Implications of Low Carbon City Sustainability Strategies for 2050
Abstract
:1. Introduction
- What is the sustainability performance of the cities of the two scenarios compared to the year 2007?
- How do the GHG emissions compare using PBA and CBA for each of the cities?
- What are the potential land-use changes under both scenarios and what are the implications?
- What are the cost implications for health from investing in renewable energy and energy efficiency?
2. Materials and Methods
2.1. Background and Overview
- Semi-quantitative sustainability assessment based on key performance indicators (KPIs).
- Quantification of GHG emissions using PBA and CBA.
- Land-use changes.
- Simplified cost–benefit analysis.
2.2. The City Model Framework
2.3. Semi-Quantitative KPI Sustainability Assessment
2.4. Quantification of GHG Emissions Using PBA and CBA
2.4.1. Production-Based Accounting
2.4.2. Consumption-Based Accounting
2.4.3. Modelling of BAU and PC2050
2.5. Land-Use Changes
2.6. Socio-Economic Analysis
- Costs of investment in (a) renewable energy and (b) renovation of buildings for improved energy efficiency.
- Benefits (economic savings) from reduced premature deaths compared to the baseline year as a result of reduced air pollution.
- Benefits (economic savings) from reduced energy expenditure.
- Benefits—the number of jobs created from renewable energy and renovation of buildings.
2.6.1. Investment in Renewable Energy and Building Renovation
2.6.2. Reduced Premature Deaths from Air Pollution Reduction
2.6.3. Changes in Energy Expenditure
2.6.4. Number of Jobs Created from Renewable Energy and Building Renovation
3. Results
3.1. Extrapolation of City Model Components
3.2. Semi-Quantitative Analysis of Key Performance Indicators
3.3. GHG Emissions
3.4. Land-Use Changes
3.5. Socio-Economic Analysis
3.5.1. Cost Benefit Analysis
3.5.2. Reduced Energy Use and Expenditure
3.5.3. Number of Jobs Created
4. Discussion
4.1. Semi-Quantitative Analysis of KPIs
4.2. GHG Accounting
4.3. Ecosystem Services—Land-Use Changes
4.4. Socio-Economic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2014 Revision, Highlights; ST/ESA/SER.A/352; United Nations: New York, NY, USA, 2014. [Google Scholar]
- UN Habitat, Climate Change. 2016. Available online: https://unhabitat.org/urban-themes/climatechange/ (accessed on 1 December 2018).
- Gouldson, A.; Colenbrander, S.; Sudmant, A.; Godfrey, N.; Millward-Hopkins, J.; Fang, W.; Zhao, X. Accelerating Low-Carbon Development in the World’s Cities. A New Climate Economy Contributing Paper for Seizing the Global Opportunity: Partnerships for Better Growth and a Better Climate; NCE: London, UK; Washington, DC, USA, 2015; Available online: https://newclimateeconomy.report/2015/wp-content/uploads/sites/3/2015/09/NCE2015_workingpaper_cities_final_web.pdf (accessed on 22 October 2018).
- C40 Cities. Consumption Based GHG Emissions of C40 Cities; 2018; Available online: https://www.c40.org/researches/consumption-based-emissions (accessed on 22 October 2018).
- Covenant of Mayors for Climate & Energy. 2016. Available online: https://www.covenantofmayors.eu/en/ (accessed on 22 October 2018).
- Euopean Environmental Agency. European Union CO2 Emissions: Different Accounting Perspectives; European Environment Agency, Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Mi, Z.; Zheng, J.; Zheng, H.; Zheng, H.; Li, X.; Coffman, D.; Woltjer, J.; Wang, S.; Guan, D. Carbon emissions of cities from a consumption-based perspective. Appl. Energy 2019, 235, 509–518. [Google Scholar] [CrossRef] [Green Version]
- Sudmant, A.; Gouldson, A.; Millward-Hopkins, J.; Scott, K.; Barrett, J. Producer cities and consumer cities: Using production- and consumption-based carbon accounts to guide climate action in China, the UK, and the US. J. Clean. Prod. 2018, 176, 654–662. [Google Scholar] [CrossRef]
- Harris, S.; Weinzettel, J.; Bigano, A.; Källmén, A. Low carbon cities in 2050? GHG emissions of European cities using production-based and consumption-based emission accounting methods. J. Clean. Prod. 2020, 248, 119206. [Google Scholar] [CrossRef]
- Feng, K.; Hubacek, K.; Sun, L.; Liu, Z. Consumption-based CO2 accounting of China’s megacities: The case of Beijing, Tianjin, Shanghai and Chongqing. Ecol. Ind. 2014, 47, 26–31. [Google Scholar] [CrossRef]
- Chen, G.; Hadjikakou, M.; Wiedmann, T. Urban carbon transformations: Unravelling spatial and inter-sectoral linkages for key city industries based on multi-region input–output analysis. J. Clean. Prod. 2017, 163, 224–240. [Google Scholar] [CrossRef] [Green Version]
- Dahal, K.; Niemelä, J. Cities’ Greenhouse Gas Accounting Methods: A Study of Helsinki, Stockholm, and Copenhagen. Climate 2017, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Mi, Z.; Guan, D.; Liu, Z.; Liu, J.; Viguié, V.; Fromer, N.; Wang, Y. Cities: The core of climate change mitigation. J. Clean. Prod. 2019, 207, 582–589. [Google Scholar] [CrossRef]
- Eurostat. Recycling Rate of Municipal Waste. 5 February 2020. Available online: https://ec.europa.eu/eurostat/databrowser/view/cei_wm011/default/table?lang=en (accessed on 25 April 2020).
- Jaeger, J.A.G.; Bertiller, R.; Schwick, C.; Kienast, F. Suitability criteria for measures of urban sprawl. Ecol. Indic. 2010, 10, 397–406. [Google Scholar] [CrossRef]
- Gascon, M.; Triguero-Mas, M.; Martinez, D.; Dadvand, P.; Rojas-Rueda, D.; Plasència, A.; Nieuwenhuijsen, M.J. Residential green spaces and mortality: A systematic review. Environ. Int. 2016, 86, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Shanahan, D.; Lin, B.; Bush, R.; Gaston, K.J.; Dean, J.H.; Barber, E.; Fuller, R. Toward improved public health outcomes from urban nature. Am. J. Public Heal. 2015, 105, 470–477. [Google Scholar] [CrossRef]
- Wolf, K.L.; Robbins, A.S. Metro nature, environmental health, and economic value. Environ. Health Perspect. 2015, 123, 390–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, L.; Zhou, J.; Peng, X.; Ruan, S.; Zhang, Y. Analyses of air pollution control measures and co-benefits in the heavily air-polluted Jinan city of China, 2013–2017. Sci. Rep. 2020, 10, 5423. [Google Scholar] [CrossRef]
- Farzad, K.; Khorsandi, B.; Khorsandi, M.; Bouamra, O.; Maknoon, R. A study of cardiorespiratory related mortality as a result of exposure to black carbon. Sci. Total Environ. 2020, 725, 138422. [Google Scholar] [CrossRef] [PubMed]
- Pimpin, L.; Retat, L.; Fecht, D.; De Preux, L.; Sassi, F.; Gulliver, J.; Belloni, A.; Ferguson, B.; Corbould, E.; Jaccard, A.; et al. Estimating the costs of air pollution to the National Health Service and social care: An assessment and forecast up to 2035. PLoS Med. 2018, 15, e1002602. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Johnston, F.H.; Salimi, F.; Kurabayashi, M.; Negishi, K. Short-term exposure to ambient fine particulate matter and out-of-hospital cardiac arrest: A nationwide case-crossover study in Japan. Lancet Planet. Health 2020, 4, e15–e23. [Google Scholar] [CrossRef] [Green Version]
- Erickson, P.; Tempest, K. Advancing Climate Ambition: How City-Scale Actions can Contribute to Global Climate Goals; Working Paper 2014-06; Stockholm Environment Institute: Stockholm, Sweden, 2014. [Google Scholar]
- Kennedy, C.; Corfee-Morlot, J. Past performance and future needs for low carbon climate resilient infrastructure—An investment perspective. Energy Policy 2013, 59, 773–783. [Google Scholar] [CrossRef]
- Gouldson, A.; Colenbrander, S.; Sudmant, A.; McAnulla, F.; Kerr, N.; Sakai, P.; Hall, S.; Papargyropoulou, E.; Kuylenstierna, J. Exploring the economic case for climate action in cities. Glob. Environ. Chang. 2015, 35, 93–105. [Google Scholar] [CrossRef] [Green Version]
- Economist Intelligence Unit. European Green City Index. Assessing the Environmental Impact of Europe’s Major Cities; 2012; p. 51. Available online: https://eiuperspectives.economist.com/sustainability/european-green-city-index (accessed on 30 June 2020).
- Organisation for Economic Cooperation and Development. Measuring Material Flows and Resource Productivity. Inventory of Country Activites; Organisation for Economic Cooperation and Development: Paris, France, 2008; Volume III, p. 107. [Google Scholar]
- Rosado, L.; Niza, S.; Ferrao, P. A Material Flow Accounting Case Study of the Lisbon Metropolitan Area using the Urban Metabolism Analyst Model. J. Ind. Ecol. 2014, 18, 84–101. [Google Scholar] [CrossRef]
- Kennedy, C.; Pincetl, S.; Bunje, P. The study of urban metabolism and its applications to urban planning and design. Environ. Pollut. 2011, 159, 1965–1973. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, B.; Birkved, M.; Quitzau, M.-B.; Hauschild, M. Quantification of urban metabolism through coupling with the life cycle assessment framework: Concept development and case study. Environ. Res. Lett. 2013, 8, 035024. [Google Scholar] [CrossRef]
- Westin, A.L.; Kalmykova, Y.; Rosado, L.; Oliveira, F.; Laurenti, R.; Rydberg, T. Combining material flow analysis with life cycle assessment to identify environmental hotspots of urban consumption. J. Clean. Prod. 2019, 226, 526–539. [Google Scholar] [CrossRef]
- Christis, M.; Athanassiadis, A.; Vercalsteren, A. Implementation at a city level of circular economy strategies and climate change mitigation—The case of Brussels. J. Clean. Prod. 2019, 218, 511–520. [Google Scholar] [CrossRef]
- Geerken, T.; Schmidt, J.; Boonen, K.; Christis, M.; Merciai, S. Assessment of the potential of a circular economy in open economies—Case of Belgium. J. Clean. Prod. 2019, 227, 683–699. [Google Scholar] [CrossRef]
- Heinonen, J.; Horvath, A.; Junnila, S. Environmental assessments in the built environment: Crucial yet underdeveloped. Environ. Res. Lett. 2015, 10, 35003. [Google Scholar] [CrossRef]
- Schoemaker, P.J.H. Forecasting and scenario planning: The challenges of uncertainty and complexity. In Blackwell Handbook of Judgment and Decision Making; Blackwell Publishing: Malden, MA, USA, 2004; pp. 274–296. [Google Scholar]
- Swart, R.; Raskin, P.; Robinson, J. The problem of the future: Sustainability science and scenario analysis. Glob. Environ. Chang. 2004, 14, 137–146. [Google Scholar] [CrossRef]
- Rounsevell, M.D.; Metzger, M.J. Developing qualitative scenario storylines for environmental change assessment. WIREs Clim. Chang. 2010, 1, 606–619. [Google Scholar] [CrossRef]
- Alcamo, J. Chapter One Introduction: The Case for Scenarios of the Environment, in Developments in Integrated Environmental Assessment; Alcamo, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 1–11. [Google Scholar]
- Breil, M.; Bigano, A.; Cattaneo, C.; Ridgway, M.; Tuerk, A.; Lettmayer, J.R.; Fujiwara, N.; Dupas, S. Definition of Storylines for the Framing of Urban Scenarios; Report D4.1 for the POCACITO FP7 Project; 2014; Available online: https://pocacito.eu/sites/default/files/D4_1_Scenario%20storylines_final_2016_0.pdf (accessed on 1 July 2020).
- Selada, C.; Almeida, A.L.; Guerreiro, D. Integrated Case Study Assessment Report; Report D3.3 for POCACITO Project; 2015; Available online: https://pocacito.eu/sites/default/files/D3_3_Integrated_Case_Study_Assessment.pdf (accessed on 15 August 2019).
- Feng, Y.; Chen, S.; Zhang, L. System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China. Ecol. Model. 2013, 252, 44–52. [Google Scholar] [CrossRef]
- Silva, C.; Selada, C.; Mendes, G.; Marques, I. Report on Key Performance Indicators; 2014; Available online: https://pocacito.eu/sites/default/files/D1_2_Report%20on%20Key%20Performance%20Indicators.pdf (accessed on 15 August 2019).
- GPC. Global Protocol for Community-Scale Greenhouse Gas Emission Inventories; An Accounting and Reporting Standard for Cities; GPC: Atlanta, GA, USA, 2014. [Google Scholar]
- Wood, R.; Stadler, K.; Bulavskaya, T.; Lutter, S.; Giljum, S.; De Koning, A.; Kuenen, J.; Schütz, H.; Acosta-Fernández, J.; Usubiaga-Liaño, A.; et al. Global Sustainability Accounting—Developing EXIOBASE for Multi-Regional Footprint Analysis. Sustainability 2015, 7, 138–163. [Google Scholar] [CrossRef] [Green Version]
- Millward-Hopkins, J.; Gouldson, A.; Scott, K.; Barrett, J.; Sudmant, A. Uncovering blind spots in urban carbon management: The role of consumption-based carbon accounting in Bristol, UK. Reg. Environ. Chang. 2017, 17, 1467–1478. [Google Scholar] [CrossRef]
- ISTAT. Indagine Sulle Spese Delle Famiglie. Italian Household Consumption Expenditure Survey; ISTAT: Rome, Italy, 2015. [Google Scholar]
- Household Consumption Data from 1992 to 2030 for Ten European Cities. Confidential Data Obtained on a Commercial Basis, Oxford Economics, Oxford, UK. 2015. Available online: https://www.oxfordeconomics.com/ (accessed on 30 June 2020).
- Agenzia per l’ Italia Digitale. 2015. Presidenza del Consiglio dei Ministri. Website; Agenzia per l’ Italia digitale: Rome, Italy, 2015. [Google Scholar]
- Hertwich, E.; Gibon, T.; Bouman, E.A.; Arvesen, A.; Suh, S.; A Heath, G.; Bergesen, J.D.; Ramirez, A.; Vega, M.I.; Shi, L. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl. Acad. Sci. USA 2014, 112, 6277. [Google Scholar] [CrossRef] [Green Version]
- IEA. IEA World Energy Outlook 2015; 2015; Available online: https://www.iea.org/publications/freepublications/publication/WEO2015.pdf (accessed on 22 October 2018).
- Capros, P.; De Vita, A.; Tasios, N.; Papadopoulos, D.; Siskos, P.; Apostolaki, E.; Zampara, M.; Paroussos, L.; Fragiadakis, K.; Kouvaritakis, N.; et al. EU Energy, Transport and GHG Emissions. Trends to 2050. Reference Scenario 2013. Report for the Directorate-General for Energy, the Directorate-General for Climate Action and the Directorate-General for Mobility and Transport; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Eurostat. Regions and Cities—Overview; Eurostat: Brussels, Belgium, 2020. [Google Scholar]
- EEA. Corine Land Cover 2000 Raster Data; EEA: Copenhagen, Denmark, 2000. [Google Scholar]
- EEA. Corine Land Cover 2012; EEA: Copenhagen, Denmark, 2012. [Google Scholar]
- Fuglsang, M.; Münier, B.; Hansen, H.S. Modelling land-use effects of future urbanization using cellular automata: An Eastern Danish case. Environ. Model. Softw. 2013, 50, 1–11. [Google Scholar] [CrossRef]
- Fraunhofer ISE. Current and Future Cost of Photovoltaics. Long-Term Scenarios for Market Development, System Prices and LCOE of Utility-Scale PV Systems. Study on behalf of Agora Energiewende; 2015; Available online: http://www.fvee.de/fileadmin/publikationen/weitere_publikationen/15_AgoraEnergiewende-ISE_Current_and_Future_Cost_of_PV.pdf (accessed on 22 October 2018).
- International Energy Agency. IEA, 2013. Technology Roadmap. Wind Energy, 2013 ed.; 2013; Available online: https://www.iea.org/publications/freepublications/publication/Wind_2013_Roadmap.pdf (accessed on 22 October 2018).
- ENTRANZE. Share of Dwellings Built after 2000 in Total Stock; 2008; Available online: http://www.entranze.enerdata.eu/ (accessed on 22 October 2018).
- BPIE. Europe’s Buildings Under the Microscope. A Country-by-Country Review of the Energy Performance of Buildings; BPIE: Brussels, Belgium, 2011. [Google Scholar]
- Voorhees, S.S.; Sakai, R.; Araki, S.; Sato, H.; Otsu, A. Cost-benefit analysis methods for assessing air pollution control programs in urban environments—A review. Environ. Health Prev. Med. 2001, 6, 63–73. [Google Scholar] [CrossRef]
- WHO Regional Office for Europe and OECD. Economic Cost of the Health Impact of Air Pollution in Europe: Clean Air, Health and Wealth; WHO Regional Office for Europe: Copenhagen, Denmark, 2015. [Google Scholar]
- Yang, S.; Chen, B.; Ulgiati, S. Co-benefits of CO2 and PM2.5 Emission Reduction. Energy Procedia 2016, 104, 92–97. [Google Scholar] [CrossRef]
- Kim, B.-U.; Kim, O.; Kim, H.C.; Kim, S. Influence of fossil-fuel power plant emissions on the surface fine particulate matter in the Seoul Capital Area, South Korea. J. Air Waste Manag. Assoc. 2016, 66, 863–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gravelle, H.; Smith, D. Discounting for health effects in cost-benefit and cost-effectiveness analysis. Health Econ. 2001, 10, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Attema, A.E.; Brouwer, W.B.F.; Claxton, K. Discounting in economic evaluations. Pharm. Econ. 2018, 36, 745–758. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, W.B.F.; Niessen, L.; Postma, M.J.; Rutten, F.F.H. Need for differential discounting of costs and health effects in cost effectiveness analyses. BMJ 2005, 331, 446–448. [Google Scholar] [CrossRef] [Green Version]
- Van Hout, B.A. Discounting costs and effects: A reconsideration. Health Econ. 1998, 7, 581–594. [Google Scholar] [CrossRef]
- IRENA. Renewable Energy and Jobs; International Renewable Energy Agency: Abu Dhabi, UAE, 2013. [Google Scholar]
- Meijer, F.; Visscher, H. Upgrading energy efficient housing and creating jobs: It works both ways. Open House Int. 2014, 39, 34–40. [Google Scholar]
- Urge-Vorsatz, D.; Reith, A.; Korytárová, K.; Egyed, M.; Dollenstein, J. Monetary Benefits of Ambitious Building Energy Policies; Research report prepared by ABUD (Advanced Building and Urban Design); Global Buildings Performance Network: Paris, France, 2015; Available online: https://www.gbpn.org/sites/default/files/Low_C_MBABEP.pdf (accessed on 1 July 2020).
- ONS. The Decoupling of Economic Growth from Carbon Emissions: UK Evidence; 2019. Available online: https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts/compendium/economicreview/october2019/thedecouplingofeconomicgrowthfromcarbonemissionsukevidence (accessed on 29 April 2020).
- Mont, O.; Plepys, A.; Whalen, K.; Nußholz, J.L.K. Business Model Innovation for a Circular Economy: Drivers and Barriers for the Swedish Industry—The Voice of REES Companies; A Report from the International Institute for Industrial Environmental Economics; Lund University: Lund, Sweden, 2018. [Google Scholar]
- Dadvand, P.; Rivas, I.; Basagaña, X.; Alvarez-Pedrerol, M.; Su, J.; Pascual, M.D.C.; Amato, F.; Jerret, M.; Querol, X.; Sunyer, J.; et al. The association between greenness and traffic-related air pollution at schools. Sci. Total. Environ. 2015, 523, 59–63. [Google Scholar] [CrossRef]
- Rode, P.; Floater, G. Accessibility in Cities: Transport and Urban Form; 2014; Available online: https://newclimateeconomy.report/workingpapers/workingpaper/accessibility-in-cities-transport-urban-form/ (accessed on 16 May 2018).
- EEA. Revealing the Costs of Air Pollution from Industrial Facilities in Europe; European Environment Agency: Copenhagen, Denmark, 2011. [Google Scholar]
- US EPA. Guidelines for Preparing Economic Analyses; United States Environmental Protection Agency: Washington, DC, USA, 2010. Available online: https://www.epa.gov/environmental-economics/guidelines-preparing-economic-analyses (accessed on 16 May 2018).
- Lancet, T. Net zero by 2050 in the UK. Lancet 2019, 393, 1911. [Google Scholar] [CrossRef]
- Blyth, W.; Speirs, J.; Gross, R. Low carbon jobs: The evidence for net job creation from policy support for energy efficiency and renewable energy. In Proceedings of the BIEE 10th Academic Conference, St John’s College, Oxford, UK, 17–18 September 2014. [Google Scholar]
Population (000′s) | GDP (EUR) | Energy Use (GWh) | GHG/Capita (TCO2e) | |
---|---|---|---|---|
Barcelona, Spain | 1600 | 37,347 | 16,782 | 2.3 |
Copenhagen, Denmark | 559 | 63,000 | 8366 | 5.0 |
Istanbul, Turkey | 13,900 | 9922 | 15,570 | 2.7 |
Lisbon, Portugal | 548 | 48,000 | 10,786 | 7.1 |
Litoměřice, Czech Republic | 24 | 11,800 | 366 | 5.7 |
Malmö, Sweden | 313 | 45,000 | 7759 | 5.0 |
Milan, Italy | 1324 | 51,754 | 28,167 | 6.0 |
Rostock, Germany | 203 | 30,678 | 3776 | 4.1 |
Turin, Italy | 902 | 30,716 | 18,841 | 5.7 |
Zagreb, Croatia | 793 | 18,645 | 11,300 | 3.2 |
Indicator | Definition or Unit |
---|---|
Environmental | |
Ecosystem protected areas | % of the city surface area covered by the Natura 2000 Network and the National Network of Protected Areas |
Energy intensity | Primary energy consumption by gross domestic product (GDP) (toe/EUR) |
GHG intensity | Co2-eq per EUR (GHG/EUR) |
Carbon intensity per person | Co2-eq per capita |
Exceedance of air quality limit | Number of days/year for exceedances of: Ozone (O3), Nitrogen Dioxide (NO2), and Sulfur Dioxide (SO2) |
Sustainable transportation | Modal share of transport walk, cycling, car, etc. |
Urban waste generation | kg/person/year of waste generated |
Urban waste recovery | % of waste recovered for recycling, reuse, energy recovery or composting. |
Water distribution losses | m3/person/year of water lost in supply network |
Energy-efficient buildings | Number of buildings with A and A+ certified from the EU legislative framework: Directive 2002/91/CE and Directive 2010/31/UE on the energy performance of buildings directive (EPBD) |
Economic | |
Level of wealth | GDP (EUR) per capita |
Business survival rate | Ratio of enterprise survivals based on creation and failure rates of businesses over a three-year period 2008 to 2010 |
Budget deficit | Annual deficit (%) by GDP |
Indebtedness of local authority | Annual debt (%) by GDP |
R&D intensity | Total research and development expenditure as % of GDP. |
Social | |
Unemployment by gender | % of population unemployed |
Poverty level | % of population at risk of poverty |
Tertiary education by gender | % of population with tertiary level of education |
Average life expectancy | Average number of years city citizens are expected to live |
Green space availability | km2 of public green (urban forests, parks or green spaces) space availability per capita |
Change Type | Description |
---|---|
1. Urban spread | Change from non-urban in 2000 to urban in 2012 |
2. Urban no change | Urban in 2000 and 2012, with no change in population |
3. Population densification | Urban in 2000 and 2012, with population increase |
4. Population dis-densification | Urban in 2000 and 2012, with population decrease |
5. Non-urban | Non-urban in 2000 and 2012 (no change) |
Copenhagen | Barcelona | Istanbul | Lisbon | Litoměřice | Malmö | Milan | Rostock | Turin | Zagreb | ||||||||||||
INDICATOR | BAU 2050 | PC 2050 | BAU 2050 | PC 2050 | BAU 2050 | PC 2050 | BAU 2050 | PC 2050 | BAU 2050 | PC 2050 | BAU 2050 | PC 2050 | BAU 2050 | PC 2050 | BAU 2050 | PC 2050 | BAU 2050 | PC 2050 | BAU 2050 | PC 2050 | |
Environment | Ecosystem protected areas | + | + | N/A | N/A | + | ++ | + | + | N/A | N/A | + | ++ | 0 | + | 0 | 0 | 0 | 0 | − | 0 |
Energy intensity (toe/EUR) | + | + | + | ++ | − | 0 | + | ++ | + | + | + | ++ | + | ++ | + | ++ | + | ++ | + | ++ | |
GHG intensity (GHG/EUR) | ++ | ++ | + | ++ | 0 | + | + | ++ | + | ++ | + | + | + | ++ | + | ++ | + | + | + | ++ | |
Carbon intensity per person | ++ | ++ | + | ++ | − | + | + | ++ | + | ++ | + | ++ | + | ++ | + | ++ | + | + | + | ++ | |
Exceedance of air quality limit | + | + | ++ | ++ | 0 | + | + | ++ | 0 | ++ | + | + | + | ++ | + | ++ | ++ | ++ | 0 | + | |
Sustainable transportation | + | + | 0 | ++ | 0 | 0 | 0 | + | 0 | ++ | + | + | + | ++ | + | ++ | − | + | + | + | |
Urban waste generation | + | + | ++ | + | − | − | + | + | 0 | ++ | + | ++ | + | + | + | + | + | + | + | ++ | |
Urban waste recovery | + | + | ++ | ++ | + | + | − | − | 0 | ++ | ++ | ++ | + | + | + | + | ++ | ++ | + | ++ | |
Water distribution losses | N/A | N/A | N/A | N/A | + | + | + | N/A | N/A | N/A | N/A | N/A | − | − | ++ | ++ | + | + | 0 | 0 | |
Energy-efficient buildings | + | + | N/A | ++ | + | + | + | ++ | + | ++ | N/A | N/A | 0 | ++ | N/A | N/A | + | + | + | + | |
Economic | Level of wealth | ++ | ++ | ++ | ++ | ++ | + | + | + | ++ | ++ | ++ | ++ | ++ | ++ | + | + | + | + | ++ | ++ |
Business survival rate | N/A | N/A | N/A | N/A | N/A | N/A | + | + | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | + | + | N/A | N/A | |
Budget deficit | + | + | N/A | N/A | N/A | N/A | + | + | N/A | N/A | ++ | ++ | N/A | N/A | ++ | ++ | N/A | N/A | N/A | N/A | |
Indebtedness of local auth. | + | + | N/A | N/A | 0 | 0 | + | + | N/A | N/A | ++ | ++ | ++ | ++ | ++ | ++ | 0 | 0 | N/A | N/A | |
R&D intensity | + | + | N/A | N/A | − | − | + | + | − | − | ++ | ++ | + | + | + | + | + | + | N/A | N/A | |
Social | Unemployment by gender | + | + | −− | N/A | + | + | − | N/A | N/A | N/A | ++ | ++ | − | + | 0 | 0 | − | 0 | N/A | N/A |
Poverty level | + | + | −− | N/A | + | ++ | + | + | − | 0 | 0 | 0 | − | − | − | 0 | − | − | + | + | |
Tertiary education by gender | + | + | + | N/A | + | + | − | 0 | + | + | + | + | ++ | ++ | N/A | N/A | + | + | + | + | |
Average life expectancy | + | + | ++ | ++ | N/A | N/A | + | + | + | + | ++ | ++ | ++ | ++ | + | + | ++ | ++ | + | + | |
Green space availability | + | + | + | + | + | ++ | ++ | ++ | N/A | + | ++ | ++ | 0 | + | ++ | ++ | + | ++ | −− | 0 |
Legend | Scoring of scenario projection compared to current situation |
++ | likely very positive |
+ | Likely positive |
0 | Likely neutral or similar to current situation |
− | Likely negative |
−− | Likely very negative |
Km2 Change 2012–2050 BAU | % Change 2012–2050 BAU | |
---|---|---|
Barcelona | 161.0 | 19.9% |
Copenhagen | 74.4 | 23.6% |
Istanbul | 331.5 | 30.1% |
Lisbon | 64.4 | 10.6% |
Litoměřice | 0.1 | 1.9% |
Malmö | 37.4 | 43.7% |
Milan | 40.4 | 5.6% |
Rostock | 5.7 | 10.8% |
Turin | 32.6 | 7.1% |
Zagreb | 11.5 | 7.1% |
Discount Costs (Rate 3%) | % of GDP | Discounted Benefits (Rate 1%) | Ratio of Benefit/Cost | |||||
---|---|---|---|---|---|---|---|---|
BAU | PC2050 | BAU | PC2050 | BAU | PC2050 | BAU | PC2050 | |
Barcelona | 2792 | 6597 | 0.15% | 0.31% | 19,178 | 36,063 | 6.9 | 5.5 |
Copenhagen | 2291 | 4397 | 0.18% | 0.35% | −2199 | 2499 | −1.0 | 0.6 |
Istanbul | 19,644 | 32,814 | 0.28% | 0.45% | −438,731 | −94,711 | −22.3 | −2.9 |
Lisbon | 1064 | 2873 | 0.28% | 0.69% | 1008 | 7340 | 0.9 | 2.6 |
Litoměřice | 66 | 132 | 0.77% | 1.53% | 294 | 447 | 4.5 | 3.4 |
Malmö | 830 | 2230 | 0.13% | 0.35% | −154 | 2258 | −0.2 | 1.0 |
Milan | 2903 | 14,299 | 0.15% | 0.73% | 29,552 | 54,193 | 10.2 | 3.8 |
Rostock | 528 | 1085 | 0.34% | 0.63% | 808 | 2179 | 1.5 | 2.0 |
Turin | 1768 | 4869 | 0.26% | 0.68% | 8313 | 13,968 | 4.7 | 2.9 |
Zagreb | 1385 | 3557 | 0.30% | 0.76% | 6363 | 22,897 | 4.6 | 6.4 |
City | Reduction per Capita in Energy Costs |
---|---|
Barcelona | 21.0% |
Copenhagen | 14.1% |
Istanbul | 27.7% |
Lisbon | 43.8% |
Litoměřice | 26.8% |
Malmo | 9.0% |
Milan | 30.0% |
Rostock | 23.9% |
Turin | 16.7% |
Zagreb | 18.9% |
Renewable Energy | Building Renovation | ||
---|---|---|---|
MCI | O&M | MCI | |
Barcelona | 23,665 | 310 | 82,002 |
Copenhagen | 9563 | 115 | 53,674 |
Istanbul | 331,500 | 4649 | 427,500 |
Lisbon | 14,600 | 209 | 32,700 |
Litoměřice | 1164 | 13 | 1143 |
Malmo | 10,935 | 121 | 22,764 |
Milan | 38,100 | 540 | 273,000 |
Rostock | 3424 | 61 | 13,398 |
Turin | 20,237 | 324 | 55,157 |
Zagreb | 27,054 | 367 | 32,141 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harris, S.; Weinzettel, J.; Levin, G. Implications of Low Carbon City Sustainability Strategies for 2050. Sustainability 2020, 12, 5417. https://doi.org/10.3390/su12135417
Harris S, Weinzettel J, Levin G. Implications of Low Carbon City Sustainability Strategies for 2050. Sustainability. 2020; 12(13):5417. https://doi.org/10.3390/su12135417
Chicago/Turabian StyleHarris, Steve, Jan Weinzettel, and Gregor Levin. 2020. "Implications of Low Carbon City Sustainability Strategies for 2050" Sustainability 12, no. 13: 5417. https://doi.org/10.3390/su12135417
APA StyleHarris, S., Weinzettel, J., & Levin, G. (2020). Implications of Low Carbon City Sustainability Strategies for 2050. Sustainability, 12(13), 5417. https://doi.org/10.3390/su12135417