Effect of Diffusion Conditions on Absorption Performance of Materials Evaluated in Reverberation Chamber
Abstract
:1. Introduction
2. Diffusivity Evaluation Method
2.1. Definition of Sufficient Diffusion
2.2. Minimizing Edge Effect and Measuring Sound Absorption Performance of the Specimen Surface
2.2.1. Minimization of Edge Effect
2.2.2. Extrapolation of Sound Absorption Coefficient of Infinite Plate
2.3. Specimen Design and Measurement Conditions
3. Results
3.1. Sound Absorption Coefficient of Infinite Plate
3.2. Comparison between and
4. Discussion
4.1. Sound Absorption Performance of Finishing Materials in Predicting the Reverberation Time of Buildings
4.2. Relative Standard Deviation of Decay Rate
4.3. Correlation between and
4.4. Number of Peaks
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Picaut, J.; Simon, L. A scale model experiment for the study of sound propagation in urban areas. Appl. Acoust. 2001, 62, 327–340. [Google Scholar] [CrossRef]
- Hornikx, M.; Forssén, J. A scale model study of parallel urban canyons. Acta Acust. United Acust. 2008, 94, 641. [Google Scholar] [CrossRef]
- Lyon, R. Role of multiple reflections and reverberation in urban noise propagation. J. Acoust. Soc. Am. 1974, 55, 493. [Google Scholar] [CrossRef]
- Morfey, C. Dictionary of Acoustics; Academic Press: London, UK, 2011. [Google Scholar]
- Schultz, T.J. Diffusion in reverberation rooms. J. Sound. Vib. 1971, 16, 17–28. [Google Scholar] [CrossRef]
- Ramakrishnan, R.; Grewal, A. Reverberation rooms and spatial uniformity. Can. Acoust. Acoust. Can. 2008, 36, 28–29. Available online: https://jcaa.caa-aca.ca/index.php/jcaa/article/view/2021 (accessed on 22 November 2019).
- Park, H.; Jeon, J.Y. The effects of light equipment on the acoustic characteristics of a TV studio. Build. Environ. 2017, 120, 53–63. [Google Scholar] [CrossRef]
- Toyoda, E.; Sakamoto, S.; Tachibana, H. Effects of room shape and diffusing treatment on the measurement of sound absorption coefficient in a reverberation room. Acoust. Soc. Japan 2004, 25, 255–266. [Google Scholar] [CrossRef]
- Vercammen, M.L.S. How to Improve the Accuracy of the Absorption measurement in the Reverberation Chamber. In Proceedings of the NAG-DAGA 2009, Rotterdam, The Netherlands, 23–26 March 2009. [Google Scholar]
- Sute, K.; Koyasu, M. On the New Reverberation Chamber with Nonparallel Walls (Studies on the Measurement of Absorption Coefficient by the Reverberation Chamber Method, II). J. Phys. Soc. Jpn. 1959, 1, 670–677. [Google Scholar] [CrossRef]
- ASTM C 423-09a. Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method; ASTM International: West Conshohocken, PA, USA, 2009. [Google Scholar] [CrossRef]
- ISO 354: 2003(E). Acoustics—Measurement of Sound Absorption in a Reverberation Room; ISO: Geneva, Switzerland, 2003. [Google Scholar]
- ASTM Standard E596. Standard Test Method for Laboratory Measurement of Noise Reduction of Sound-Isolating Enclosures; Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2002. [Google Scholar] [CrossRef]
- ISO Standard 17497-1. Acoustics—Sound-Scattering Properties of Surfaces—Part 1: Measurement of the Random-Incidence Scattering Coefficient in a Reverberation Room; International Organization for Standardization: Geneva, Switzerland, 2004. [Google Scholar] [CrossRef]
- ASTM Standard E492. Standard Test Method for Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine; Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2004. [Google Scholar] [CrossRef]
- ASTM Standard E90. Acoustics—Standard Test Method for Laboratory Measurement of Air-Borne Sound Transmission Loss of Building Partitions and Elements; Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2009. [Google Scholar] [CrossRef]
- Vercammen, M. Improving the accuracy of sound absorption measurement according to ISO 354. In Proceedings of the International Symposium on Room Acoustics, Melbourne, Australia, 29–31 August 2010. [Google Scholar]
- Cops, A.; Vanhaecht, J.; Leppens, K. Sound absorption in a Reverberation Room: Causes of discrepancies on Measurement Results. Appl. Acoust. 1995, 46, 215–232. [Google Scholar] [CrossRef]
- Nolan, M.; Vercammen, M.; Jeong, C.H. Effects of different diffuser types on the diffusivity in reverberation chambers. In Proceedings of the EuroNoise 2015, Maastrict, The Netherlands, 31 May 2015–3 June 2015. [Google Scholar]
- Jang, H.; Kim, H.; Jeon, J. Scale-model method for measuring for noise reduction in residential buildings by vegetation. Build. Environ. 2015, 86, 81–88. [Google Scholar] [CrossRef]
- Bradley, D.T.; Müller-Trapet, M.; Adelgren, J.; Vorländer, M. Comparison of hanging panels and boundary diffusers in a reverberation chamber. Build. Acoust. 2014, 21, 145–152. [Google Scholar] [CrossRef]
- Bradley, D.T.; Müller-Trapet, M.; Adelgren, J.; Vorländer, M. Effect of boundary diffusers in a reverberation chamber: Standardized diffuse field quantifiers. J. Acoust. Soc. Am. 2014, 135, 1898–1906. [Google Scholar] [CrossRef] [PubMed]
- Lautenbach, M.R.; Vercammen, M.L. Can we use the standard deviation of the reverberation time to describe diffusion in a reverberation chamber? In Proceedings of the Meetings on Acoustics, Montreal, QC, Canada, 2–7 June 2013. [Google Scholar] [CrossRef]
- Davy, J.L.; Dunn, I.P. The variance of decay rates in a reverberation rooms. Acta Acust. United Acust. 1979, 43, 12–25. [Google Scholar]
- Vorlander, M. Auralization; Springer: Berlin, Germany, 2008; pp. 1–335. [Google Scholar]
- Jeon, J.Y.; Jang, H.S.; Kim, Y.H. Influence of wall scattering on the early fine structures of measured room impulse responses. J. Acoust. Soc. Am. 2015, 137, 1108–1116. [Google Scholar] [CrossRef] [PubMed]
- Mee, D.J.; Vallis, J. Improving Sound Diffusion in a Reverberation Chamber. In Proceedings of the Acoustics 2015 Hunter Valley, Pokolbin, Australia, 15–18 November 2015. [Google Scholar]
- Tomasson, S.I. On the absorption coefficient. Acta Acust. United Acust. 1980, 44, 265–273. [Google Scholar]
- Kawakami, F.; Saka, T. Deep-well approach for canceling the edge effect in random incident absorption measurement. J. Acoust. Soc. Jpn. E 1998, 19, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Kosten, C.W. International comparison measurements in the reverberation room. Acta Acust. United Acust. 1960, 10, 400–411. [Google Scholar]
- Gomperts, M.C. Do the classical reverberation formulae still have a right for existence? Acta Acust. United Acust. 1965, 16, 255–268. [Google Scholar]
- Ten Wolde, T. Measurements on the edge-effect in reverberation rooms. Acta Acust. United Acust. 1967, 17, 207–212. [Google Scholar]
- Lauriks, W.; Cops, A.; Belien, P. The influence of edge-effect on the statistical absorption coefficient. Acustica 1990, 70, 155–159. [Google Scholar]
- Scrosati, C.; Scamoni, F.; Depalma, M.; Granzotto, N. On the diffusion of the sound field in a reverberation room. In Proceedings of the 26th International Congress on Sound and Vibration, Montreal, QC, Canada, 7–11 July 2019. [Google Scholar]
- Vercammen, M. On the revision of ISO 354, measurement of the sound absorption in the reverberation room. In Proceedings of the ICA 2019 AACHEN, Aachen, Germany, 9–13 September 2019; pp. 3991–3996. [Google Scholar]
- Scrosati, C.; Annesi, D.; Barbaresi, L.; Baruffa, R.; D’angelo, F.; de Napoli, G.; Depalma, M.; di Bella, A.; di Filippo, S.; D’oraZzio, D.; et al. Design Principles of the Italian Round Robin Test on Reverberation Rooms. In Proceedings of the 23rd International Congress on Acoustics, Aachen, Germany, 9–13 September 2019. [Google Scholar]
Specimen Size | Edge Length (A) (m) | Specimen Area (B) (m2) | E (A/B) (m−1) | Number of Specimens (EA) |
---|---|---|---|---|
0.5 × 0.5 | 2.0 | 0.25 | 8.00 | 16 |
0.5 × 1.0 | 3.0 | 0.50 | 6.00 | 8 |
1.0 × 1.0 | 4.0 | 1.00 | 4.00 | 6 |
1.0 × 2.0 | 6.0 | 2.00 | 3.00 | 4 |
1.5 × 1.5 | 6.0 | 2.25 | 2.67 | 4 |
2.0 × 2.0 | 8.0 | 4.00 | 2.00 | 2 |
3.0 × 3.0 | 12.0 | 9.00 | 1.33 | 1 |
3.0 × 4.0 | 14.0 | 12.00 | 1.17 | 1 |
4.0 × 4.0 | 16.0 | 16.00 | 1.00 | 1 |
[Hz] | [Hz] | ||
---|---|---|---|
100 | = 0.0093E + 0.0535, R2 = 0.84 | 800 | = 0.0947E + 0.8842, R2 = 0.99 |
125 | = 0.0069E + 0.0692, R2 = 0.53 | 1000 | = 0.0891E + 0.8919, R2 = 0.98 |
160 | = 0.0184E + 0.2241, R2 = 0.87 | 1250 | = 0.0744E + 0.9142, R2 = 0.97 |
200 | = 0.0255E + 0.3491, R2 = 0.87 | 1600 | = 0.0660E + 0.9361, R2 = 0.97 |
250 | = 0.0297E + 0.5529, R2 = 0.78 | 2000 | = 0.0564E + 0.9532, R2 = 0.98 |
315 | = 0.0536E + 0.6757, R2 = 0.96 | 2500 | = 0.0500E + 0.9622, R2 = 0.97 |
400 | = 0.0857E + 0.7689, R2 = 0.97 | 3150 | = 0.0405E + 0.9752, R2 = 0.91 |
500 | = 0.0920E + 0.8426, R2 = 0.98 | 4000 | = 0.0368E + 0.9701, R2 = 0.82 |
630 | = 0.1032E + 0.8589, R2 = 0.99 | 5000 | = 0.0288E + 0.9829, R2 = 0.64 |
Type | L (m)/W (m) | Area (m2) | Number | |
---|---|---|---|---|
A | 0.9 | 1.0 | 0.90 | 1 |
B | 0.8 | 1.2 | 0.96 | 1 |
C | 1.0 | 1.1 | 1.10 | 1 |
D | 0.8 | 1.8 | 1.44 | 1 |
E | 0.9 | 1.8 | 1.62 | 1 |
F | 1.0 | 1.8 | 1.80 | 2 |
G | 1.0 | 2.0 | 2.00 | 5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.H.; Jeon, J.Y. Effect of Diffusion Conditions on Absorption Performance of Materials Evaluated in Reverberation Chamber. Sustainability 2019, 11, 6651. https://doi.org/10.3390/su11236651
Kim KH, Jeon JY. Effect of Diffusion Conditions on Absorption Performance of Materials Evaluated in Reverberation Chamber. Sustainability. 2019; 11(23):6651. https://doi.org/10.3390/su11236651
Chicago/Turabian StyleKim, Kyung Ho, and Jin Yong Jeon. 2019. "Effect of Diffusion Conditions on Absorption Performance of Materials Evaluated in Reverberation Chamber" Sustainability 11, no. 23: 6651. https://doi.org/10.3390/su11236651