Nested Shallow Geothermal Systems
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Host-Nested System and Data Acquisition
2.3. Groundwater and Heat Transport Numerical Model
3. Results and Discussion
3.1. Thermal Energy Balance of the Host-Nested System
3.2. Numerical Model Results
3.3. Nested Systems Implications on SGE Resource Management
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. (Eds.) IPCC, global warming of 1.5°C—An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of trengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In Special Report Intergovernmental Panel on Climate Change (IPCC); IPCC: Geneva, Switzerland, 2018; p. 630. [Google Scholar]
- Sanner, B.; Angelino, L.; De Gregorio, M.; Février, N.; Haslinger, W.; Kujbus, A.; Landolina, S.; Sparber, W.; Stryi-Hipp, W.; van Helden, G.; et al. Strategic Research and Innovation Agenda for Renewable Heating & Cooling; RHC-Platform: Brussels, Belgium, 2013. [Google Scholar]
- Ruhnau, O.; Hirth, L.; Praktiknjo, A. Time series of heat demand and heat pump efficiency for energy system modeling. Sci. Data 2019, 6, 189. [Google Scholar] [CrossRef]
- EU. Clean energy for all Europeans. In E. Commission; Publications Office of the European Union: Brussels, Belgium, 2019; p. 24. [Google Scholar]
- Lund, J.W.; Toth, A.N. Direct Utilization of geothermal energy 2020 Worldwide review. In Proceedings of the World Geothermal Congress 2020. International Geothermal Association (IGA), Reykjavik, Iceland, 27 April–1 May 2020; p. 39. [Google Scholar]
- Galgaro, A.; Cultrera, M. Thermal short circuit on groundwater heat pump. Appl. Therm. Eng. 2013, 57, 107–115. [Google Scholar] [CrossRef]
- Rivera, J.A.; Blum, P.; Bayer, P. Increased ground temperatures in urban areas: Estimation of the technical geothermal potential. Renew. Energy 2017, 103, 388–400. [Google Scholar] [CrossRef] [Green Version]
- Sanner, B.; Karytsas, C.; Mendrinos, D.; Rybach, L. Current status of ground source heat pumps and underground thermal energy storage in Europe. Geothermics 2003, 32, 579–588. [Google Scholar] [CrossRef]
- Hecht-Méndez, J.; de Paly, M.; Beck, M.; Bayer, P. Optimization of energy extraction for vertical closed-loop geothermal systems considering groundwater flow. Energy Conver. Manag. 2013, 66, 1–10. [Google Scholar] [CrossRef]
- Rivera, J.A.; Blum, P.; Bayer, P. Influence of spatially variable ground heat flux on closed-loop geothermal systems: Line source model with nonhomogeneous Cauchy-type top boundary conditions. Appl. Energy 2016, 180, 572–585. [Google Scholar] [CrossRef] [Green Version]
- Fasci, M.L.; Lazzarotto, A.; Acuna, J.; Claesson, J. Thermal influence of neighbouring GSHP installations: Relevance of heat load temporal resolution. In Proceedings of the IGSHPA Research Track, International Ground Source Heat Pump Association, Stockholm, Sweden, 18–19 September 2018. [Google Scholar]
- Fascì, M.L.; Lazzarotto, A.; Acuna, J.; Claesson, J. Analysis of the thermal interference between ground source heat pump systems in dense neighbourhoods. Sci. Technol. Built Environ. 2019, 25, 1–21. [Google Scholar] [CrossRef] [Green Version]
- SGU. Vägledning för att borra brunn. In Normbrunn 16; Sveriges Geologiska Undersökning: Uppsala, Sweden, 2016. [Google Scholar]
- Kurevija, T.; Vulin, D.; Krapec, V. Effect of borehole array geometry and thermal interferences on geothermal heat pump system. Energy Conver. Manag. 2012, 60, 134–142. [Google Scholar] [CrossRef]
- Gultekin, A.; Aydin, M.; Sisman, A. Thermal performance analysis of multiple borehole heat exchangers. Energy Conver. Manag. 2016, 122, 544–551. [Google Scholar] [CrossRef]
- Law, Y.L.E.; Dworkin, S.B. Characterization of the effects of borehole configuration and interference with long term ground temperature modelling of ground source heat pumps. Appl. Energy 2016, 179, 1032–1047. [Google Scholar] [CrossRef]
- ASHRAE. Ashrae Handbook 2016: HVAC Systems and Equipment: SI Edition; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Peachtree Corners, GA, USA, 2016. [Google Scholar]
- Alcaraz, M.; García-Gil, A.; Vázquez-Suñé, E.; Velasco, V. Advection and dispersion heat transport mechanisms in the quantification of shallow geothermal resources and associated environmental impacts. Sci. Total Environ. 2016, 543, 536–546. [Google Scholar] [CrossRef] [PubMed]
- Verda, V.; Guelpa, E.; Kona, A.; Russo, S.L. Reduction of primary energy needs in urban areas trough optimal planning of district heating and heat pump installations. Energy 2012, 48, 40–46. [Google Scholar] [CrossRef]
- Epting, J.; Huggenberger, P. Unraveling the heat island effect observed in urban groundwater bodies—Definition of a potential natural state. J. Hydrol. 2013, 501, 193–204. [Google Scholar] [CrossRef]
- García-Gil, A.; Vázquez-Suñe, E.; Schneider, E.G.; Sánchez-Navarro, J.Á.; Mateo-Lázaro, J. The thermal consequences of river-level variations in an urban groundwater body highly affected by groundwater heat pumps. Sci. Total Environ. 2014, 485, 575–587. [Google Scholar] [CrossRef]
- Milnes, E.; Perrochet, P. Assessing the impact of thermal feedback and recycling in open-loop groundwater heat pump (GWHP) systems: A complementary design tool. Hydrogeol. J. 2013, 21, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Stauffer, F.; Bayer, P.; Blum, P.; Giraldo, N.M.; Kinzelbach, W. Thermal Use of Shallow Groundwater; Taylor & Francis: Abingdon, UK, 2013. [Google Scholar]
- Luo, J.; Kitanidis, P.K. Fluid residence times within a recirculation zone created by an extraction–injection well pair. J. Hydrol. 2004, 295, 149–162. [Google Scholar] [CrossRef]
- Ferguson, G. Potential use of particle tracking in the analysis of low-temperature geothermal developments. Geothermics 2006, 35, 44–58. [Google Scholar] [CrossRef]
- García-Gil, A.; Goetzl, G.; Kłonowski, M.R.; Borovic, S.; Boon, D.P.; Abesser, C.; Janza, M.; Herms, I.; Petitclerc, E.; Erlström, M.; et al. Governance of shallow geothermal energy resources. Energy Policy 2020, 138, 111283. [Google Scholar] [CrossRef]
- Hähnlein, S.; Bayer, P.; Ferguson, G.; Blum, P. Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy 2013, 59, 914–925. [Google Scholar] [CrossRef]
- Haehnlein, S.; Bayer, P.; Blum, P. International legal status of the use of shallow geothermal energy. Renew. Sustain. Energy Rev. 2010, 14, 2611–2625. [Google Scholar] [CrossRef]
- Russo, S.L.; Taddia, G.; Verda, V. Development of the thermally affected zone (TAZ) around a groundwater heat pump (GWHP) system: A sensitivity analysis. Geothermics 2012, 43, 66–74. [Google Scholar] [CrossRef]
- Attard, G.; Bayer, P.; Rossier, Y.; Blum, P.; Eisenlohr, L. A novel concept for managing thermal interference between geothermal systems in cities. Renew. Energy 2020, 145, 914–924. [Google Scholar] [CrossRef]
- García-Gil, A.; Abesser, C.; Cavero, S.G.; Marazuela, M.Á.; Lázaro, J.M.; Vázquez-Suñé, E.; Hughes, A.G.; Moreno, M.M. Defining the exploitation patterns of groundwater heat pump systems. Sci. Total Environ. 2020, 710, 136425. [Google Scholar] [CrossRef] [PubMed]
- Basosi, R.; Bonciani, R.; Frosali, D.; Manfrida, G.; Parisi, M.L.; Sansone, F. Life cycle analysis of a geothermal power plant: Comparison of the environmental performance with other renewable energy Systems. Sustainability 2020, 12, 2786. [Google Scholar] [CrossRef]
- Franco, A.; Vaccaro, M. Sustainable sizing of geothermal power plants: Appropriate potential assessment methods. Sustainability 2020, 12, 3844. [Google Scholar] [CrossRef]
- Boguniewicz-Zabłocka, J.; Łukasiewicz, E.; Guida, D. Analysis of the sustainable use of geothermal waters and future development possibilities—A case study from the Opole Region, Poland. Sustainability 2019, 11, 6730. [Google Scholar] [CrossRef] [Green Version]
- Luzón, A.; Rodríguez-López, J.P.; Pérez, A.; Soriano, M.A.; Gil, H.; Pocoví, A. Karst subsidence as a control on the accumulation and preservation of aeolian deposits: A Pleistocene example from a proglacial outwash setting, Ebro Basin, Spain. Sedimentology 2012, 59, 2199–2225. [Google Scholar] [CrossRef]
- Quirantes, J. Estudio Sedimentológico y Estratigráfico del Terciario Continental de los Monegros; Institución Fernando el Católico: Zaragoza, Spain, 1978; p. 200. [Google Scholar]
- García-Gil, A.; Epting, J.; Ayora, C.; Garrido, E.; Vázquez-Suñé, E.; Huggenberger, P.; Gimenez, A.C. A reactive transport model for the quantification of risks induced by groundwater heat pump systems in urban aquifers. J. Hydrol. 2016, 542, 719–730. [Google Scholar] [CrossRef]
- García-Gil, A.; Epting, J.; Garrido, E.; Vázquez-Suñé, E.; Lázaro, J.M.; Sánchez Navarro, J.Á.; Huggenberger, P.; Calvo, M.A.M. A city scale study on the effects of intensive groundwater heat pump systems on heavy metal contents in groundwater. Sci. Total Environ. 2016, 572, 1047–1058. [Google Scholar] [CrossRef]
- García-Gil, A.; Gasco-Cavero, S.; Garrido, E.; Mejías, M.; Epting, J.; Navarro-Elipe, M.; Alejandre, C.; Sevilla-Alcaine, E. Decreased waterborne pathogenic bacteria in an urban aquifer related to intense shallow geothermal exploitation. Sci. Total Environ. 2018, 633, 765–775. [Google Scholar] [CrossRef]
- Garrido, E.A.; Sánchez-Navarro, J.A.; Coloma, P. Geothermic use of the urban alluvial aquifer of Zaragoza: First results. Geogaceta Geol. Soc. Spain 2010, 49, 11–14. [Google Scholar]
- Garrido, E.; García-Delanoceda, C.; Moreno, L.; Sánchez-Navarro, J. Criterios técnicos e hidrogeológicos para la explotación del acuífero urbano de Zaragoza por sistemas geotérmicos abiertos. In Proceedings of the F.d.l.E.d.l.C.d. Madrid (Ed.) III Congreso de Energía Geotérmica en la Edificación y la Industria, Fundación de la Energía de la Comunidad de Madrid, Madrid, Spain, 25–26 April 2012; pp. 495–504. [Google Scholar]
- Muela Maya, S.; García-Gil, A.; Garrido Schneider, E.; Mejías Moreno, M.; Epting, J.; Vázquez-Suñé, M.Á.; Marazuela, E.; Sánchez-Navarro, J.Á. An upscaling procedure for the optimal implementation of open-loop geothermal energy systems into hydrogeological models. J. Hydrol. 2018, 563, 155–166. [Google Scholar] [CrossRef]
- Diersch, H.J. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- García-Gil, A.; Vázquez-Suñé, E.; Sánchez-Navarro, J.Á.; Mateo Lázaro, J.; Alcaraz, M. The propagation of complex flood-induced head wavefronts through a heterogeneous alluvial aquifer and its applicability in groundwater flood risk management. J. Hydrol. 2015, 527, 402–419. [Google Scholar] [CrossRef]
- Garrido, E.A.; Arce, M.V.; Van Ellen, W. Modelo matemático de flujo subterráneo del acuífero aluvial del Ebro en el entorno de Zaragoza. From Data Gathering and Groundwater Modelling to Integrated Management. In Proceedings of the Asociación Internacional de Hidrogeólogos Grupo Español, Alicante, Spain, 4–8 October 2005; p. 657. [Google Scholar]
- Garrido, E.A.; García-Gil, A.; Vazquez-Sune, E.; Sanchez-Navarro, J.A. Geochemical impacts of groundwater heat pump systems in an urban alluvial aquifer with evaporitic bedrock. Sci. Total Environ. 2016, 544, 354–368. [Google Scholar] [CrossRef]
- Epting, J.; García-Gil, A.; Huggenberger, P.; Vázquez-Suñe, E.; Mueller, M.H. Development of concepts for the management of thermal resources in urban areas—Assessment of transferability from the Basel (Switzerland) and Zaragoza (Spain) case studies. J. Hydrol. 2017, 548, 697–715. [Google Scholar] [CrossRef]
- Carrera, J.; Neuman, S.P. Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior information. Water Resour. Res. 1986, 22, 199–210. [Google Scholar] [CrossRef]
- Schön, S.J. Thermal Properties. In Handbook of Petroleum Exploration and Production; Schön, S.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 337–372. [Google Scholar]
- García-Gil, A.; Vázquez-Suñé, E.; Sánchez-Navarro, J.A.; Lázaro, J. Recovery of energetically overexploited urban aquifers using surface water. J. Hydrol. 2015, 1, 111. [Google Scholar] [CrossRef]
- García-Gil, A.; Muela Maya, S.; Garrido Schneider, E.; Mejías Moreno, M.; Vázquez-Suñé, E.; Marazuela, M.A.; Mateo Lázaro, J.; Sánchez-Navarro, J.Á. Sustainability indicator for the prevention of potential thermal interferences between groundwater heat pump systems in urban aquifers. Renew. Energy 2019, 134, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Herbert, A.; Arthur, G.; Chillingworth, S. Thermal modelling of large scale exploitation of ground source energy in urban aquifers as a resource management tool. Appl. Energy 2013, 109, 94–103. [Google Scholar] [CrossRef]
- Epting, J.; Händel, F.; Huggenberger, P. Thermal management of an unconsolidated shallow urban groundwater body. Hydrol. Earth Syst. Sci. 2013, 17, 1851–1869. [Google Scholar] [CrossRef] [Green Version]
Parameters | Values | Units |
---|---|---|
Transmissivity | 60–3000 | m2·d−1 |
Storativity | 1E–3–0.3 | – |
Thickness of aquifer | 1–60 | m |
Porosity | 5–30 | [%] |
Liquid volumetric heat capacity | 4.2 | MJ·m−3·K−1 |
Solid volumetric heat capacity | 2–2.52 | MJ·m−3·K−1 |
Fluid thermal conductivity | 0.65 | W·K−1·m−1 |
Solid thermal conductivity | 0.52–2.9 | W·K−1·m−1 |
Longitudinal thermal dispersivity | 0.1–5 | m |
transverse thermal dispersivity | 0.1–1.95 | m |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Gil, A.; Mejías Moreno, M.; Garrido Schneider, E.; Marazuela, M.Á.; Abesser, C.; Mateo Lázaro, J.; Sánchez Navarro, J.Á. Nested Shallow Geothermal Systems. Sustainability 2020, 12, 5152. https://doi.org/10.3390/su12125152
García-Gil A, Mejías Moreno M, Garrido Schneider E, Marazuela MÁ, Abesser C, Mateo Lázaro J, Sánchez Navarro JÁ. Nested Shallow Geothermal Systems. Sustainability. 2020; 12(12):5152. https://doi.org/10.3390/su12125152
Chicago/Turabian StyleGarcía-Gil, Alejandro, Miguel Mejías Moreno, Eduardo Garrido Schneider, Miguel Ángel Marazuela, Corinna Abesser, Jesús Mateo Lázaro, and José Ángel Sánchez Navarro. 2020. "Nested Shallow Geothermal Systems" Sustainability 12, no. 12: 5152. https://doi.org/10.3390/su12125152
APA StyleGarcía-Gil, A., Mejías Moreno, M., Garrido Schneider, E., Marazuela, M. Á., Abesser, C., Mateo Lázaro, J., & Sánchez Navarro, J. Á. (2020). Nested Shallow Geothermal Systems. Sustainability, 12(12), 5152. https://doi.org/10.3390/su12125152