Determinants of Consumer Intentions to Purchase Energy-Saving Household Products in Pakistan
Abstract
:1. Introduction
2. Literature Review
2.1. Theoretical Background
2.2. Empirical Evidences and Hypothesis Development
2.2.1. Attitude
2.2.2. Subjective Norms
2.2.3. Perceived Behavioral Control
2.2.4. Technology Oriented Personality Traits—Technology Readiness (TR)
Optimism
Innovativeness
Insecurity
Discomfort
3. Methodology
4. Results
4.1. Data Analysis (PLS SEM)
4.2. Measurement Model Evaluation
4.3. Structural Model Evaluation
5. Discussion and Policy Implications
Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, K.; Yang, S.; Shen, C.; Sun, S.D.C. Energy conservation and emission reduction of China’s electric power industry. Renew. Sustain. Energy Rev. 2015, 45, 10–19. [Google Scholar] [CrossRef]
- Jansson, J.; Nordlund, A.M.A. Green consumer behavior: Determinants of curtailment and eco-innovation adoption. J. Consum. Mark. 2010, 27, 358–370. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Global Greenhouse Gas Emissions Data|Greenhouse Gas (GHG) Emissions; EPA: Washington, DC, USA, 2018. [Google Scholar]
- Mosly, I.; Makki, A.A. Current status and willingness to adopt renewable energy technologies in Saudi Arabia. Sustainability 2018, 10, 4269. [Google Scholar] [CrossRef]
- Rafique, M.M.; Rehman, S. National energy scenario of Pakistan—Current status, future alternatives, and institutional infrastructure: An overview. Renew. Sustain. Energy Rev. 2017, 69, 156–167. [Google Scholar] [CrossRef]
- Meng, Y.; Yang, Y.; Chung, H.; Lee, P.H.; Shao, C. Enhancing Sustainability and Energy Efficiency in Smart Factories: A Review. Sustainability 2018, 10, 4779. [Google Scholar] [CrossRef]
- Tan, C.S.; Ooi, H.Y.; Goh, Y.N. A moral extension of the theory of planned behavior to predict consumers’ purchase intention for energy-efficient household appliances in Malaysia. Energy Policy 2017, 107, 459–471. [Google Scholar] [CrossRef]
- United Nations. World Population Projected to Reach 9. United Nations. 2018. Available online: http://www.un.org/en/development/desa/news/population/2015-report.html (accessed 1 November 2018).
- International Energy Agency. World Energy Outlook 2017; International Energy Agency: Paris, Frane, 2017; p. 13. [Google Scholar]
- Ngo, A.; West, G.E.; Calkins, P.H. Determinants of environmentally responsible behaviours for greenhouse gas reduction. Int. J. Consum. Stud. 2009, 33, 151–161. [Google Scholar] [CrossRef]
- Sorrell, S. Reducing energy demand: A review of issues, challenges and approaches. Renew. Sustain. Energy Rev. 2015, 47, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.; Yang, S. Understanding household energy consumption behavior: The contribution of energy big data analytics. Renew. Sustain. Energy Rev. 2016, 56, 810–819. [Google Scholar] [CrossRef]
- Ek, K.; Patrik, P.S. The devil is in the details: Household electricity saving behavior and the role of information. Energy Policy 2010, 38, 1578–1587. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Li, G. Determinants of energy-saving behavioral intention among residents in Beijing: Extending the theory of planned behavior. J. Renew. Sustain. Energy 2014, 6, 1–18. [Google Scholar] [CrossRef]
- Mills, B.; Schleich, J. Analysis of Existing Data: Determinants for the Adoption of Energy-Efficient Household Appliances in Germany. In Sustainable Energy Consumption in Residential Buildings; Springer: Berlin, Germany, 2013; pp. 39–67. [Google Scholar]
- Wang, Z.; Wang, X.; Guo, D. Policy implications of the purchasing intentions towards energy-efficient appliances among China’s urban residents: Do subsidies work? Energy Policy 2016, 102, 430–439. [Google Scholar] [CrossRef]
- European Commission. Action Plan for Energy Efficiency: Realising the Potential; European Commission: Brussels, Belgium, 2006. [Google Scholar]
- Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Majid, M.Z.A. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 2015, 43, 843–862. [Google Scholar] [CrossRef]
- International Energy Agency. Efficiency; International Energy Agency: Paris, France, 2011. [Google Scholar]
- Kanemoto, K.; Moran, D.; Lenzen, M.; Geschke, A. International trade undermines national emission reduction targets: New evidence from air pollution. Glob. Environ. Chang. 2014, 24, 52–59. [Google Scholar] [CrossRef]
- Lau, L.-S.; Choong, C.-K.; Eng, Y.-K. Investigation of the environmental Kuznets curve for carbon emissions in Malaysia: Do foreign direct investment and trade matter? Energy Policy 2014, 68, 490–497. [Google Scholar] [CrossRef]
- Pablo-Romero, M.; Pozo-Barajas, R.; Yñiguez, R. Global changes in residential energy consumption. Energy Policy 2017, 101, 342–352. [Google Scholar] [CrossRef]
- Parikh, K.S.; Parikh, J.K. Realizing potential savings of energy and emissions from ef fi cient household appliances in India. Energy Policy 2016, 97, 102–111. [Google Scholar] [CrossRef]
- Andrews-speed, P.; Ma, G.; Andrews-Speed, P.; Zhang, J. Chinese consumer attitudes towards energy saving: The case of household electrical appliances in Chongqing. Energy Policy 2013, 56, 591–602. [Google Scholar]
- McNeil, M.A.; Letschert, V.E. Future Air Conditioning Energy Consumption in Developing Countries and What Can Be Done about It: The Potential of Efficiency in the Residential Sector; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2008.
- Worldometer. Pakistan Population—Worldometers. 2018. Available online: http://www.worldometers.info/world-population/indonesia-population/ (accessed on 5 November 2018).
- Kugelman, M. Pakistan’s energy crisis. PetroMin 2013, 26, 16–22. [Google Scholar]
- Valasai, G.D.; Uqaili, M.A.; Memon, H.U.R.; Samoo, S.R.; Harijan, N.H.M.K. Overcoming electricity crisis in Pakistan: A review of sustainable electricity options. Renew. Sustain. Energy Rev. 2017, 72, 734–745. [Google Scholar] [CrossRef]
- Khan, H.A.; Pervaiz, S. Technological review on solar PV in Pakistan: Scope, practices and recommendations for optimized system design. Renew. Sustain. Energy Rev. 2013, 23, 147–154. [Google Scholar] [CrossRef]
- Ministry of Water and Power. Press Release. 2018. Available online: http://mowp.gov.pk/frmDetails.aspx. (accessed on 5 December 2018).
- State Bank of Pakistan. The State Of Pakistan’s Economy; State Bank of Pakistan: Karachi, Pakistan, 2018. [Google Scholar]
- Ministry of Planning Development & Reform. Pakistan Vision 2025. 2017. Available online: https://www.pc.gov.pk/ (accessed on 5 November 2018).
- Pothitou, M.; Hanna, R.F.; Chalvatzis, K.J. Environmental knowledge, pro-environmental behaviour and energy savings in households: An empirical study. Appl. Energy 2016, 184, 1217–1229. [Google Scholar] [CrossRef] [Green Version]
- Gadenne, D.; Sharma, B.; Kerr, D.; Smith, T. The influence of consumers’ environmental beliefs and attitudes on energy saving behaviours. Energy Policy 2011, 39, 7684–7694. [Google Scholar] [CrossRef]
- Abrahamse, W.; Steg, L. How do socio-demographic and psychological factors relate to households’ direct and indirect energy use and savings? J. Econ. Psychol. 2009, 30, 711–720. [Google Scholar] [CrossRef]
- Tanner, C.; Kast, S.W. Promoting sustainable consumption: Determinants of green purchases by Swiss consumers. Psychol. Mark. 2003, 20, 883–902. [Google Scholar] [CrossRef]
- Niemeyer, S. Consumer voices: Adoption of residential energy-efficient practices. Int. J. Consum. Stud. 2010, 34, 140–145. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Chan, K. Mass communication and pro-environmental behaviour: Waste recycling in Hong Kong. J. Environ. Manag. 1998, 52, 317–325. [Google Scholar] [CrossRef]
- Reyes-Menendez, A.; Saura, J.R.; Palos-Sanchez, P.R.; Alvarez-Garcia, J. Understanding User Behavioral Intention to Adopt a Search Engine that Promotes Sustainable Water Management. Symmetry 2018, 10, 584. [Google Scholar] [CrossRef]
- Millock, K.; Nauges, C. Household adoption of water-efficient equipment: The role of socio-economic factors, environmental attitudes and policy. Environ. Resour. Econ. 2010, 46, 539–565. [Google Scholar] [CrossRef]
- Rhodes, R.E.; Jones, L.E.E. Personality, the Theory of Planned Behavior, and Exercise. J. Appl. Soc. Psychol. 2002, 32, 1721–1736. [Google Scholar] [CrossRef]
- Walczuch, R.; Streukens, J.L.S. The Effect of Service Employees’ Technology Readiness on Technology Acceptance. Inform. Manag. 2007, 44, 206–215. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, S.; Chandra, B. Big Five Personality Traits and Tourist’s Intention to Visit Green Hotels. Indian J.Sci.Res. 2017, 15, 79–87. [Google Scholar]
- Dezdar, S. Article information: Green Information Technology Adoption: Influencing Factors and Extension of Theory of Planned Behavior. Soc. Responsib. J. 2017, 13, 292–306. [Google Scholar] [CrossRef]
- Parasuraman, A.; Colby, C.L. An Updated and Streamlined Technology Readiness Index: TRI 2.0. J. Serv. Res. 2015, 18, 59–74. [Google Scholar] [CrossRef]
- Rogers, E.M.; Svenning, L. Difussion of Innovation; The Free Press: New York, NY, USA, 1995. [Google Scholar]
- Al-Ajam, A.S.; Md Nor, K. Challenges of adoption of internet banking service in Yemen. Int. J. Bank Mark. 2015, 33, 178–194. [Google Scholar] [CrossRef]
- Parasuraman, A. Index (TRI) A Multiple-Item Scale to Embrace New Technologies. J. Service Res. 2000, 2, 307–320. [Google Scholar] [CrossRef]
- Ivancevich, J.M.; Matteson, M.T. Stress and Work: A Managerial Perspective; Scott Foresman: Glenview, IL, USA; Sage Publishing: Thousand Okas, CA, USA, 1980. [Google Scholar]
- Zografakis, N.; Sifaki, E.; Pagalou, M.; Nikitaki, G.; Psarakis, V.; Tsagarakis, K.P. Assessment of public acceptance and willingness to pay for renewable energy sources in Crete. Renew. Sustain. Energy Rev. 2010, 14, 1088–1095. [Google Scholar] [CrossRef]
- Greaves, M.; Zibarras, L.D.; Stride, C. Using the theory of planned behavior to explore environmental behavioral intentions in the workplace. J. Environ. Psychol. 2013, 34, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Ha, H.Y.; Janda, S. Predicting consumer intentions to purchase energy-efficient products. J. Consum. Mark. 2012, 29, 461–469. [Google Scholar] [CrossRef]
- Finlay, K.A.; Trafimow, D.; Moroi, E. The importance of subjective norms on intentions to perform health behaviors. J. Appl. Soc. Psychol. 1999, 29, 2381–2393. [Google Scholar] [CrossRef]
- Thøgersen, J.; Grønhøj, A. Electricity saving in households—A social cognitive approach. Energy Policy 2010, 38, 7732–7743. [Google Scholar] [CrossRef]
- Ajzen, I.; Fishbein, M. Attitudes and normative beliefs as factors influencing behavioral intentions. J. Pers. Soc. Psychol. 1972, 21, 1–9. [Google Scholar] [CrossRef]
- Ozaki, R.; Sevastyanova, K. Going hybrid: An analysis of consumer purchase motivations. Energy Policy 2011, 39, 2217–2227. [Google Scholar] [CrossRef]
- Albayrak, T.; Aksoy, Ş.; Caber, M. The effect of environmental concern and scepticism on green purchase behaviour. Mark. Intell. Plan. 2013, 31, 27–39. [Google Scholar] [CrossRef]
- Chen, M.-F.; Tung, P.-J. Developing an extended theory of planned behavior model to predict consumers’ intention to visit green hotels. Int. J. Hosp. Manag. 2014, 36, 221–230. [Google Scholar] [CrossRef]
- Kim, E.; Ham, S.; Yang, I.S.; Choi, J.G. The roles of attitude, subjective norm, and perceived behavioral control in the formation of consumers’ behavioral intentions to read menu labels in the restaurant industry. Int. J. Hosp. Manag. 2013, 35, 203–213. [Google Scholar] [CrossRef]
- Webb, D.; Soutar, G.N.; Mazzarol, T.; Saldaris, P. Self-determination theory and consumer behavioural change: Evidence from a household energy-saving behaviour study. J. Environ. Psychol. 2013, 35, 59–66. [Google Scholar] [CrossRef]
- Klöckner, C.A. A comprehensive model of the psychology of environmental behaviour—A meta-analysis. Glob. Environ. Chang. 2013, 23, 1028–1038. [Google Scholar] [CrossRef] [Green Version]
- Alam, S.S.; Hashim, N.H.N.; Rashid, M.; Omar, N.A.; Ahsan, N.; Ismail, M.D. Small-scale households renewable energy usage intention: Theoretical development and empirical settings. Renew. Energy 2014, 68, 255–263. [Google Scholar] [CrossRef]
- Oikonomou, V.; Becchis, F.; Russolillo, L.S.D. Energy saving and energy efficiency concepts for policy making. Energy Policy 2009, 37, 4787–4796. [Google Scholar] [CrossRef]
- Darby, S. Energy advice—What is it worth. Proc. Eur. Counc. 1999, 5, 3–5. [Google Scholar]
- Orbis Reseach. Global Smart Home Appliances Market Analysis 2012–2017 and Forecast 2018–2023; Orbis Reseach: Dallas, TX, USA, 2018. [Google Scholar]
- Philips. Annual Report 2014; Philips: Amsterdam, The Netherlands, 2014; Available online: https://www.philips.com/c-dam/corporate/about-philips/investors/financial-results/annual-reports/PhilipsFullAnnualReport2014_English.pdf (accessed on 4 Spetember 2018).
- Economist Intelligence Unit. Digital Economy Rankings 2010 Beyond E-readiness. The Economist. 2010. Available online: https://www.ibm.com/services/us/gbs/bus/html/ibv-digitaleconomy2010.html (accessed on 5 March 2019).
- International Telecommunication Union. Measuring the Information Society Report 2014; International Telecommunication Union: Geneva, Switzerland, 2014. [Google Scholar]
- Liljander, V.; Gillberg, F.; van Riel, J.G.A. Technology readiness and the evaluation and adoption of self-service technologies. J. Retail. Consum. Serv. 2006, 13, 177–191. [Google Scholar] [CrossRef]
- Lester, P. Future Home Tech: 8 Energy-Saving Solutions on the Horizon; United States Department of Energy: Washington, DC, USA, 2015.
- Navigant Research. Energy Efficient Buildings Global Outlook; Navigant Research: Boulder, CO, USA, 2017. [Google Scholar]
- Meuter, M.L.; Ostrom, A.L.; Bitner, M.J.; Roundtree, R. The influence of technology anxiety on consumer use and experiences with self-service technologies. J. Bus. Res. 2003, 56, 899–906. [Google Scholar] [CrossRef]
- Tsikriktsis, N. A Technology Readiness-Based Taxonomy of Customers: A Replication and Extension. J. Serv. Res. 2004, 7, 42–52. [Google Scholar] [CrossRef]
- Bruner, G.C.; Kumar, A. Gadget lovers. J. Acad. Mark. Sci. 2007, 35, 329–339. [Google Scholar] [CrossRef]
- Rojas-Méndez, J.I.; Parasuraman, A.; Papadopoulos, N. Demographics, attitudes, and technology readiness. Mark. Intell. Plan. 2017, 35, 18–39. [Google Scholar] [CrossRef]
- Kuo, K.; Liu, C.; Ma, C. An Investigation of the Effect of Nurses’ Technology Readiness on the Acceptance of Mobile Electronic Medical Record Systems. J. Res. Nurs. 2013. [Google Scholar] [CrossRef]
- Abidur, S.; Khadijeh, S.; Ramayah, T.; Mohammad, M.; Alam, D. Technological Forecasting & Social Change Technology acceptance among micro-entrepreneurs in a marginalized social strata: The case of social innovation in Bangladesh. Technol. Forecast. Soc. Chang. 2017, 118, 236–245. [Google Scholar]
- Agarwal, R.; Prasad, J. Are individual differences germane to the acceptance of new information technologies? Decis. Sci. 1999, 30, 361–391. [Google Scholar] [CrossRef]
- Chen, M.F.; Lin, N.P. Incorporation of health consciousness into the technology readiness and acceptance model to predict app download and usage intentions. Internet Res. 2018, 28, 351–373. [Google Scholar] [CrossRef]
- Rosen, L.D.; Weil, M.M. Adult and teenage use of consumer, business, and entertainment technology: Potholes on the information superhighway? J. Consum. Aff. 1995, 29, 55–84. [Google Scholar] [CrossRef]
- Valente, T.W.; Davis, R.L. Accelerating the diffusion of innovations using opinion leaders. Ann. Am. Acad. Pol. Soc. Sci. 1999, 566, 55–67. [Google Scholar] [CrossRef]
- Ninh, T.; Lobo, A. Journal of Retailing and Consumer Services Pro-environmental purchase behaviour: The role of consumers’ biospheric values. J. Retail. Consum. Serv. 2016, 33, 98–108. [Google Scholar]
- Churchill, G.A.; Iacobucci, D. Marketing Research: Methodological Foundations; Dryden Press: New York, NY, USA, 2006. [Google Scholar]
- Kanchanapibul, M.; Lacka, E.; Wang, X.; Chan, H.K. An empirical investigation of green purchase behaviour among the young generation. J. Clean. Prod. 2014, 66, 528–536. [Google Scholar] [CrossRef]
- Cenfetelli, R.T.; Bassellier, G. Interpretation of formative measurement in information systems research. MIS Q. 2009, 33, 689–707. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Richter, N.F.; Cepeda, G.; Roldán, J.L.; Ringle, C.M. European management research using partial least squares structural equation modeling (PLS-SEM). Eur. Manag. J. 2016, 34, 589–597. [Google Scholar] [CrossRef]
- Chin, W.W.; Newsted, P.R. Structural equation modeling analysis with small samples using partial least squares. Stat. Strateg. Small Sample Res. 1999, 1, 307–341. [Google Scholar]
- Ramayah, T.; Ahmad, N.H.; Halim, H.A.; Zainal, S.R.M.; Lo, M.-C. Discriminant analysis: An illustrated example. Afr. J. Bus. Manag. 2010, 4, 1654–1667. [Google Scholar]
- Osborne, J.W. Improving your data transformations: Applying the Box-Cox transformation. Pract. Assess. Res. Eval. 2010, 15, 1–9. [Google Scholar]
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS 3; SmartPLS GmbH: Boenningstedt, Germany, 2015. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. In New Challenges to International Marketing; Emerald Group Publishing Limited: Bingley, UK, 2009; pp. 277–319. [Google Scholar]
- Ringle, C.M.; Boysen, N.; Wende, S.; Will, A. Messung von Kausalmodellen mit dem Partial-Least-Squares-Verfahren. Wirtschaftsstudium 2006, 35, 81–88. [Google Scholar]
- Wilson, B. Using PLS to investigate interaction effects between higher order branding constructs. In Handbook of Partial Least Squares; Springer: Berlin, Germany, 2010; pp. 621–652. [Google Scholar]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411–423. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Thousand Oaks, CA, USA, 2016. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Multivariate analysis of variance and covariance. Using Multivar. Stat. 2007, 3, 402–407. [Google Scholar]
- Rasoolimanesh, S.M.; Roldán, J.L.; Jaafar, M.; Ramayah, T. Factors influencing residents’ perceptions toward tourism development: Differences across rural and urban world heritage sites. J. Travel Res. 2017, 56, 760–775. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum Associates: Hillsdale, MI, USA, 1988. [Google Scholar]
- Ariff, M. Need to Increase Usage of Energy Efficient Products. Bernama News. Available online: http://kpdnkk.bernama.com/featuresEn.php?Id=1024991 (accessed on 10 February 2017).
- López-Mosquera, N.; García, T.; Barrena, R. An extension of the Theory of Planned Behavior to predict willingness to pay for the conservation of an urban park. J. Environ. Manag. 2014, 135, 91–99. [Google Scholar] [CrossRef]
- McGilligan, C.; Sunikka-Blank, M.; Natarajan, S. Subsidy as an agent to enhance the effectiveness of the energy performance certificate. Energy Policy 2010, 38, 1272–1287. [Google Scholar] [CrossRef]
- Theotokis, A.; Vlachos, P.A.; Pramatari, K. The Moderating Role of Customer—Technology Contact on Attitude towards Technology-Based Services; Palgrave Macmillan: Basingstoke, UK, 2008; pp. 343–351. [Google Scholar]
- Pickett-Baker, J.; Ozaki, R. Pro-environmental products: Marketing influence on consumer purchase decision. J. Consum. Mark. 2008, 25, 281–293. [Google Scholar] [CrossRef]
- Wagner, S.A. Understanding Green Consumer Behaviour: A Qualitative Cognitive Approach; Routledge: Abingdon, UK, 2002. [Google Scholar]
Year | Authors | Country | Context | Constructs |
---|---|---|---|---|
2012 | Ha & Janda | South Korea | Household energy saving | Attitude, Subjective Norm, Belief about energy efficient product, Knowledge about energy efficient product, Environmental awareness, confidence of consequence, Eagerness of environmental engagement |
2014 | Wang et al., | China | Household energy saving | Attitude, Subjective Norm, Perceived Behavioral Control, Information Publicity, Living Habits, Energy Knowledge, Demographic Variable |
2017 | Tan et al., | Malaysia | Household energy saving | Attitude, Subjective Norm, Perceived Behavioral Control, Moral Norms, Environmental Concern, Environmental Knowledge |
2017 | E. Park & S.J. Kwon | South Korea | Household energy saving | Intention to use, Perceived Benefits, Perceived Value, Perceived risk, Social Responsibility, Environmental Knowledge, Trust, Perceived Cost, Actual usage |
2017 | Wang et al., | China | Household energy saving | Attitude, Subjective Norm, Perceived Behavioral Control, Residual effect |
Characteristics | Frequency | Percentage% | |
---|---|---|---|
Gender | Male | 274 | 69.2 |
Female | 122 | 30.8 | |
Age | 18–22 | 45 | 11.4 |
23–27 | 146 | 47 | |
28–30 | 165 | 41.7 | |
Education | Primary level or low | 44 | 11.1 |
Secondary level | 72 | 18.2 | |
Graduation level | 184 | 46.2 | |
Post-graduation level or higher | 96 | 24.2 | |
Occupation | Student | 119 | 30.1 |
Service professional | 148 | 37.4 | |
Businessmen | 129 | 32.6 | |
Household monthly income | Less than 50,000 Rs | 21 | 5.3 |
50,001–less 100,000 | 63 | 15.9 | |
100,001–less 150,000 | 95 | 24 | |
150,001 Rs and Over | 217 | 54.8 | |
Ever purchased energy-saving household products in the past? | Yes | 290 | 73.2 |
No | 106 | 26.8 |
Construct | Item | Loadings | CR | AVE |
---|---|---|---|---|
Attitude | ATT1 | 0.789 | 0.85 | 0.536 |
ATT2 | 0.575 | |||
ATT3 | 0.797 | |||
ATT4 | 0.81 | |||
ATT5 | 0.662 | |||
Subjective Norm | SN1 | 0.68 | 0.893 | 0.679 |
SN2 | 0.834 | |||
SN3 | 0.855 | |||
SN4 | 0.911 | |||
Perceived Behavioral Control | PBC1 | 0.704 | 0.822 | 0.536 |
PBC2 | 0.751 | |||
PBC3 | 0.682 | |||
PBC4 | 0.788 | |||
Purchase Intention | PI1 | 0.772 | 0.817 | 0.528 |
PI2 | 0.681 | |||
PI3 | 0.762 | |||
PI4 | 0.685 | |||
Optimism | OPPT1 | 0.568 | 0.836 | 0.565 |
OPPT2 | 0.801 | |||
OPPT3 | 0.842 | |||
OPPT4 | 0.765 | |||
Innovativeness | INNO1 | 0.753 | 0.82 | 0.534 |
INNO2 | 0.716 | |||
INNO3 | 0.773 | |||
INNO4 | 0.676 | |||
Discomfort | DISC1 | 0.742 | 0.875 | 0.637 |
DISC2 | 0.875 | |||
DISC3 | 0.819 | |||
DISC4 | 0.749 | |||
Insecurity | INSEC1 | 0.762 | 0.853 | 0.592 |
INSEC2 | 0.795 | |||
INSEC3 | 0.769 | |||
INSEC4 | 0.749 |
Heterotrait-Monotrait Ratio (HTMT) | ||||||||
---|---|---|---|---|---|---|---|---|
ATT | DISC | INNO | INSEC | OPPT | PBC | PI | SN | |
ATT | ||||||||
DISC | 0.166 | |||||||
INNO | 0.685 | 0.063 | ||||||
INSEC | 0.206 | 0.47 | 0.114 | |||||
OPPT | 0.393 | 0.073 | 0.491 | 0.056 | ||||
PBC | 0.446 | 0.074 | 0.473 | 0.135 | 0.302 | |||
PI | 0.785 | 0.15 | 0.682 | 0.171 | 0.363 | 0.517 | ||
SN | 0.068 | 0.279 | 0.132 | 0.358 | 0.071 | 0.082 | 0.081 |
Results of SEM and Hypothesis Testing | |||||||||
---|---|---|---|---|---|---|---|---|---|
Hypothesis | Relationship | Path Coefficient | Std. Error | t Value | p Value | Supported | R2 | Q2 | f2 |
H1 | ATT->PI | 0.519 | 0.039 | 13.375 | 0 | Yes | 0.383 | 0.188 | 0.384 |
H2 | SN->PI | 0.028 | 0.05 | 0.557 | 0.289 | No | 0.001 | ||
H3 | PBC->PI | 0.199 | 0.048 | 4.162 | 0 | Yes | 0.056 | ||
H4a | OPPT->ATT | 0.125 | 0.044 | 2.818 | 0.002 | Yes | 0.327 | 0.156 | 0.02 |
H4b | INNO->ATT | 0.487 | 0.04 | 12.19 | 0 | Yes | 0.306 | ||
H4c | INSEC->ATT | −0.089 | 0.041 | 2.141 | 0.016 | Yes | 0.01 | ||
H4d | DISC->ATT | −0.086 | 0.041 | 2.076 | 0.019 | Yes | 0.009 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.; Ullah, H.; Akbar, M.; Akhtar, W.; Zahid, H. Determinants of Consumer Intentions to Purchase Energy-Saving Household Products in Pakistan. Sustainability 2019, 11, 1462. https://doi.org/10.3390/su11051462
Ali S, Ullah H, Akbar M, Akhtar W, Zahid H. Determinants of Consumer Intentions to Purchase Energy-Saving Household Products in Pakistan. Sustainability. 2019; 11(5):1462. https://doi.org/10.3390/su11051462
Chicago/Turabian StyleAli, Saqib, Habib Ullah, Minhas Akbar, Waheed Akhtar, and Hasan Zahid. 2019. "Determinants of Consumer Intentions to Purchase Energy-Saving Household Products in Pakistan" Sustainability 11, no. 5: 1462. https://doi.org/10.3390/su11051462
APA StyleAli, S., Ullah, H., Akbar, M., Akhtar, W., & Zahid, H. (2019). Determinants of Consumer Intentions to Purchase Energy-Saving Household Products in Pakistan. Sustainability, 11(5), 1462. https://doi.org/10.3390/su11051462