Climate Change, Rangelands, and Sustainability of Ranching in the Western United States
Abstract
:1. Introduction
2. Rangelands, Energy, and Climate Change
3. Contribution of Rangelands to GHG Emissions and Carbon Sequestration
3.1. Livestock and GHG Emissions
3.2. Rangeland Management and Carbon Sequestration
3.3. Would Intensified Rangeland Management Help in Mitigating Climate Change?
4. Climate Change and Sustainability of Western US Ranching
4.1. Grazing Capacity and Forage Production
4.2. Woody Plant Encroachment and Forage Production
4.3. Coping with Increasing Variability in Forage Production
4.4. Adaptive Management of Livestock
4.4.1. Genetically Adapted Breeds
4.4.2. Game Ranching and Economic Sustainability of Ranching
4.5. Managing Ranching Risks
4.6. Drought Management
5. Key Sustainability Strategies
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Polley, H.W.; Briske, D.D.; Morgan, J.A.; Wolter, K.; Bailey, D.W.; Brown, J.R. Climate change and North American rangelands: Trends, projections, and implications. Rangel. Ecol. Manag. 2013, 66, 493–511. [Google Scholar] [CrossRef]
- Joyce, L.A.; Briske, D.D.; Brown, J.R.; Polley, H.W.; McCarl, B.A.; Bailey, D.W. Climate change and North American rangelands: Assessment of mitigation and adaptation strategies. Rangel. Ecol. Manag. 2013, 66, 512–528. [Google Scholar] [CrossRef][Green Version]
- Holechek, J.L.; Pieper, R.D.; Herbel, C.H. Range Management: Principles and Practices, 6th ed.; Pearson Education, Inc.: New York, NY, USA, 2011. [Google Scholar]
- Bedell, T. Glossary of Terms Used in Range Management; Society for Range Management: Denver, CO, USA, 1998. [Google Scholar]
- International Panel on Climate Change. IPCC (International Panel on Climate Change) Fifth Assessment; International Panel on Climate Change: Geneva, Switzerland, 2014. [Google Scholar]
- WMO. IPCC Summary for Policymakers. In Global Warming of 1.5 °C; An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; World Meteorological Organization: Geneva, Switzerland, 2018; p. 32. [Google Scholar]
- WMO. WMO Statement on the State of the Climate in 2017; WMO: Geneva, Switzerland, 2018. [Google Scholar]
- Hansen, J.; Sato, M.; Kharecha, P.; Schuckmann, K.; Beerling, D.J.; Cao, J.; Marcott, S.; Mason-Delmotte, V.; Prather, M.J.; Rohling, E.J.; et al. Young people’s burden: Requirement of negative CO2 emissions. Earth Syst. Dynam 2017, 8, 577–616. [Google Scholar] [CrossRef][Green Version]
- USGCRP. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II: Report-in-Brief; Reidmiller, D.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2018; p. 186.
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Galetti, M.; Alamgir, M.; Crist, E.; Mahmoud, M.I.; Laurance, W.F. World scientists’ warning to humanity: A second notice. BioScience 2017, 67, 1026–1028. [Google Scholar] [CrossRef]
- Steffen, W.; Rockstrom, J.; Richardson, K.; Lenton, T.M.; Folke, C.; Lievermsna, D.; Summerhayes, C.P.; Barnosky, A.D.; Cornell, S.E.; Crucifix, M.; et al. Trajectories of the earth system in the Anthropocene. Proc. Natl. Acad. Sci. USA 2018, 115, 8252–8259. [Google Scholar] [CrossRef][Green Version]
- Zaied, A.J.; Geli, H.M.E.; Holechek, J.L.; Cibils, A.F.; Sawalhah, M.N.; Gard, C.C. An Evaluation of Historical Trends in New Mexico Beef Cattle Production in Relation to Climate and Energy. Sustainability 2019, 11, 6840. [Google Scholar] [CrossRef][Green Version]
- Zaied, A.J.; Geli, H.M.E.; Sawalhah, M.N.; Holechek, J.L.; Cibils, A.F.; Gard, C.C. Historical Trends in New Mexico Forage Crop Production in Relation to Climate, Energy, and Rangelands. Sustainability 2020, 12, 2051. [Google Scholar] [CrossRef][Green Version]
- Gedefaw, M.G.; Geli, H.M.E.; Yadav, K.; Zaied, A.J.; Finegold, Y.; Boykin, K.G. A Cloud-based Evaluation of the National Land Cover Database to Support New Mexico’s Food-Energy-Water Systems. Remote Sens. 2020, 12, 1830. [Google Scholar] [CrossRef]
- Holechek, J.L. Global trends in population, energy use and climate: Implications for policy development, rangeland management and rangeland users. Rangel. J. 2013, 35, 117–129. [Google Scholar] [CrossRef]
- Hardin, G. The tragedy of the commons. Sciences 1968, 162, 1243–1248. [Google Scholar]
- USGCRP. USGCRP (United States Global Change Research Program); U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume 1.
- USGCRP. USGCRP (United States Global Change Research Program); U.S. Global Change Research Program: Washington, DC, USA, 2018; Volume 2.
- Rockstrom, J.; Gaffney, O.; Rogelj, J.; Meinhauser, N.; Nickicenaric, N.; Schelnuber, H.J. A roadmap for rapid decarbonization. Science 2017, 355, 1269–1271. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Havstad, K.M.; Peters, D.P.; Skaggs, R.; Brown, J.; Bestelmeyer, B.; Fredrickson, E.; Herrick, J.; Wright, J. Ecological services to and from rangelands of the United States. Ecol. Econ. 2007, 64, 261–268. [Google Scholar] [CrossRef]
- Alley, W.M.; Alley, R. High and Dry; Yale University Press: New Haven, CT, USA, 2017. [Google Scholar]
- Briske, D.D.; Coppock, D.L.; Illius, A.W.; Fuhlendorf, S.D. Strategies for global rangeland stewardship: Assessment through the lens of the equilibrium–non-equilibrium debate. J. Appl. Ecol. 2020, 57, 1056–1067. [Google Scholar] [CrossRef]
- Kreuter, U.P.; Fox, W.B.; Tanakzy, J.A.; Macabo, K.A.; McCollum, D.W.; Mitchell, J.B.; Duke, C.S.; Hidinger, L. Framework for comparing ecosystem impacts of developing unconventional energy resources on western rangelands. Rangel. Ecol. Manag. 2012, 65, 433–443. [Google Scholar] [CrossRef]
- Holechek, J.L.; Sawalhah, M.N. Energy and rangelands: A perspective. Rangelands 2014, 36, 36–43. [Google Scholar] [CrossRef]
- Allred, B.W.; Smith, W.K.; Twidwell, D.; Haggerty, J.H.; Running, S.W.; Naugle, D.E.; Fuhlendorf, S.D. Ecosystem services lost to oil and gas in North America. Science 2015, 348, 401–402. [Google Scholar] [CrossRef][Green Version]
- Holechek, J.L.; Sawalhah, M.N.; Cibils, A. Renewable energy, energy conservation and US rangelands. Rangelands 2015, 37, 217–225. [Google Scholar] [CrossRef]
- McDonald, R.R.; Fargione, J.; Kiesecker, J.; Miller, W.M.; Powell, J. Energy sprawl or energy efficiency: Climate policy impacts on natural habitat for the United States of America. PLoS ONE 2009, 4, e6802. [Google Scholar] [CrossRef][Green Version]
- Launchbaugh, K.; Strand, E. Rangelands of the World. Available online: https://www.webpages.uidaho.edu/what-is-range/rangelands_map.htm (accessed on 1 May 2020).
- National Research Council. Driving the Built Environment: The Effects of Compact Development on Motorized Travel, Energy Use, and CO2 Emissions; National Academic Press: Washington, DC, USA, 2009; p. 286. [Google Scholar]
- World Bank. State of Electricity Access Report 2017; World Bank: Washington, DC, USA, 2017; Volume 2. [Google Scholar]
- Sayre, N.R. Interacting effects of landownership, land use, and endangered species on conservation of Southwestern US rangelands. Conserv. Biol. 2004, 19, 783–792. [Google Scholar]
- Anderson, E.W. Innovations in coordinated resource management planning. J. Soil Water Conserv. 1991, 46, 411–414. [Google Scholar]
- Holechek, J.L.; Valdez, R. Wildlife conservation on the rangelands of Eastern and Southern Africa: Past, present and future. Rangel. Ecol. Manag. 2018, 71, 245–258. [Google Scholar] [CrossRef]
- O’Mara, F.P. The significance of livestock as a contributor to global greenhouse gas emissions today and in the near future. Anim. Feed Sci. Technol. 2011, 166–167, 7–15. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; ISBN 92-5-107920-X. [Google Scholar]
- Searchinger, T.; Waite, R.; Hanson, C.; Ranganathan, J.; Dumas, P.; Matthews, E.; Klirs, C. Creating a Sustainable Food Future: A Menu of Solutions to Feed Nearly 10 Billion People by 2050. Final Report; World Research Insitute: Washington, DC, USA, 2019; pp. 1–556. [Google Scholar]
- Food and Agriculture Organization of the United Nations. FAO Results|Global Livestock Environmental Assessment Model (GLEAM). Available online: http://www.fao.org/gleam/results/en/ (accessed on 13 May 2020).
- Liebig, M.A.; Gross, J.R.; Kronberg, S.L.; Phillips, R.L.; Hanson, J.D. Grazing management contributions to net global warming potential: A long term evaluation in the northern Great Plains. J. Environ. Qual. 2010, 39, 799–809. [Google Scholar] [CrossRef]
- FAO. World Livestock: Transforming the Livestock Sector through the Sustainable Development Goals; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2018; ISBN 978-92-5-130883-7. [Google Scholar]
- Schuman, G.E.; Reeder, J.D.; Manley, J.T.; Hart, R.H.; Manley, W.A. Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecol. Appl. 1999, 9, 65–71. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Wardle, D.A. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 2003, 84, 2258–2268. [Google Scholar] [CrossRef]
- Piñeiro, G.; Paruelo, J.M.; Oesterheld, M.; Jobbagy, E.G. Pathways of Grazing Effects on Soil Organic Carbon and Nitrogen. Rangel. Ecol. Manag. 2010, 63, 109–119. [Google Scholar] [CrossRef]
- Allard, V.; Soussana, J.F.; Falcimagne, R.; Berbigier, P.; Bonnefond, J.M.; Ceschia, E.; D’hour, P.; Henault, C.; Laville, P.M.; Pinares-Patino, C.; et al. The role of grazing management for the net biome productivity and greenhouse gas budget of semi-natural grassland. Agric. Ecosyst. Environ. 2007, 121, 47–58. [Google Scholar] [CrossRef]
- Derner, J.D.; Augustine, D.J.; Frank, D.A. Does grazing matter for soil organic carbon sequestration in the western North American Great Plains? Ecosystems 2019, 22, 1088–1094. [Google Scholar] [CrossRef]
- Savory, A. How to Green the World’s Deserts and Reverse Climate Change 2013. 4 March 2013. Available online: http://www.thewaterchannel.tv/media-gallery/3571-allan-savory-how-to-green-the-world-s-deserts-and-reverse-climate-change (accessed on 15 June 2020).
- Briske, D.D.; Bestelmeyer, B.T.; Brown, J.R.; Fuhlendorf, S.D.; Polley, H.W. The Savory Method Can Not Green Deserts or Reverse Climate Change: A response to the Allan Savory TED video. Rangelands 2013, 35, 72–74. [Google Scholar] [CrossRef][Green Version]
- Briske, D.D.; Sayre, N.F.; Huntsinger, L.; Fernandez-Gimenez, M.; Budd, B.; Derner, J.D. Origin, persistence, and resolution of the rotational grazing debate: Integrating human dimensions into rangeland research. Rangel. Ecol. Manag. 2011, 64, 325–334. [Google Scholar] [CrossRef]
- Teague, W.R.; Provenza, F.; Kreuter, U.; Steffens, T.; Barnes, M. Multi-paddock grazing on rangelands: Why the perceptual dichotomy between research results and rancher experience? J. Environ. Manag. 2013, 128, 699–717. [Google Scholar] [CrossRef] [PubMed]
- Roche, L.M.; Cutts, B.B.; Derner, J.D.; Lubell, M.N.; Tate, K.W. On-ranch grazing strategies: Context for the rotational grazing dilemma. Rangel. Ecol. Manag. 2015, 68, 248–256. [Google Scholar] [CrossRef]
- Teague, W.R.; Dowhower, S.L.; Baker, S.A.; Haile, N.; DeLaune, P.B.; Conover, D.M. Grazing management impacts on vegetation, soil biota, and soil chemical, physical, and hydrological properties in tall grass prairie. Agric. Ecosyst. Environ. 2011, 141, 310–322. [Google Scholar] [CrossRef]
- Stanley, P.L.; Rowntree, J.E.; Beede, D.K.; DeLonge, M.S.; Hamm, M.W. Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems. Agric. Syst. 2018, 162, 249–258. [Google Scholar] [CrossRef]
- Oliva, G.E.; Cepeda, C.; Ferrante, D.; Puig, S. Holistic Management in a Semiarid Patagonian Sheep Station: Slow Grassland Improvement with Animal Production Complications. Section 7.5. In Proceedings of the 10th International Rangeland Congress, Saskatoon, SK, Canada, 16–22 July 2016; pp. 1115–1117. [Google Scholar]
- Vallentine, J.F. Grazing Management, 2nd ed.; Academic Press: New York, NY, USA, 2001. [Google Scholar]
- Briske, D.D.; Derner, J.D.; Brown, J.R.; Fuhlendorf, S.D.; Teague, W.R.; Havstad, K.M.; Gillen, R.L.; Ash, A.J.; Willms, W.D. Rotational grazing on rangelands: Reconciliation of perception and experimental evidence. Rangel. Ecol. Manag. 2008, 61, 3–17. [Google Scholar] [CrossRef][Green Version]
- Pacala, S.; Socolow, R. Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 2004, 305, 968–972. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.L.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural climate solutions. Proc. Nat. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Joyce, L.A.; Marshall, N.A. Managing Climate Change Risks in Rangeland Systems. In Rangeland Systems: Processes, Management and Challenges; Briske, D.D., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 491–526. [Google Scholar]
- West, T.O.; Six, J. Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Clim. Chang. 2007, 80, 25–41. [Google Scholar] [CrossRef]
- Booker, K.; Huntsinger, L.; Bartolome, J.W.; Sayre, N.F.; Stewart, W. What can ecological science tell us about opportunities for carbon sequestration on arid rangelands in the United States? Glob. Environ. Chang. 2013, 23, 240–251. [Google Scholar] [CrossRef][Green Version]
- Viglizzo, E.F.; Ricard, M.F.; Taboada, M.A.; Vasquez-Amabile, G. Reassessing the role of grazing lands in carbon-balance estimations: Meta-analysis and review. Sci. Total Environ. 2019, 661, 531–542. [Google Scholar] [CrossRef]
- Batjes, N.H. Organic carbon stocks in the soils of Brazil. Soil Use Manag. 2005, 21, 22–24. [Google Scholar] [CrossRef]
- Pausch, J.; Kuzyakov, Y. Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale. Glob. Chang. Biol. 2018, 24, 1–12. [Google Scholar] [CrossRef]
- Dass, P.; Houlton, B.Z.; Wang, Y.; Warlind, D. Grasslands may be more reliable carbon sinks than forests in California. Environ. Res. Lett. 2018, 13, 074027. [Google Scholar] [CrossRef]
- Li, W.; Ciais, P.; Guenet, B.; Peng, S.; Chang, J.; Chaplot, V.; Khudyaev, S.; Peregon, A.; Piao, S.; Wang, Y.; et al. Temporal response of soil organic carbon after grassland land use change. Glob. Chang. Biol. 2018, 24, 4731–4746. [Google Scholar] [CrossRef] [PubMed]
- Conant, R.T.; Paustian, K.; Elliott, E.T. Grassland Management AND Conversion into Grassland: Effects on Soil Carbon. Ecol. Appl. 2001, 11, 343–355. [Google Scholar] [CrossRef]
- Conant, R.T.; Cerri, C.E.P.; Osborne, B.B.; Paustian, K. Grassland management impacts on soil carbon stocks: A new synthesis. Ecol. Appl. 2017, 27, 662–668. [Google Scholar] [CrossRef][Green Version]
- Woodworth-Jefcoats, P.A.; Polovina, J.J.; Drazen, J.C. Climate change is projected to reduce carrying capacity and redistribute species richness in North Pacific pelagic marine ecosystems. Glob. Chang. Biol. 2017, 23, 1000–1008. [Google Scholar] [CrossRef]
- Sawalhah, M.N.; Holechek, J.L.; Cibils, A.F.; Geli, H.M.E.; Zaied, A. Rangeland Livestock Production in Relation to Climate and Vegetation Trends in New Mexico. Rangel. Ecol. Manag. 2019, 72, 832–845. [Google Scholar] [CrossRef]
- McIntosh, M.M.; Holechek, J.L.; Spiegal, S.A.; Cibils, A.F.; Estell, R.E. Long-Term Declining Trends in Chihuahuan Desert Forage Production in Relation to Precipitation and Ambient Temperature. Rangel. Ecol. Manag. 2019, 72, 976–987. [Google Scholar] [CrossRef]
- Briske, D.D.; Joyce, L.A.; Polley, H.W.; Brown, J.R.; Wolter, K.; Morgan, J.A.; McCarl, B.A.; Bailey, D.W. Climate-change adaptation on rangelands: Linking regional exposure with diverse adaptive capacity. Front. Ecol. Environ. 2015, 13, 249–256. [Google Scholar] [CrossRef][Green Version]
- Havstad, K.M.; Brown, J.R.; Estell, R.; Elias, E.; Rango, A.; Steele, C. Vulnerabilities of southwestern US rangeland-based animal agriculture to climate change. Clim. Chang. 2018, 148, 371–386. [Google Scholar] [CrossRef][Green Version]
- Reeves, M.C.; Mitchell, J.E. Extent of coterminous US rangelands: Quantifying implications of differing agency perspectives. Rangel. Ecol. Manag. 2011, 64, 585–597. [Google Scholar] [CrossRef][Green Version]
- U.S. Forest Service Extent of U.S. Rangelands. Available online: https://www.arcgis.com/home/item.html?id=44b569ae41204992a17c9712e86abd50 (accessed on 1 May 2020).
- Augustine, D.J.; Blumenthal, D.M.; Springer, T.L.; LeCain, D.R.; Gunter, S.A.; Derner, J.D. Elevated CO2 induces substantial and persistent declines in forage quality irrespective of warming in mixedgrass prairie. Ecol. Appl. 2018, 28, 721–735. [Google Scholar] [CrossRef] [PubMed]
- Polley, H.W.; Bailey, D.W.; Nowak, R.S.; Stafford-Smith, M. Ecological Consequences of Climate Change on Rangelands. In Rangeland Systems: Processes, Management and Challenges; Briske, D.D., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 229–260. [Google Scholar]
- Gherardi, L.A.; Sala, O.E. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc. Natl. Acad. Sci. USA 2015, 112, 12735–12740. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Reeves, M.C.; Bagne, K.E. Vulnerability of Cattle Production to Climate Change on US Rangelands; Gen. Tech. Rep. RMRS-GTR-343; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2016; Volume 343, 39p.
- US Forest Service Heat Stress Index (Map Service). Available online: https://enterprisecontentnew-usfs.hub.arcgis.com/datasets/heat-stress-index-map-service (accessed on 13 May 2020).
- USGCRP US Heat Waves Characteristics. Available online: https://www.globalchange.gov/browse/indicators/us-heat-waves (accessed on 13 May 2020).
- USGCRP US Heat Waves Indicator Data. 2019. Available online: https://data.globalchange.gov/report/indicator-us-heat-waves-2019 (accessed on 13 May 2020).
- Morgan, J.A.; Mosier, A.R.; Milchunas, D.G.; LeCain, D.R.; Nelson, J.A. CO2 enhances productivity, alters species composition, and reduces digestibility of shortgrass steppe vegetation. Ecol. Appl. 2004, 14, 208–219. [Google Scholar] [CrossRef][Green Version]
- Milchunas, D.G.; Mosier, A.R.; Morgan, J.A.; LeCain, D.R.; King, J.Y.; Nelson, J.A. Elevated CO2 and defoliation effects on a shortgrass steppe: Forage quality versus quantity for ruminants. Agric. Ecosyst. Environ. 2005, 111, 166–184. [Google Scholar] [CrossRef]
- Holechek, J.L. Financial returns and range condition on southern New Mexico ranches. Rangelands 1996, 18, 52–56. [Google Scholar]
- Stoddart, L.A.; Smith, A.D. Range Management; McGraw-Hill Book, Company, Inc.: New York, NY, USA, 1943. [Google Scholar]
- US Forest Service Rangeland Productivity 1984–2018. Available online: https://www.arcgis.com/home/item.html?id=ccbd5786940d430786487690c82ed71e (accessed on 13 May 2020).
- US Forest Service USDA Forest Service FSGeodata Clearinghouse—Rangelands. Available online: https://data.fs.usda.gov/geodata/rastergateway/rangelands/index.php (accessed on 13 May 2020).
- Scifres, C.J. Brush Management: Principles and Practices for Texas and the Southwest; Texas A&M University Press: College Station, TX, USA, 1980. [Google Scholar]
- Vallentine, J.F. Range Improvement and Development, 3rd ed.; Academic Press: New York, NY, USA, 1989. [Google Scholar]
- Archer, S. Woody plant encroachment into southwestern grasslands and savannas: Rates, patterns and proximate causes. In Ecological Implications of Livestock Herbivory in the West; Vavra, M., Laycock, W.A., Pieper, R.D., Eds.; Society for Range Management: Denver, CO, USA, 1994; p. 297. [Google Scholar]
- Barger, N.N.; Archer, S.R.; Campbell, J.L.; Huang, C.; Morton, J.A.; Knapp, A.K. Woody plant proliferation in North America drylands: A synthesis of impacts on ecosystem carbon balance. J. Geophys. Res. 2011, 116, 17. [Google Scholar] [CrossRef]
- Archer, S.R.; Andersen, E.M.; Predick, K.I.; Schwinning, S.; Steidl, R.J.; Woods, S.R. Woody Plant Encroachment: Causes and Consequences. In Rangeland Systems: Processes, Management and Challenges; Briske, D.D., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 25–84. [Google Scholar]
- Anadon, J.D.; Sala, O.E.; Turner, B.L.; Bennett, E.M. Effect of woody-plant encroachment on livestock production in North and South America. Proc. Natl. Acad. Sci. USA 2014, 111, 12948–12953. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Van Auken, O.W. Shrub invasions of North American semiarid grasslands. Ann. Rev. Ecol. Syst. 2000, 31, 197–215. [Google Scholar] [CrossRef][Green Version]
- Morgan, J.A.; Milchunas, D.G.; LeCain, D.R.; West, M.; Mosier, A.R. Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe. Proc. Nat. Acad. Sci. USA 2007, 104, 14724–14729. [Google Scholar] [CrossRef][Green Version]
- Archer, S.; Boutton, T.W.; Hibbard, K.A. Trees in grasslands: Biogeochemical consequences of woody plant expansion. In Global Biogeochemical Cycles in the Climate System; Academic Press: San Diego, CA, USA, 2001; pp. 115–138. [Google Scholar]
- Thomas, M.C.; Mohamed, A.H.; Sawalhah, M.N.; Holechek, J.L.; Bailey, D.W.; Hawkes, J.M.; Luna-Nevariz, P.; Molinar, F.; Khumalo, G. Long-term forage and cow-calf performance and economic considerations of two stocking levels on Chihuahuan desert rangeland. Rangel. Ecol. Manag. 2015, 68, 158–165. [Google Scholar] [CrossRef]
- Johnston, P.W.; Tannock, P.R.; Beale, I.F. Objective “safe” grazing capacities for south-west Queensland Australia: A model application and evaluation. Rangel. J. 1996, 18, 259–269. [Google Scholar] [CrossRef]
- Lacey, J.; Williams, E.; Rolleri, J.; Marlow, C. A guide for planning, analyzing, and balancing forage supplies with livestock demand. Mont. State Univ. Ext. Serv. Publ. 1994, E13-101, 8. [Google Scholar]
- White, L.D.; McGinty, A. Stocking rate decisions: Key to successful ranching. Tex. AM Univ. Res. Ext. Serv. Publ. 1997, B-5036, 14. [Google Scholar]
- Galt, D.; Molinar, F.; Navarro, J.; Joseph, J.; Holechek, J. Grazing capacity and stocking rate. Rangelands 2000, 22, 7–11. [Google Scholar] [CrossRef][Green Version]
- Smart, A.J.; Derner, J.D.; Hendrickson, J.R.; Gillen, R.L.; Dunn, B.H.; Mousel, E.M.; Johnson, P.S.; Gates, R.N.; Sedivec, K.K.; Harmoney, K.R.; et al. Effects of grazing pressure on efficiency of grazing on North American Great Plains rangeland. Rangel. Ecol. Manag. 2010, 63, 397–406. [Google Scholar] [CrossRef]
- Torell, L.A.; Murugan, S.; Ramirez, O.A. Economics of Flexible Versus Conservative Stocking Strategies to Manage Climate Variability Risk. Rangel. Ecol. Manag. 2010, 63, 415–425. [Google Scholar] [CrossRef]
- Ash, A.; Thornton, P.; Stokes, C.; Togtohyn, C. Is proactive adaptation to climate change necessary in grazed rangelands. Rangel. Ecol. Manag. 2012, 65, 563–568. [Google Scholar] [CrossRef][Green Version]
- Anderson, D.M.; Estell, R.E.; Gonzalez, A.L.; Cibils, A.F.; Torell, L.A. Criollo cattle: Heritage Genetics for Arid Landscapes. Rangelands 2015, 37, 62–67. [Google Scholar] [CrossRef][Green Version]
- Spiegal, S.; Estell, R.E.; Cibils, A.F.; James, D.K.; Peinetti, H.R.; Browning, D.M.; Romig, K.B.; Gonzalez, A.L.; Lyons, A.J.; Bestelmeyer, B.T. Seasonal Divergence of Landscape Use by Heritage and Conventional Cattle on Desert Rangeland. Rangel. Ecol. Manag. 2019, 72, 590–601. [Google Scholar] [CrossRef]
- Nyamuryekung’e, S.; Cibils, A.F.; Estell, R.E.; VanLeeuwen, D.; Steele, C.; Estrada, O.R.; Almeida, F.R.; Gonzalez, A.; Spiegal, S. Do young calves influence movement patterns of nursing Raramuri Criollo cows on rangeland? Rangel. Ecol. Manag. 2020, 73, 84–92. [Google Scholar] [CrossRef]
- Heady, H.F.; Child, R.D. Rangeland Ecology & Management; Westview Press: San Francisco, CA, USA, 1994. [Google Scholar]
- Bolen, E.G.; Robinson, W.L. Wildlife Ecology and Management, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Baen, J.S. The growing importance and value implications of recreational hunting leases to agricultural land investors. J. Real Estate Res. 1997, 14, 399–414. [Google Scholar]
- Lindsey, P.A.; Alexander, R.; Frank, L.G.; Mathieson, A.; Romanach, S.S. Potential of trophy hunting to create incentives for wildlife conservation in Africa where alternative wildlife-based land uses may not be viable. Anim. Conserv. 2006, 9, 283–291. [Google Scholar] [CrossRef]
- Wilcox, B.P.; Sorice, M.G.; Angerer, J.; Wright, C.L. Historical changes in stocking densities on Texas rangelands. Rangel. Ecol. Manag. 2012, 65, 313–317. [Google Scholar] [CrossRef]
- Shrum, T.R.; Travis, W.R.; Williams, T.M.; Lih, E. Managing climate risks on the ranch with limited drought information. Clim. Risk Manag. 2018, 20, 11–26. [Google Scholar] [CrossRef]
- Shaw, M.R.; Pendleton, L.; Cameron, D.R.; Morris, B.; Bachelet, D.; Klausmeyer, K. The impact of climate change on California’s ecosystem services. Clim. Chang. 2011, 109, 465–484. [Google Scholar] [CrossRef][Green Version]
- Mungall, E.C. Exotics. In Ecology and Management of Large Mammals in North America; Demarais, S., Ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2000; pp. 736–765. [Google Scholar]
- Gilbert, M.; Nicolas, G.; Cinardi, G.; Van Boeckel, T.P.; Vanwambeke, S.O.; Wint, G.R.W.; Robinson, T.P. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data 2018, 5, 180227. [Google Scholar] [CrossRef][Green Version]
- Robinson, T.P.; Wint, G.R.W.; Conchedda, G.; Boeckel, T.P.V.; Ercoli, V.; Palamara, E.; Cinardi, G.; D’Aietti, L.; Hay, S.I.; Gilbert, M. Mapping the Global Distribution of Livestock. PLoS ONE 2014, 9, e96084. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Robinson, T.P.; Thornton, P.K.; Franceschini, G.; Kruska, R.; Chiozza, F.; Notenbaert, A.M.O.; Cecchi, G.; Herrero, M.T.; Epprecht, M.; Fritz, S. Global Livestock Production Systems; FAO: Rome, Italy, ILRI: 2011; ISBN 92-5-107033-4.
- Robinson, T.P.; Thornton, P.; Franceschini, G.; Kruska, R.; Chiozza, F.; Notenbaert, A.; Cecchi, G.; Herrero, M.; Epprecht, M.; Fritz, S.; et al. Global distribution of ruminant livestock production systems V5 (5 minutes of arc). In Global Livestock Production Systems (GLPS); Université Libre de Bruxelles: Bruxelles, Belgium; Food and Agriculture Organization (FAO): Rome, Italy, 2018. [Google Scholar]
- Holechek, J.L.; Hawkes, J.; Darden, T. Macro-economics and cattle ranching. Rangelands 1994, 16, 118–123. [Google Scholar]
- Boykin, C.C.; Gray, J.R.; Caton, D.P. Ranch Production Adjustments in Drought in Eastern; Bulletin.470; New Mexico Agricultural Experiment Station: Las Cruces, NM, USA, 1962; p. 41. [Google Scholar]
- Haigh, T.R.; Schacht, W.; Knutson, C.L.; Smart, A.J.; Volesky, J.; Aetllen, C.; Hayes, M.; Burbach, M. Sociological determinants of drought impacts and coping strategies for ranching operations in the Great Plains. Rangel. Ecol. Manag. 2019, 72, 561–571. [Google Scholar] [CrossRef][Green Version]
- Gray, J.R. Ranch Economics; Iowa State University Press: Ames, IA, USA, 1968. [Google Scholar]
- Thurow, T.L.; Taylor, C.A. Viewpoint: The role of drought in range management. J. Range Manag. 1999, 52, 413–419. [Google Scholar] [CrossRef]
- Holechek, J.L. Drought and low cattle prices: Hardship for New Mexico ranchers. Rangelands 1996, 18, 11–13. [Google Scholar]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable Intensification in Agriculture: Premises and Policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef]
- Pretty, J.; Bharucha, Z.P. Sustainable intensification in agricultural systems. Ann. Bot. 2014, 114, 1571–1596. [Google Scholar] [CrossRef]
- White, P.J.C.; Lee, M.A.; Roberts, D.J.; Cole, L.J. Routes to achieving sustainable intensification in simulated dairy farms: The importance of production efficiency and complementary land uses. J. Appl. Ecol. 2019, 56, 1128–1139. [Google Scholar] [CrossRef][Green Version]
- Bluwstein, J.; Braun, M.; Henriksen, C.B. Sustainable Extensification as an Alternative Model for Reducing GHG Emissions from Agriculture. The Case of an Extensively Managed Organic Farm in Denmark. Agroecol. Sustain. Food Syst. 2015, 39, 551–579. [Google Scholar] [CrossRef]
- Van Grinsven, H.J.M.; Erisman, J.W.; Vries, W.; Westhoek, H. Potential of extensification of European agriculture for a more sustainable food system, focusing on nitrogen. Environ. Res. Lett. 2015, 10, 025002. [Google Scholar] [CrossRef]
- Dias, L.C.; Pimenta, F.M.; Santos, A.B.; Costa, M.H.; Ladle, R.J. Patterns of land use, extensification, and intensification of Brazilian agriculture. Glob. Chang. Biol. 2016, 22, 2887–2903. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Golobal food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef][Green Version]
- Derner, J.D.; Hunt, L.; Filho, K.E.; Ritten, J.; Capper, J.; Han, G. Livestock Production Systems. In Rangeland Systems: Processes, Management and Challenges; Briske, D.D., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 347–372. [Google Scholar]
- Huntsinger, L.; Sayre, N.F.; Macaulay, L. Ranchers, Land Tenure, and Grassroots Governance; Herrera, P.J.D., Manzano Baena, P., Eds.; Routledge: London, UK, 2014. [Google Scholar]
- Reid, R.S.; Fernández-Giménez, M.E.; Galvin, K.A. Dynamics and Resilience of Rangelands and Pastoral Peoples around the Globe. Annu. Rev. Environ. Resour. 2014, 39, 217–242. [Google Scholar] [CrossRef]
- Estell, R.E.; Havstad, K.M.; Cibils, A.F.; Fredrickson, E.L.; Anderson, D.M.; Schrader, T.S.; James, D.K. Increasing shrub use by livestock in a world with less grass. Rangel. Ecol. Manag. 2012, 65, 553–562. [Google Scholar] [CrossRef][Green Version]
- Bailey, D.W.; Moseley, J.C.; Estell, R.E.; Cibils, A.F.; Horney, M.; Hendrickson, J.R.; Walker, J.W.; Launchbaugh, K.L.; Burritt, B.A. Targeted Livestock Grazing: A Prescription for Healthy Rangelands. Rangel. Ecol. Manag. 2019, 72, 865–877. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 2017, 164, 31–48. [Google Scholar] [CrossRef]
- Pham, X.; Stack, M. How data analytics is transforming agriculture. Bus. Horiz. 2018, 61, 125–133. [Google Scholar] [CrossRef]
Risks and Impacts | Traditional Mitigation Practices | Proposed Sustainable Strategies | |
---|---|---|---|
Environmental | Climatic: Drought and heat waves, wildfires, Loss of rangelands to industrial and energy development, Loss of grazing capacity, Reduced ecosystem services, Loss of carbon sequestration potential | Traditional restoration practices *, Drought insurance and/or subsidies *, Destocking–restocking cycles, Livestock emergency feed inputs, Early weaning (cow–calf operations) *, Hauling water for livestock | Light grazing, Use of livestock to control fine fuels (wildfire suppression), Drought-adapted livestock breeds or species, Mixed livestock–wildlife enterprises, Use of sensors (both remote and on-the-ground) to aid in rapid decision-making, Increased geographic mobility (see below) |
Biological: Increased heat stress, Increased animal disease, Reduced animal productivity, Woody plant encroachment, Variable forage production and lower forage quality | Increased external feed inputs, Livestock genetics for high productivity, Increased veterinary inputs | Adapted livestock with higher heat and disease tolerance (even if less productive) and ability to include more browse (woody plants) in their diets, Use of livestock to control shrub encroachment, Use of sensors (both remote and on-the-ground) to aid in rapid decision-making | |
Socio-economic | Financial: Increased prices of critical inputs, Access to loans and cost of borrowing, Reduced financial profitability | Reduce debt and investment in capital improvements *, Conservative livestock grazing | Adapted livestock genetics, Niche markets, Ecotourism and sport hunting, Renewable energy developments on private land, Carbon credit markets |
Political: Reduced grazing privileges on public lands, Increased pressure to convert rangelands to other land uses | Regulations on land use and building, Conservation easements *, Government subsidies for rangeland restoration * | Public–private partnerships, Increase awareness of ecosystem services provided to society by working ranches (especially in areas prone to catastrophic wildfires) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holechek, J.L.; Geli, H.M.E.; Cibils, A.F.; Sawalhah, M.N. Climate Change, Rangelands, and Sustainability of Ranching in the Western United States. Sustainability 2020, 12, 4942. https://doi.org/10.3390/su12124942
Holechek JL, Geli HME, Cibils AF, Sawalhah MN. Climate Change, Rangelands, and Sustainability of Ranching in the Western United States. Sustainability. 2020; 12(12):4942. https://doi.org/10.3390/su12124942
Chicago/Turabian StyleHolechek, Jerry L., Hatim M. E. Geli, Andres F. Cibils, and Mohammed N. Sawalhah. 2020. "Climate Change, Rangelands, and Sustainability of Ranching in the Western United States" Sustainability 12, no. 12: 4942. https://doi.org/10.3390/su12124942