A Nutritional Evaluation of Insect Meal as a Sustainable Protein Source for Jumbo Quails: Physiological and Meat Quality Responses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Dietary Ingredient Sources
2.2. Diet Formulation
2.3. Chemical Analyses
2.4. Experimental Design and Quail Management
2.5. Feed Intake and Growth Performance
2.6. Slaughter and Hemato-Biochemical Analyses
2.7. Carcass Traits and Internal Organs
2.8. Meat Quality
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions, Limitations and Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vries, M.; Boer, I.J.M. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Foley, J.A.; Fries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Mnisi, C.M.; Mlambo, V. Protease treatment of canola meal-containing Japanese quail diets: Effect on physiological parameters and meat quality traits. J. Appl. Anim. Res. 2018, 46, 1389–1394. [Google Scholar] [CrossRef]
- Cassidy, E.S.; West, P.C.; Gerber, J.S.; Foley, J.A. Redefining agricultural yields: From tonnes to people nourished per hectare. Environ. Res. Lett. 2013, 8, 034015. [Google Scholar] [CrossRef]
- Mungkung, R.; Aubin, J. Life cycle assessment for environmentally sustainable aquaculture management: A case study of combined aquaculture systems for carp and tilapia. Int. J. Life Cycle Assess. 2013, 11, 55–59. [Google Scholar] [CrossRef]
- Shumo, M.; Osuga, I.M.; Khamis, F.M.; Tanga, C.M.; Fiaboe, K.K.M.; Subramanian, S.; Ekesi, S.; van Huis, A.; Borgemeister, C. The nutritive value of black soldier fly larvae reared on common organic waste streams in Kenya. Sci. Rep. 2019, 9, 10110. [Google Scholar] [CrossRef]
- Newton, L.; Sheppard, C.; Watson, D.; Burtle, G.; Dove, R. Using the Black Soldier Fly, Hermetia Illucens, as a Value-Added Tool for the Management of Swine Manure; College of Agriculture and Environmental Science, University of Georgia: Athens, GA, USA, 2005. [Google Scholar]
- Diener, S.; Zurbrugg, C.; Tockner, K. Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates. Waste Manag. Res. 2009, 27, 603–610. [Google Scholar] [CrossRef]
- Zuidhof, M.; Molnar, C.; Morley, F.; Wray, T.; Robinson, F.; Khan, B.; Al-Ani, L.; Goonewardene, L. Nutritive value of house fly (Musca domestica) larvae as a feed supplement for turkey poults. Anim. Feed Sci. Technol. 2003, 105, 225–230. [Google Scholar] [CrossRef]
- Bondari, K.; Sheppard, D.C. Soldier fly larvae as feed in commercial fish production. Aquaculture 1981, 24, 103–109. [Google Scholar] [CrossRef]
- Pieterse, E.; Pretorius, Q.; Hoffman, L.; Drew, D. The carcass quality, meat quality and sensory characteristics of broilers raised on diets containing either Musca domestica larvae meal, fish meal or soya bean meal as the main protein source. Anim. Prod. Sci. 2014, 54, 622–628. [Google Scholar] [CrossRef]
- Oyegoke, O.O.; Akintola, A.J.; Fasoranti, J.O. Dietary potentials of the edible larvae of Cirinaforda (westwood) as a poultry feed. Afr. J. Biotechnol. 2006, 5, 1799–1802. [Google Scholar]
- Biasato, I.; Gasco, L.; Marco, D.M.; Rennab, M.; Rotolob, L.; Dabboub, S.; Capucchioa, M.T.; Biasibettia, I.E.; Tarantolaa, M.; Bianchia, C.; et al. Effects of yellow mealworm larvae (Tenebrio molitor) inclusion in diets for female broiler chickens: Implications for animal health and gut histology. Anim. Feed Sci. Technol. 2017, 234, 253–263. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- AgriLASA. Feed and Plant Analysis Methods; Agri Laboratory Association of Southern Africa: Pretoria, South Africa, 1998. [Google Scholar]
- Washington, I.M.; van Hoosier, G. Clinical Biochemistry and Hematology; University of Washington: Seattle, WA, USA, 2012; Volume 8, pp. 59–91. [Google Scholar] [CrossRef]
- CIE. Recommendations on Uniform Color Spaces-color Difference Equations, Psychometric Color Terms; Supplement No. 2 to CIE Publication No. 15 (E-1.3.1.) 1978, 1971/(TC-1-3); Commission Internationale de l’Eclairage: Paris, France, 1976. [Google Scholar]
- Priolo, A.; Moorhead, D.; Agabriel, J. Effects of grass feeding systems of ruminant meat color and flavour: A review. Anim. Res. 2002, 50, 185–200. [Google Scholar] [CrossRef]
- Grau, R.; Hamm, R. About the water-binding capacity of the mammalian muscle. II. Commun. Z. Lebensm. Unters. Brisk. 1957, 105, 446. [Google Scholar] [CrossRef]
- SAS. Users Guide; Statistical Analysis System Institute Inc.: Carry, NC, USA, 2010. [Google Scholar]
- Bovera, F.; Piccolo, G.; Gasco, L.; Marono, S.; Loponte, R.; Vassalotti, G.; Mastellone, V.; Lombardi, P.; Attia, Y.A.; Nizza, A. Yellow mealworm larvae (Tenebrio molitor) as a possible alternative to soybean meal in broiler diets. Br. Poult. Sci. 2015, 56, 569–575. [Google Scholar] [CrossRef]
- Marono, S.; Loponte, R.; Lombardi, P.; Vassalotti, G.; Pero, M.E.; Russo, F.; Gasco, L.; Parisi, G.; Piccolo, G.; Nizza, S.; et al. Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 week of age. Poult. Sci. 2017, 96, 1783–1790. [Google Scholar] [CrossRef]
- Cullere, M.; Tasoniero, G.; Giaccone, V.; Miotti-Scapin, R.; Claeys, E.; De Smet, S.; Dalle Zotte, A. Black soldier fly as dietary protein source for broiler quails: Apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal 2016, 10, 1923–1930. [Google Scholar] [CrossRef]
- Maurer, V.; Holinger, M.; Amsler, Z.; Früh, B.; Wohlfahrt, J.; Stamer, A.; Leiber, F. Replacement of soybean cake by Hermetia illucens meal in diets for layers. J. Insects Food Feed 2016, 2, 83–90. [Google Scholar] [CrossRef]
- Griminger, P.; Scanes, C.J. Protein Metabolism. In Avian Physiology; Sturkie, P.D., Ed.; Springer: New York, NY, USA, 1986. [Google Scholar]
- Mnisi, C.M.; Mlambo, V.; Phatudi, K.G.G.; Matshogo, T.B. Exogenous carbohydrases do not improve nutritional status, growth performance, and meat quality traits of female Japanese quails fed canola-based diets. S. Afr. J. Anim. Sci. 2017, 47, 923–932. [Google Scholar] [CrossRef]
- Mulaudzi, A.; Mnisi, C.M.; Mlambo, V. Dietary Moringa oleifera leaf meal improves growth performance but not haemo-biochemical and meat quality parameters in female Japanese quails. Pak. J. Nutr. 2019, 18, 953–960. [Google Scholar] [CrossRef]
- Loponte, R.; Nizza, S.; Bovera, F.; Riu De, N.; Fliegerova, K.; Lombardi, P.; Moniello, G. Growth performance, blood profiles and carcass traits of Barbary partridge (Alectoris barbara) fed two different insect larvae meals (Tenebrio molitor and Hermetia illucens). Res. Vet. Sci. 2017, 115, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Secci, G.; Moniello, G.; Gasco, L.; Bovera, F.; Parisi, G. Barbary partridge meat quality as affected by Hermetia illucens and Tenebrio molitor larva meals in feeds. Food Res. Int. 2018, 112, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Cullere, M.; Woods, M.J.; van Emmenes, L.; Pieterse, E.; Hoffman, L.C.; Zotte, A.D. Hermetia illucens larvae reared on the different substrates in broiler quail diets: Effect on physiochemical and sensory quality of quail meat. Animals 2019, 9, 595. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, A.; Dabbou, S.; Petracci, M.; Zampiga, M.; Sirri, F.; Biasato, I.; Gai, F.; Gasco, L. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on carcass traits, breast meat quality and safety. Animal 2019, 13, 2397–2405. [Google Scholar] [CrossRef]
1 Diets | |||||
---|---|---|---|---|---|
BSFL0 | BSFL25 | BSFL50 | BSFL75 | BSFL100 | |
Ingredients | |||||
Black soldier fly larvae meal | 0.0 | 25.0 | 50.0 | 75.0 | 100.0 |
Yellow maize | 661.0 | 681.0 | 669.0 | 660.0 | 631.0 |
Soya oilcake | 193.0 | 201.0 | 149.0 | 142.0 | 92.0 |
Full fat soya | 74.0 | 15.0 | 15.0 | 15.0 | 15.0 |
Sunflower oilcake | 25.0 | 31.0 | 71.0 | 64.0 | 100.0 |
2 MDCP | 12.7 | 12.2 | 11.4 | 10.4 | 10.0 |
Feed lime | 10.4 | 10.4 | 10.5 | 10.8 | 10.6 |
Wheaten bran | 10.0 | 10.0 | 10.0 | 10.0 | 30.0 |
Salinomycin (12%) | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
Zinc bacitracin (15%) | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
Salt-Fine | 3.40 | 3.27 | 3.06 | 3.70 | 3.01 |
Hemicell® (β-mannanase) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
Lysine | 2.65 | 2.44 | 2.42 | 1.73 | 1.41 |
Vitamin premix | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Methionine | 2.44 | 2.34 | 2.11 | 1.92 | 1.68 |
Sodium bicarbonate | 1.51 | 1.57 | 1.74 | 0.40 | 1.56 |
Threonine | 0.52 | 0.55 | 0.53 | 0.39 | 0.30 |
Axtra® Phy (Phytase) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Chemical composition | |||||
Dry matter | 900.0 | 899.8 | 901.0 | 895.4 | 904.0 |
Crude protein | 184.9 | 185.2 | 188.1 | 193.2 | 192.3 |
Ash | 51.1 | 50.1 | 49.2 | 49.5 | 48.9 |
Crude fat | 44.2 | 40.1 | 45.4 | 50.6 | 56.5 |
Crude fibre | 40.9 | 42.1 | 49.2 | 48.1 | 56.5 |
3 ME (MJ/Kg) | 12.04 | 12.04 | 12.04 | 12.04 | 12.04 |
Calcium | 7.9 | 7.9 | 7.9 | 7.9 | 7.9 |
Potassium | 7.2 | 7.1 | 7.1 | 6.7 | 7.5 |
Phosphorus | 5.5 | 5.6 | 5.8 | 5.9 | 6.0 |
Chlorine | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
Sodium | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 |
Week | 1 Diets | Significance | ||||||
---|---|---|---|---|---|---|---|---|
BSFL0 | BSFL25 | BSFL50 | BSFL75 | BSFL100 | 2 SEM | Linear | Quadratic | |
3 | 0.396 | 0.386 | 0.357 | 0.347 | 0.352 | 0.015 | 0.047 | 0.572 |
4 | 0.345 | 0.359 | 0.340 | 0.340 | 0.356 | 0.012 | 0.533 | 0.888 |
5 | 0.235 | 0.261 | 0.274 | 0.277 | 0.281 | 0.029 | 0.011 | 0.117 |
6 | 0.186 | 0.125 | 0.129 | 0.150 | 0.131 | 0.025 | 0.312 | 0.322 |
1 Diets | Significance | |||||||
---|---|---|---|---|---|---|---|---|
BSFL0 | BSFL25 | BSFL50 | BSFL75 | BSFL100 | 2 SEM | Linear | Quadratic | |
Overall FI | 598.9 | 651.3 | 650.7 | 656.0 | 627.7 | 15.54 | 0.543 | 0.023 |
Overall BWG | 151.2 | 170.0 | 166.7 | 168.1 | 164.3 | 5.094 | 0.263 | 0.026 |
Final body weight | 207.3 | 223.6 | 213.4 | 218.2 | 217.2 | 6.210 | 0.428 | 0.557 |
2 Parameters | 1 Diets | 3 SEM | Significance | |||||
---|---|---|---|---|---|---|---|---|
BSFL0 | BSFL25 | BSFL50 | BSFL75 | BSFL100 | Linear | Quadratic | ||
Hemoglobin (g/dL) | 10.8 | 12.3 | 11.3 | 12.1 | 12.2 | 0.942 | 0.442 | 0.918 |
WBC (×109/L) | 31.3 | 31.0 | 30.2 | 41.8 | 22.2 | 10.14 | 0.475 | 0.074 |
Heterophils (×109/L) | 4.22 | 5.93 | 4.38 | 9.90 | 3.60 | 1.975 | 0.474 | 0.165 |
Lymphocytes (×109/L) | 18.0 | 19.9 | 22.6 | 21.7 | 16.4 | 5.294 | 0.562 | 0.077 |
Monocytes (×109/L) | 8.67 | 4.58 | 2.84 | 9.54 | 2.12 | 4.370 | 0.562 | 0.290 |
Eosinophils (×109/L) | 0.41 | 0.46 | 0.28 | 0.61 | 0.41 | 0.181 | 0.633 | 0.955 |
ALB/GLOB | 0.37 | 0.60 | 0.55 | 0.45 | 0.45 | 0.050 | 0.878 | 0.030 |
Albumin (g/L) | 29.0 | 23.3 | 26.0 | 20.8 | 19.6 | 5.750 | 0.398 | 0.337 |
ALKP (U/L) | 855.8 | 414.2 | 474.0 | 480.0 | 511.7 | 177.2 | 0.428 | 0.121 |
ALT (U/L) | 15.3 | 13.0 | 14.8 | 10.0 | 19.6 | 8.130 | 0.903 | 0.709 |
Amylase (U/L) | 410.5 | 316.9 | 357.7 | 131.8 | 294.3 | 81.53 | 0.515 | 0.781 |
Calcium (mmol/L) | 3.83 | 3.04 | 3.22 | 3.38 | 3.45 | 0.400 | 0.821 | 0.114 |
Creatinine (µmol/L) | 33.3 | 19.9 | 40.9 | 30.2 | 12.4 | 15.66 | 0.644 | 0.881 |
Globulin (g/L) | 59.0 | 37.0 | 50.1 | 41.5 | 47.0 | 14.62 | 0.219 | 0.129 |
Glucose (mmol/L) | 23.8 | 12.3 | 17.2 | 26.2 | 20.0 | 4.810 | 0.703 | 0.535 |
Lipase (U/L) | 181.1 | 263.4 | 172.4 | 190.0 | 199.8 | 59.65 | 0.757 | 0.965 |
Phosphorus (mmol/L) | 4.50 | 4.82 | 4.59 | 4.20 | 4.34 | 0.580 | 0.595 | 0.560 |
Bilirubin (µmol/L) | 22.8 | 11.7 | 14.5 | 12.4 | 10.1 | 6.790 | 0.153 | 0.392 |
Total protein (g/L) | 95.0 | 68.4 | 76.0 | 100.0 | 66.8 | 14.74 | 0.221 | 0.235 |
Urea (mmol/L) | 1.24 | 0.98 | 1.21 | 0.83 | 0.63 | 0.400 | 0.976 | 0.884 |
2 Parameters | 1 Diets | 3 SEM | Significance | |||||
---|---|---|---|---|---|---|---|---|
BSFL0 | BSFL25 | BSFL50 | BSFL75 | BSFL100 | Linear | Quadratic | ||
Dressing (%) | 67.7 | 68.8 | 69.2 | 68.2 | 68.5 | 0.462 | 0.652 | 0.273 |
HCW (g) | 140.4 | 154.0 | 147.5 | 148.7 | 148.7 | 4.260 | 0.460 | 0.511 |
CCW (g) | 139.5 | 152.7 | 145.6 | 147.3 | 147.8 | 4.230 | 0.355 | 0.493 |
Wing | 4.29 | 4.29 | 4.29 | 4.49 | 4.26 | 0.120 | 0.815 | 0.322 |
Thigh | 6.04 | 6.27 | 6.14 | 6.25 | 6.27 | 0.210 | 0.649 | 0.448 |
Drumstick | 4.25 | 4.22 | 4.26 | 4.26 | 4.25 | 0.130 | 0.973 | 0.510 |
Breast | 22.4 | 21.9 | 22.3 | 22.3 | 21.3 | 0.750 | 0.425 | 0.044 |
Liver | 2.90 | 3.03 | 2.98 | 3.20 | 3.12 | 0.162 | 0.252 | 0.645 |
Large intestine | 1.37 | 1.52 | 1.57 | 1.43 | 1.42 | 0.072 | 0.881 | 0.040 |
Small intestine | 3.69 | 3.84 | 4.00 | 4.11 | 3.87 | 0.159 | 0.242 | 0.155 |
Proventriculus | 0.58 | 0.52 | 0.64 | 5.59 | 0.55 | 2.470 | 0.550 | 0.463 |
Heart | 1.15 | 1.17 | 1.22 | 1.06 | 1.14 | 0.055 | 0.507 | 0.703 |
Gizzard | 2.32 | 2.38 | 2.45 | 2.52 | 2.52 | 0.082 | 0.037 | 0.445 |
1 Diets | 3 SEM | Significance | ||||||
---|---|---|---|---|---|---|---|---|
BSFL0 | BSFL25 | BSFL50 | BSFL75 | BSFL100 | Linear | Quadratic | ||
pH | 6.13 | 6.14 | 6.13 | 6.14 | 6.15 | 0.030 | 0.777 | 0.875 |
Temperature (°C) | 11.8 | 12.0 | 11.9 | 11.6 | 11.5 | 0.274 | 0.287 | 0.272 |
L* (lightness) | 43.8 | 44.5 | 44.3 | 44.2 | 44.6 | 0.437 | 0.157 | 0.641 |
a* (redness) | 5.77 | 6.22 | 6.65 | 5.88 | 5.73 | 0.375 | 0.310 | 0.188 |
b* (yellowness) | 9.90 | 10.45 | 10.24 | 9.95 | 10.32 | 0.370 | 0.807 | 0.940 |
Hue angle | 1.04 | 1.03 | 0.99 | 1.04 | 1.07 | 0.022 | 0.134 | 0.129 |
Chroma | 11.5 | 12.2 | 12.2 | 11.6 | 11.8 | 0.460 | 0.791 | 0.608 |
2 WHC (%) | 6.35 | 7.01 | 6.25 | 6.09 | 7.40 | 0.850 | 0.981 | 0.353 |
Drip loss (%) | 40.2 | 43.4 | 40.8 | 40.4 | 42.1 | 0.462 | 0.670 | 0.992 |
Cooking loss (%) | 17.1 | 19.3 | 21.4 | 22.6 | 22.1 | 1.830 | 0.125 | 0.941 |
Shear force (N) | 6.20 | 6.85 | 7.55 | 6.40 | 6.57 | 0.760 | 0.523 | 0.291 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbhele, F.G.T.; Mnisi, C.M.; Mlambo, V. A Nutritional Evaluation of Insect Meal as a Sustainable Protein Source for Jumbo Quails: Physiological and Meat Quality Responses. Sustainability 2019, 11, 6592. https://doi.org/10.3390/su11236592
Mbhele FGT, Mnisi CM, Mlambo V. A Nutritional Evaluation of Insect Meal as a Sustainable Protein Source for Jumbo Quails: Physiological and Meat Quality Responses. Sustainability. 2019; 11(23):6592. https://doi.org/10.3390/su11236592
Chicago/Turabian StyleMbhele, Fezile G. T., Caven Mguvane Mnisi, and Victor Mlambo. 2019. "A Nutritional Evaluation of Insect Meal as a Sustainable Protein Source for Jumbo Quails: Physiological and Meat Quality Responses" Sustainability 11, no. 23: 6592. https://doi.org/10.3390/su11236592
APA StyleMbhele, F. G. T., Mnisi, C. M., & Mlambo, V. (2019). A Nutritional Evaluation of Insect Meal as a Sustainable Protein Source for Jumbo Quails: Physiological and Meat Quality Responses. Sustainability, 11(23), 6592. https://doi.org/10.3390/su11236592