. "Atmospheric Micro and Nanoplastics: An Enormous Microscopic Problem" Sustainability 12, no. 18: 7327. https://doi.org/10.3390/su12187327
APA StyleBianco, A., & Passananti, M. (2020). Atmospheric Micro and Nanoplastics: An Enormous Microscopic Problem. Sustainability, 12(18), 7327. https://doi.org/10.3390/su12187327