Developing Harvest Strategies to Achieve Ecological, Economic and Social Sustainability in Multi-Sector Fisheries
Abstract
:1. Introduction
2. The Coral Reef Fin Fish Fishery (CRFFF)
3. Materials and Methods
3.1. Identification of Management Objectives
3.2. Objective Weighting Approaches
3.3. Identification of Potential Harvest Strategies
3.4. Performance of Each Harvest Strategy against the Objectives
3.5. Ethical Clearance
4. Results
4.1. Identification and Weighting of Objectives
4.1.1. Objective Weighting Survey Responses
4.1.2. Objective Importance
4.2. Performance of Harvest Strategies against the Objectives
4.2.1. Harvest Strategy Impacts
4.2.2. Overall Performance Measures of Each of the Harvest Strategies
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pikitch, E.K.; Santora, C.; Babcock, E.A.; Bakun, A.; Bonfil, R.; Conover, D.O.; Dayton, P.; Doukakis, P.; Fluharty, D.; Heneman, B.; et al. Ecosystem-Based Fishery Management. Science 2004, 305, 346–347. [Google Scholar] [CrossRef] [PubMed]
- Arkema, K.K.; Abramson, S.C.; Dewsbury, B.M. Marine ecosystem-based management: From characterization to implementation. Front. Ecol. Environ. 2006, 4, 525–532. [Google Scholar] [CrossRef]
- Stephenson, R.L.; Benson, A.J.; Brooks, K.; Charles, A.; Degnbol, P.; Dichmont, C.M.; Kraan, M.; Pascoe, S.; Paul, S.D.; Rindorf, A.; et al. Practical steps toward integrating economic, social and institutional elements in fisheries policy and management. ICES J. Mar. Sci. 2017, 74, 1981–1989. [Google Scholar] [CrossRef] [Green Version]
- Brooks, K.; Schirmer, J.; Pascoe, S.; Triantafillos, L.; Jebreen, E.; Cannard, T.; Dichmont, C.M. Selecting and assessing social objectives for Australian fisheries management. Mar. Policy 2015, 53, 111–122. [Google Scholar] [CrossRef]
- Department of Agriculture and Fisheries. Queensland Sustainable Fisheries Strategy, 2017–2027; Queensland Government: Brisbane, Australia, 2017.
- Innes, J.; Thebaud, O.; Norman Lopez, A.; Little, L.R. Does size matter? An assessment of quota market evolution and performance in the Great Barrier Reef fin-fish fishery. Ecol. Soc. 2014, 19, 1–14. [Google Scholar] [CrossRef]
- Halpern, B.S.; Lester, S.E.; McLeod, K.L. Placing marine protected areas onto the ecosystem-based management seascape. Proc. Natl. Acad. Sci. USA 2010, 107, 18312–18317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, D.H.; Russ, G.R.; Ayling, A.M. No-take marine reserves increase abundance and biomass of reef fish on inshore fringing reefs of the Great Barrier Reef. Environ. Conserv. 2004, 31, 149–159. [Google Scholar] [CrossRef]
- Thébaud, O.; Innes, J.; Norman-López, A.; Slade, S.; Cameron, D.; Cannard, T.; Tickell, S.; Kung, J.; Kerrigan, B.; Williams, L.; et al. Micro-economic drivers of profitability in an ITQ-managed fishery: An analysis of the Queensland Coral Reef Fin-Fish Fishery. Mar. Policy 2014, 43, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Department of Employment, Economic Development and Innovation (DEEDI). Annual Status Report 2010 Coral Reef Fin Fish Fishery; Department of Employment, Economic Development and Innovation: Brisbane, Australia, 2011; p. 19.
- Queensland Department of Agriculture and Fisheries (DAF). Queensland Fisheries Summaries; Queensland Department of Agriculture and Fisheries: Brisbane, Australia, 2018.
- Sutton, S.G.; Tobin, R.C. Recreational fishers’ attitudes towards the 2004 rezoning of the Great Barrier Reef Marine Park. Environ. Conserv. 2009, 36, 245–252. [Google Scholar] [CrossRef]
- Stoeckl, N.; Hicks, C.C.; Mills, M.; Fabricius, K.; Esparon, M.; Kroon, F.; Kaur, K.; Costanza, R. The economic value of ecosystem services in the Great Barrier Reef: Our state of knowledge. Ann. N. Y. Acad. Sci. 2011, 1219, 113–133. [Google Scholar] [CrossRef]
- Mapstone, B.D.; Little, L.R.; Punt, A.E.; Davies, C.R.; Smith, A.D.M.; Pantus, F.; McDonald, A.D.; Williams, A.J.; Jones, A. Management strategy evaluation for line fishing in the Great Barrier Reef: Balancing conservation and multi-sector fishery objectives. Fish. Res. 2008, 94, 315–329. [Google Scholar] [CrossRef]
- Queensland Government. Charter Fishing Action Plan 2017–2020: Discussion Paper; Queensland Government: Brisbane, Australia, 2017.
- Tobin, A.; Schlaff, A.; Tobin, R.; Penny, A.; Ayling, A.; Krause, B.; Welch, D.; Sutton, S.; Sawynok, B.; Marshall, N. Adapting to Change: Minimising Uncertainty about the Effects of Rapidly-Changing Environmental Conditions on the Queensland Coral Reef Fin Fish Fishery; Fishing and Fisheries Research Centre, James Cook University: Townsville, Australia, 2010. [Google Scholar]
- Stuart-Smith, R.D.; Brown, C.J.; Ceccarelli, D.M.; Edgar, G.J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 2018, 560, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Wismer, S.; Tebbett, S.B.; Streit, R.P.; Bellwood, D.R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 2019, 650, 1487–1498. [Google Scholar] [CrossRef] [PubMed]
- Pascoe, S.; Proctor, W.; Wilcox, C.; Innes, J.; Rochester, W.; Dowling, N. Stakeholder objective preferences in Australian Commonwealth managed fisheries. Mar. Policy 2009, 33, 750–758. [Google Scholar] [CrossRef]
- Soma, K. How to involve stakeholders in fisheries management—A country case study in Trinidad and Tobago. Mar. Policy 2003, 27, 47–58. [Google Scholar] [CrossRef]
- Mardle, S.; Pascoe, S.; Boncoeur, J.; Le Gallic, B.; Garcia-Hoyo, J.J.; Herrero, N.; Jimenez-Toribio, R.; Cortes, C.; Padilla, N.; Nielsen, J.R.; et al. Objectives of fisheries management: Case studies from the UK, France, Spain and Denmark. Mar. Policy 2002, 26, 415–428. [Google Scholar] [CrossRef]
- Wattage, P.; Mardle, S.; Pascoe, S. Evaluation of the importance of fisheries management objectives using choice-experiments. Ecol. Econ. 2005, 55, 85–95. [Google Scholar] [CrossRef]
- Leung, P.; Muraoka, J.; Nakamoto, S.T.; Pooley, S. Evaluating fisheries management options in Hawaii using analytic hierarchy process (AHP). Fish. Res. 1998, 36, 171–183. [Google Scholar] [CrossRef]
- Jennings, S.; Pascoe, S.; Hall-Aspland, S.; LeBouhellec, B.; Norman-Lopez, A.; Sullivan, A.; Pecl, G. Setting objectives for evaluating management adaptation actions to address climate change impacts in south-eastern Australian fisheries. Fish Oceanogr. 2016, 25, 29–44. [Google Scholar] [CrossRef]
- Pascoe, S.; Dichmont, C.M.; Brooks, K.; Pears, R.; Jebreen, E. Management objectives of Queensland fisheries: Putting the horse before the cart. Mar. Policy 2013, 37, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Queensland Department of Agriculture and Fisheries (DAF). Coral Reef Fin Fish Fishery Working Group. Available online: www.daf.qld.gov.au/business-priorities/fisheries/sustainable/sustainable-fisheries-strategy/fishery-working-groups/-coral-reef-fin-fish-fishery-working-group (accessed on 23 January 2019).
- Roberts, R.; Goodwin, P. Weight approximations in multi-attribute decision models. J. Multi-Criteria Decis. Anal. 2002, 11, 291–303. [Google Scholar] [CrossRef]
- Bottomley, P.A.; Doyle, J.R. A comparison of three weight elicitation methods: Good, better, and best. Omega 2001, 29, 553–560. [Google Scholar] [CrossRef]
- Bottomley, P.A.; Doyle, J.R.; Green, R.H. Testing the reliability of weight elicitation methods: Direct rating versus point allocation. JMR J. Mark. Res. 2000, 37, 508–513. [Google Scholar] [CrossRef]
- Wang, J.-J.; Jing, Y.-Y.; Zhang, C.-F.; Zhao, J.-H. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev. 2009, 13, 2263–2278. [Google Scholar] [CrossRef]
- Hayashi, K. Multicriteria analysis for agricultural resource management: A critical survey and future perspectives. Eur. J. Oper. Res. 2000, 122, 486–500. [Google Scholar] [CrossRef]
- Doyle, J.R.; Green, R.H.; Bottomley, P.A. Judging Relative Importance: Direct Rating and Point Allocation Are Not Equivalent. Organ. Behav. Hum. Decis. Process. 1997, 70, 65–72. [Google Scholar] [CrossRef]
- Pöyhönen, M.; Hämäläinen, R.P. On the convergence of multiattribute weighting methods. Eur. J. Oper. Res. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Van Ittersum, K.; Pennings, J.M.E.; Wansink, B.; van Trijp, H.C.M. The validity of attribute-importance measurement: A review. J. Bus. Res. 2007, 60, 1177–1190. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Himes, A.H. Performance Indicator Importance in MPA Management Using a Multi-Criteria Approach. Coast. Manag. 2007, 35, 601–618. [Google Scholar] [CrossRef]
- Mardle, S.; Pascoe, S.; Herrero, I. Management objective importance in fisheries: An evaluation using the analytic hierarchy process (AHP). Environ. Manag. 2004, 33, 1–11. [Google Scholar] [CrossRef]
- Nielsen, J.R.; Mathiesen, C. Stakeholder preferences for Danish fisheries management of sand eel and Norway pout. Fish. Res. 2006, 77, 92–101. [Google Scholar] [CrossRef]
- Wattage, P.; Mardle, S. Stakeholder preferences towards conservation versus development for a wetland in Sri Lanka. J. Environ. Manag. 2005, 77, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Baby, S. AHP Modeling for Multicriteria Decision-Making and to Optimise Strategies for Protecting Coastal Landscape Resources. Int. J. Innov. 2013, 4, 218–227. [Google Scholar] [CrossRef]
- Bodin, L.; Gass, S.I. On teaching the analytic hierarchy process. Comput. Oper. Res. 2003, 30, 1487–1497. [Google Scholar] [CrossRef]
- Dichmont, C.; Pascoe, S.; Jebreen, E.; Pears, R.; Brooks, K.; Perez, P. Providing Social Science Objectives and Indicators to Compare Management Options in the Queensland Trawl Planning Process; CSIRO: Collingwood, Australia, 2012. [Google Scholar]
- Dichmont, C.M.; Pascoe, S.; Jebreen, E.; Pears, R.; Brooks, K.; Perez, P. Choosing a fishery’s governance structure using data poor methods. Mar. Policy 2013, 37, 123–131. [Google Scholar] [CrossRef]
- Pascoe, S.; Tobin, R.; Windle, J.; Cannard, T.; Marshall, N.; Kabir, Z.; Flint, N. Developing a Social, Cultural and Economic Report Card for a Regional Industrial Harbour. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Pascoe, S.; Doshi, A. Estimating Coastal Values Using Multi-Criteria and Valuation Methods; CSIRO: Brisbane, Australia, 2018. [Google Scholar]
- Whitmarsh, D.; Wattage, P. Public attitudes towards the environmental impact of salmon aquaculture in Scotland. Environ. Policy Gov. 2006, 16, 108–121. [Google Scholar] [CrossRef]
- Marre, J.-B.; Pascoe, S.; Thébaud, O.; Jennings, S.; Boncoeur, J.; Coglan, L. Information preferences for the evaluation of coastal development impacts on ecosystem services: A multi-criteria assessment in the Australian context. J. Environ. Manag. 2016, 173, 141–150. [Google Scholar] [CrossRef]
- Samvedi, A.; Jain, V.; Chan, F.T.S. Quantifying risks in a supply chain through integration of fuzzy AHP and fuzzy TOPSIS. Int. J. Prod. Res. 2013, 51, 2433–2442. [Google Scholar] [CrossRef]
- Benlian, A. Is traditional, open-source, or on-demand first choice? Developing an AHP-based framework for the comparison of different software models in office suites selection. Eur. J. Inf. Syst. 2011, 20, 542–559. [Google Scholar] [CrossRef]
- Thadsin, K.; George, H.; Stanley, M. Introduction of AHP Satisfaction Index for workplace environments. J. Corp. Real Estate 2012, 14, 80–93. [Google Scholar]
- Hummel, J.M.; Steuten, L.G.M.; Groothuis-Oudshoorn, C.J.M.; Mulder, N.; IJzerman, M.J. Preferences for Colorectal Cancer Screening Techniques and Intention to Attend: A Multi-Criteria Decision Analysis. Appl. Health Econ. Health Policy 2013, 11, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Sara, J.; Stikkelman, R.M.; Herder, P.M. Assessing relative importance and mutual influence of barriers for CCS deployment of the ROAD project using AHP and DEMATEL methods. Int. J. Greenh. Gas Control 2015, 41 (Suppl. C), 336–357. [Google Scholar] [CrossRef]
- Tozer, P.R.; Stokes, J.R. Producer Breeding Objectives and Optimal Sire Selection. J. Dairy Sci. 2002, 85, 3518–3525. [Google Scholar] [CrossRef]
- Crawford, G.; Williams, C. A note on the analysis of subjective judgment matrices. J. Math. Psychol. 1985, 29, 387–405. [Google Scholar] [CrossRef]
- Aguarón, J.; Moreno-Jiménez, J.M. Local stability intervals in the analytic hierarchy process. Eur. J. Oper. Res. 2000, 125, 113–132. [Google Scholar] [CrossRef]
- Saaty, T.L. Axiomatic Foundation of the Analytic Hierarchy Process. Manag. Sci. 1986, 32, 841–855. [Google Scholar] [CrossRef]
- Pascoe, S.; Bustamante, R.; Wilcox, C.; Gibbs, M. Spatial fisheries management: A framework for multi-objective qualitative assessment. Ocean Coast. Manag. 2009, 52, 130–138. [Google Scholar] [CrossRef]
- Huber, G.P. Methods for quantifying subjective probabilities and multi-attribute utilities. Decis. Sci. 1974, 5, 430–458. [Google Scholar] [CrossRef]
- Hampton, J.M.; Moore, P.G.; Thomas, H. Subjective Probability and Its Measurement. J. R. Stat. Soc. Ser. A (General) 1973, 136, 21–42. [Google Scholar] [CrossRef]
- Pascoe, S.; Dichmont, C.M. Does membership matter? Individual influences in natural resource management decision making. Mar. Policy 2017, 83, 48–54. [Google Scholar] [CrossRef]
- Wallsten, T.S.; Budescu, D.V.; Erev, I.; Diederich, A. Evaluating and Combining Subjective Probability Estimates. J. Behav. Decis. Mak. 1997, 10, 243–268. [Google Scholar] [CrossRef] [Green Version]
Broad Objectives (Level 1) | Sub-objectives (Level 2) | Specific Operational Objectives (Level 3) |
---|---|---|
1. Ensure ecological sustainability | 1.1 Ensure resource biomass sustainability | 1.1.1 As per the Queensland Sustainable Fisheries Strategy, achieve BMEY (biomass at maximum economic yield) (~60% unfished biomass or defensible proxy), by 2027 for the main commercial, charter and recreational species; if below biomass at maximum sustainable yield, BMSY, aim to achieve BMSY (~40–50% B0) by 2020. |
1.1.2 Minimize risk to Other Species in the fishery which are not included in 1.1.1. | ||
1.2 Ensure ecosystem resilience | 1.2.1 Minimize risk to bycatch species | |
1.2.2 Minimize discard mortality of target species (e.g., high grading) | ||
1.2.3 Minimize broader ecological risks | ||
1.2.4 Minimize risk to protected species | ||
1.3 Minimize risk of localized depletion | 1.3.1 Minimize risk of localized depletion due to fishing | |
1.3.2. Minimize risk of localized depletion in response to environmental events (e.g., cyclone) | ||
2. Enhance fishery economic performance | 2.1 Maximize commercial economic benefits, as combined totals for each of the following sectors | 2.1.1 Commercial fishing industry profits |
2.1.2 Charter sector profits | ||
2.1.3 Indigenous commercial benefits | ||
2.2 Maximize value of recreational fishers and charter experience (direct to participant) | 2.2 Maximize value of recreational fishers and charter experience | |
2.3 Maximize flow-on economic benefits to local communities (from all sectors) | 2.3 Maximize flow-on economic benefits to local communities | |
2.4 Minimize short term (inter-annual) economic risk | 2.4 Minimize short term (inter-annual) economic risk | |
2.5 Minimize costs of management associated with the harvest strategy: monitoring, undertaking assessments, adjusting management controls | 2.5 Minimize costs of management associated with the harvest strategy: monitoring, undertaking assessments, adjusting management controls | |
3. Enhance management performance | 3.1 Maximize willingness to comply with the harvest strategy | 3.1 Maximize willingness to comply with the harvest strategy |
4. Maximize social outcomes | 4.1 Maximize equity between recreational, charter, indigenous and commercial fishing | 4.1 Increase equitable access to the resource |
4.2 Improve social perceptions of the fishery (social license to operate) (recreational, commercial, charter, indigenous) | 4.2.1 Through sound fishing practices, minimize adverse public perception around discard mortality (compliance with size limits, environmental sustainability, and waste) | |
4.2.2 Maximize utilization of the retained catch of target species | ||
4.2.3 Maximize the potential for fishing to be perceived as a positive activity with benefits to the community (commercial, rec, and charter) | ||
4.3 Enhance the net social value to the local community from use of the resource | 4.3.1 Increase access to local seafood (all species) | |
4.3.2 Maximize spatial equity between regions or local communities |
Group | Commercial Fishers | Charter Boat Operators | Recreational Fishers | Quota Owners | Processors/Wholesalers/Buyers | Fishery Managers | Scientific Advisors | Other | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Responses | 57 | 25 | 26 | 35 | 8 | 7 | 7 | 9 | ||||||||
Mean | RSE | Mean | RSE | Mean | RSE | Mean | RSE | Mean | RSE | Mean | RSE | Mean | RSE | Mean | RSE | |
Ecol1 | 0.308 | 3% | 0.384 | 3% | 0.335 | 3% | 0.297 | 3% | 0.387 | 3% | 0.454 | 3% | 0.461 | 3% | 0.405 | 3% |
Ecol1.1 | 0.100 | 4% | 0.130 | 4% | 0.124 | 4% | 0.110 | 4% | 0.207 | 4% | 0.254 | 4% | 0.193 | 4% | 0.138 | 4% |
• Ecol1.1.1 | 0.058 | 6% | 0.055 | 6% | 0.070 | 6% | 0.064 | 6% | 0.133 | 6% | 0.170 | 6% | 0.093 | 6% | 0.062 | 6% |
• Ecol1.1.2 | 0.042 | 6% | 0.075 | 6% | 0.054 | 6% | 0.046 | 6% | 0.074 | 6% | 0.083 | 6% | 0.100 | 6% | 0.076 | 6% |
Ecol1.2 | 0.109 | 5% | 0.132 | 5% | 0.115 | 5% | 0.101 | 5% | 0.099 | 5% | 0.120 | 5% | 0.191 | 5% | 0.133 | 5% |
• Ecol1.2.1 | 0.022 | 7% | 0.023 | 7% | 0.026 | 7% | 0.018 | 7% | 0.018 | 7% | 0.016 | 7% | 0.040 | 7% | 0.027 | 7% |
• Ecol1.2.2 | 0.037 | 5% | 0.045 | 5% | 0.038 | 5% | 0.039 | 5% | 0.039 | 5% | 0.038 | 5% | 0.044 | 5% | 0.051 | 5% |
• Ecol1.2.3 | 0.028 | 6% | 0.033 | 6% | 0.027 | 6% | 0.023 | 6% | 0.027 | 6% | 0.033 | 6% | 0.054 | 6% | 0.029 | 6% |
• Ecol1.2.4 | 0.023 | 6% | 0.031 | 6% | 0.024 | 6% | 0.020 | 6% | 0.016 | 6% | 0.033 | 6% | 0.053 | 6% | 0.026 | 6% |
Ecol1.3 | 0.099 | 5% | 0.122 | 5% | 0.096 | 5% | 0.087 | 5% | 0.081 | 5% | 0.080 | 5% | 0.077 | 5% | 0.134 | 5% |
• Ecol1.3.1 | 0.066 | 6% | 0.084 | 6% | 0.061 | 6% | 0.061 | 6% | 0.038 | 6% | 0.044 | 6% | 0.051 | 6% | 0.073 | 6% |
• Ecol1.3.2 | 0.033 | 7% | 0.038 | 7% | 0.035 | 7% | 0.025 | 7% | 0.042 | 7% | 0.036 | 7% | 0.027 | 7% | 0.062 | 7% |
Econ2 | 0.286 | 4% | 0.239 | 4% | 0.214 | 4% | 0.289 | 4% | 0.311 | 4% | 0.125 | 4% | 0.123 | 4% | 0.169 | 4% |
Econ2.1 | 0.099 | 5% | 0.062 | 5% | 0.053 | 5% | 0.098 | 5% | 0.094 | 5% | 0.033 | 5% | 0.035 | 5% | 0.036 | 5% |
• Econ2.1.1 | 0.064 | 7% | 0.023 | 7% | 0.025 | 7% | 0.064 | 7% | 0.057 | 7% | 0.017 | 7% | 0.016 | 7% | 0.023 | 7% |
• Econ2.1.2 | 0.018 | 7% | 0.031 | 7% | 0.020 | 7% | 0.019 | 7% | 0.024 | 7% | 0.008 | 7% | 0.010 | 7% | 0.008 | 7% |
• Econ2.1.3 | 0.017 | 8% | 0.008 | 8% | 0.008 | 8% | 0.015 | 8% | 0.013 | 8% | 0.008 | 8% | 0.009 | 8% | 0.006 | 8% |
Econ2.2 | 0.023 | 8% | 0.043 | 8% | 0.053 | 8% | 0.025 | 8% | 0.036 | 8% | 0.032 | 8% | 0.014 | 8% | 0.018 | 8% |
Econ2.3 | 0.061 | 6% | 0.057 | 6% | 0.048 | 6% | 0.060 | 6% | 0.086 | 6% | 0.022 | 6% | 0.032 | 6% | 0.059 | 6% |
Econ2.4 | 0.050 | 6% | 0.036 | 6% | 0.028 | 6% | 0.052 | 6% | 0.043 | 6% | 0.018 | 6% | 0.019 | 6% | 0.026 | 6% |
Econ2.5 | 0.053 | 5% | 0.041 | 5% | 0.032 | 5% | 0.055 | 5% | 0.053 | 5% | 0.020 | 5% | 0.022 | 5% | 0.030 | 5% |
Manage3 | 0.264 | 4% | 0.232 | 4% | 0.277 | 4% | 0.271 | 4% | 0.241 | 4% | 0.317 | 4% | 0.293 | 4% | 0.270 | 4% |
Social4 | 0.142 | 4% | 0.145 | 4% | 0.174 | 4% | 0.143 | 4% | 0.061 | 4% | 0.104 | 4% | 0.123 | 4% | 0.156 | 4% |
Social4.1 | 0.033 | 7% | 0.047 | 7% | 0.048 | 7% | 0.038 | 7% | 0.016 | 7% | 0.038 | 7% | 0.045 | 7% | 0.039 | 7% |
Social4.2 | 0.048 | 5% | 0.051 | 5% | 0.056 | 5% | 0.051 | 5% | 0.021 | 5% | 0.029 | 5% | 0.037 | 5% | 0.067 | 5% |
• Social4.2.1 | 0.010 | 6% | 0.011 | 6% | 0.013 | 6% | 0.011 | 6% | 0.006 | 6% | 0.008 | 6% | 0.006 | 6% | 0.017 | 6% |
• Social4.2.2 | 0.017 | 6% | 0.018 | 6% | 0.018 | 6% | 0.018 | 6% | 0.005 | 6% | 0.012 | 6% | 0.016 | 6% | 0.021 | 6% |
• Social4.2.3 | 0.021 | 6% | 0.022 | 6% | 0.026 | 6% | 0.022 | 6% | 0.010 | 6% | 0.009 | 6% | 0.015 | 6% | 0.029 | 6% |
Social4.3 | 0.061 | 6% | 0.047 | 6% | 0.070 | 6% | 0.054 | 6% | 0.024 | 6% | 0.037 | 6% | 0.041 | 6% | 0.050 | 6% |
• Social4.3.1 | 0.039 | 7% | 0.023 | 7% | 0.032 | 7% | 0.034 | 7% | 0.013 | 7% | 0.017 | 7% | 0.026 | 7% | 0.035 | 7% |
• Social4.3.2 | 0.022 | 6% | 0.024 | 6% | 0.038 | 6% | 0.02 | 6% | 0.012 | 6% | 0.021 | 6% | 0.015 | 6% | 0.016 | 6% |
Stakeholder Group | Charter | Environmental Overrides | Spatially Explicit Control Rules and Environmental Overrides | Split OS Quota | Split CT Quota |
---|---|---|---|---|---|
Commercial fisher | 0.06 | −0.13 | −0.06 | 0.28 | −0.28 |
Charter boat operator | 0.09 | −0.02 | 0.07 | 0.37 | −0.23 |
Recreational fisher | 0.09 | −0.07 | 0.02 | 0.34 | −0.26 |
Quota owner | 0.06 | −0.15 | −0.07 | 0.28 | −0.29 |
Processor/wholesaler | 0.09 | −0.02 | 0.04 | 0.38 | −0.24 |
Fishery manager | 0.10 | 0.03 | 0.08 | 0.49 | −0.23 |
Scientific advice | 0.11 | 0.02 | 0.09 | 0.46 | −0.22 |
Other | 0.10 | 0.00 | 0.08 | 0.40 | −0.24 |
Stakeholder Group | Charter | Environmental Overrides | Spatially Explicit Control Rules and Environmental Overrides | Split OS Quota | Split CT Quota |
---|---|---|---|---|---|
Commercial fisher | 0.30 | 0.51 | 0.48 | 0.31 | 0.64 |
Charter boat operator | 0.29 | 0.37 | 0.35 | 0.29 | 0.59 |
Recreational fisher | 0.29 | 0.45 | 0.39 | 0.32 | 0.61 |
Quota owner | 0.29 | 0.53 | 0.49 | 0.31 | 0.64 |
Processor/wholesaler | 0.33 | 0.34 | 0.38 | 0.25 | 0.58 |
Fishery manager | 0.35 | 0.33 | 0.32 | 0.27 | 0.59 |
Scientific/advice | 0.31 | 0.36 | 0.34 | 0.25 | 0.57 |
Other | 0.30 | 0.36 | 0.34 | 0.29 | 0.58 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pascoe, S.; Cannard, T.; Dowling, N.A.; Dichmont, C.M.; Breen, S.; Roberts, T.; Pears, R.J.; Leigh, G.M. Developing Harvest Strategies to Achieve Ecological, Economic and Social Sustainability in Multi-Sector Fisheries. Sustainability 2019, 11, 644. https://doi.org/10.3390/su11030644
Pascoe S, Cannard T, Dowling NA, Dichmont CM, Breen S, Roberts T, Pears RJ, Leigh GM. Developing Harvest Strategies to Achieve Ecological, Economic and Social Sustainability in Multi-Sector Fisheries. Sustainability. 2019; 11(3):644. https://doi.org/10.3390/su11030644
Chicago/Turabian StylePascoe, Sean, Toni Cannard, Natalie A. Dowling, Catherine M. Dichmont, Sian Breen, Tom Roberts, Rachel J. Pears, and George M. Leigh. 2019. "Developing Harvest Strategies to Achieve Ecological, Economic and Social Sustainability in Multi-Sector Fisheries" Sustainability 11, no. 3: 644. https://doi.org/10.3390/su11030644
APA StylePascoe, S., Cannard, T., Dowling, N. A., Dichmont, C. M., Breen, S., Roberts, T., Pears, R. J., & Leigh, G. M. (2019). Developing Harvest Strategies to Achieve Ecological, Economic and Social Sustainability in Multi-Sector Fisheries. Sustainability, 11(3), 644. https://doi.org/10.3390/su11030644