Habitat Analysis of Endangered Korean Long-Tailed Goral (Naemorhedus caudatus raddeanus) with Weather Forecasting Model
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Fecal Samples of the Goral
3.2. Brief Description of the WRF Model
3.3. Computer Simulation for Weather Parameters
3.4. Climate Modeling for Future Habitat Climate Analysis
4. Results
4.1. Specific Distribution Pattern of Gorals
4.2. Sensitivity of the Model and Current Climate Conditions
4.3. Future Climate
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chapin, F.S.; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E.; et al. Consequences of changing biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Pounds, J.A.; Puschendorf, R. Clouded futures. Nature 2004, 427, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; de Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Araujo, M.; Rahbek, C. How does climate change affect biodiversity? Science 2006, 313, 1396–1397. [Google Scholar] [CrossRef]
- Hutton, J.; Dickson, B. Endangered Species, Threatened Convention: The Past, Present and Future of CITES; Earthscan Publications: London, UK, 2000. [Google Scholar]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Root, T.L.; Price, J.T.; Hall, K.R.; Schneider, S.H.; Rosenzweig, C.; Pounds, J.A. Fingerprints of global warming on wild animals and plants. Nature 2003, 421, 57–60. [Google Scholar] [CrossRef]
- Moritz, C.; Patton, J.L.; Conroy, C.J.; Parra, J.L.; White, G.C.; Beissinger, S.R. Impact of a century of climate change on small-mammal communities in Yosemite national park, USA. Science 2008, 322, 261–264. [Google Scholar] [CrossRef]
- Hunter, C.M.; Caswell, H.; Runge, M.C.; Regehr, E.V.; Amstrup, S.C.; Stiring, I. Climate change threatens polar bear populations: A stochastic demographic analysis. Ecology 2010, 91, 2883–2897. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [Green Version]
- Sutton, W.B.; Barrett, K.; Moody, A.T.; Loftin, C.S.; de Maynadier, P.G.; Nanjappa, P. Projected changes in climatic niche and climate refugia of conservation priority salamander species in the northeastern United States. Forests 2015, 6, 1–26. [Google Scholar] [CrossRef]
- Sugden, A.M. Consequences of shifting species distributions. Science 2017, 355, 1386–1388. [Google Scholar] [CrossRef] [PubMed]
- Ashrafzadeh, M.R.; Naghipour, A.A.; Haidarian, M.; Khorozyan, I. Modeling the response of an endangered flagship predator to climate change in Iran. Mammal Res. 2019, 64, 39–51. [Google Scholar] [CrossRef]
- Velo-Anton, G.; Parra, J.L.; Parra-Olea, G.; Zamudio, K.R. Tracking climate change in a dispersal-limited species: Reduced spatial and genetic connectivity in a montane salamander. Mol. Ecol. 2013, 22, 3261–3278. [Google Scholar] [CrossRef] [PubMed]
- Early, R.; Sax, D.F. Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Glob. Ecol. Biogeogr. 2014, 23, 1356–1365. [Google Scholar] [CrossRef]
- Kusza, S.; Nagy, K.; Lanszki, J.; Heltai, M.; Szabo, C.; Czarnomska, S.D. Moderate genetic variability and no genetic structure within the European golden jackal (Canis aureus) population in Hungary. Mammal Res. 2019, 64, 63–69. [Google Scholar] [CrossRef]
- Thuiller, W. Climate change and the ecologist. Nature 2007, 448, 550–552. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014 Mitigation of Climate Change. In Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [Green Version]
- Wilkening, J.; Pearson-Prestera, W.; Nungi, N.A.; Bhattacharyya, S. Endangered species management and climate change: When habitat conservation becomes a moving target. Wildl. Soc. Bull. 2019, 43, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Mestre, F. Synergistic Effects of Climate Change and Habitat Fragmentation on Species Range Shifts and Metapopulation Persistence. Ph.D. Thesis, University of Évora, Évora, Portugal, 2017. [Google Scholar]
- Huntley, B.; Collingham, Y.C.; Gree, R.E.; Hilton, G.M.; Rahbek, C.; Willis, S.G. Potential impacts of climatic change upon geographical distributions of birds. Spec. Issue Wind. Water Renew. Energy Birds 2006, 148, 8–28. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Graham, C.H. The ability of climate envelope models to predict the effects of climate change on species distributions. Glob. Clim. Chang. 2006, 12, 2272–2281. [Google Scholar] [CrossRef]
- Songer, M.; Delion, M.; Biggs, A.; Huang, Q. Modeling impacts of climate change on giant panda habitat. Int. J. Ecol. 2012, 2012, 108752. [Google Scholar] [CrossRef]
- Convention on International Trade in Endangered Species (CITES) of Wild Fauna and Flora. Available online: https://www.cites.org/eng/app/appendices.php (accessed on 26 September 2019).
- The IUCN Red List of Threatened Species. Available online: https://www.iucnredlist.org/species/14295/4429742 (accessed on 26 September 2019).
- Yang, B.G. Systematics, Ecology and Current Population Status of the Goral, Naemorhedus caudatus, in Korea. Ph.D. Thesis, Chungbuk National University, Cheongju, Korea, 2002. [Google Scholar]
- Cho, C.U.; Kim, K.C.; Gyun, G.H.; Kim, K.Y.; Lee, B.K.; Son, J.I. Habitat use of reintroduced long-tailed gorals (Naemorhedus caudatus) in Woraksan (Mt.) National Park in Korea. Korean J. Environ. Ecol. 2015, 29, 185–192. [Google Scholar] [CrossRef]
- Won, P.H. The Illustrated Encyclopedia of Fauna and Flora of Korea; Minister of Education: Seoul, Korea, 1967; pp. 59–65. [Google Scholar]
- Kim, D.B.; Koo, K.A.; Kim, H.H.; Hwang, G.Y.; Kong, W.S. Reconstruction of the habitat range suitable for long-tailed goral (Naemorhedus caudatus) using fossils from the Paleolithic Sites. Quat. Int. 2019, 519, 101–112. [Google Scholar] [CrossRef]
- Cho, C.U. Systematic Study on the Long-Tailed Goral (Naemorhedus caudatus), with Ecology and Conservation Plan. Ph.D. Thesis, Chungbuk National University, Gheongju, Korea, 2013. [Google Scholar]
- Cho, C.U.; Kim, K.C.; Kwon, G.H.; Kim, K.Y.; Lee, B.K.; Song, B.C.; Park, J.G. Current status of population size and habitat selection of the long-tailed goral (Naemorhedus caudatus) in Seoraksan National Park. Korean J. Environ. Ecol. 2015, 29, 710–717. [Google Scholar] [CrossRef]
- Mishra, C.; Johnsingh, A.J.T. On habitat selection by the goral Nemorhaedus goral bedfordi (Bovidae, Artiodactyla). J. Zool. 2009, 240, 573–580. [Google Scholar] [CrossRef]
- Choi, T.Y.; Park, J.H. Establishing a Korean goral (nemorhaedus cuadatus raddeanus heud) reserve in Soraksan National Park, Korea. J. Korean Inst. Landsc. Archit. 2005, 32, 23–35. [Google Scholar]
- Wang, Y.Q.; Leung, L.R.; McGregor, J.L.; Lee, D.K.; Wang, W.C.; Ding, Y.H.; Kimura, F. Regional climate modeling: Progress, challenges, and prospects. J. Meteorol. Soc. Jpn. 2004, 82, 1599–1628. [Google Scholar] [CrossRef]
- Kain, J.S.; Fritsch, J.M. Convective Parameterization Fir Mesoscale Models: The Kain-Fritsch Scheme. In The Representation of Cumulus Convection in Numerical Models; Emanuel, K.A., Raymond, D.J., Eds.; American Meteorological Society: Boston, MA, USA, 1993; pp. 165–170. [Google Scholar]
- IPCC. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Climate Change: Synthesis Report; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Murphy, J. An evaluation of statistical and dynamical techniques for downscaling local climate. J. Climatol. 1999, 12, 2256–2284. [Google Scholar] [CrossRef]
- Wood, A.W.; Leung, L.R.; Sridhar, V.; Lettenmaier, P. Hydrologic implications of dynamical and statistical approaches to down-scaling climate model outputs. Clim. Chang. 2004, 62, 233–256. [Google Scholar] [CrossRef]
- Hong, S.Y.; Lim, J.O.J. The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteorol. Soc. 2006, 42, 129–151. [Google Scholar]
- Hong, S.Y.; Lim, K.; Kim, J.; Lim, J.; Dudhia, J. Sensitivity study of cloud resolving convective simulations with WRF using two bulk microphysical parameterizations: Ice-phase microphysics versus sedimentation effects. J. Appl. Meteorol. Climatol. 2008, 48, 61–76. [Google Scholar] [CrossRef]
- Hong, S.Y.; Lee, J.W. Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea. Atmos. Res. 2009, 93, 818–831. [Google Scholar] [CrossRef]
- Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 1982, 20, 851–875. [Google Scholar] [CrossRef] [Green Version]
- Janjic, Z.I. Nonsingular implementation of the Mellor-Yamada Level 2.5 scheme in the NCEP Meso model. NCEP Off. Note 2002, 437, 61. [Google Scholar]
- Kim, M.K.; Lee, D.H.; Kim, J. Production and validation of daily grid data with 1km resolution in South Korea. J. Clim. Res. 2013, 8, 13–25. [Google Scholar]
- Kim, M.K.; Kim, S.; Kim, J.; Heo, J.; Park, J.S.; Kwon, W.T.; Suh, M.S. Statistical downscaling for daily precipitation in Korea using combhined PRISM, RCM, AND Quantile mapping: Part 1, Methodlolgy and Evaluation in Historical Simulation. Asia Pac. J. Atmos. Sci. 2016, 52, 79–89. [Google Scholar] [CrossRef]
- Baek, H.J.; Lee, J.; Lee, H.S.; Hyun, Y.K.; Cho, C.H.; Kwon, W.T.; Marziin, C.; Gan, S.Y.; Kim, M.J.; Choi, D.H.; et al. Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia Pac. J. Atmos. Sci. 2013, 49, 603–618. [Google Scholar] [CrossRef]
- Lee, S.; Bae, D.H. Local effects of climate change over South Korea with a high-resolution climate scenario. Clim. Res. 2012, 54, 85–93. [Google Scholar] [CrossRef]
- Won, C.M.; Smith, K.G. History and current status of mammals of the Korean peninsula. Mammal Rev. 1999, 29, 3–36. [Google Scholar] [CrossRef]
Sampling Date and Season | Ave. Temp. | Elevation (m) | No. of Deposits | |
---|---|---|---|---|
Dec. 16 and 17, 2005 | Td16 = −5.0 °C | ≥ 901 | 9 | 8.0% |
Winter (beginning) | Td17 = −10.0 °C | 501–900 | 99 | 88.4% |
≤ 500 | 4 | 3.6% | ||
Subtotal | 112 | 100% | ||
Jul. 4 and 6, 2006 | Td4 = 20.0 °C | ≥ 901 | 0 | 0% |
Summer (beginning) | Td6 = 20.4 °C | 501–900 | 49 | 94.2% |
≤ 500 | 3 | 5.8% | ||
Subtotal | 52 | 100% | ||
Total | 164 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Kim, B.-J.; Bhang, K.J. Habitat Analysis of Endangered Korean Long-Tailed Goral (Naemorhedus caudatus raddeanus) with Weather Forecasting Model. Sustainability 2019, 11, 6086. https://doi.org/10.3390/su11216086
Lee S, Kim B-J, Bhang KJ. Habitat Analysis of Endangered Korean Long-Tailed Goral (Naemorhedus caudatus raddeanus) with Weather Forecasting Model. Sustainability. 2019; 11(21):6086. https://doi.org/10.3390/su11216086
Chicago/Turabian StyleLee, Sanghun, Baek-Jun Kim, and Kon Joon Bhang. 2019. "Habitat Analysis of Endangered Korean Long-Tailed Goral (Naemorhedus caudatus raddeanus) with Weather Forecasting Model" Sustainability 11, no. 21: 6086. https://doi.org/10.3390/su11216086
APA StyleLee, S., Kim, B.-J., & Bhang, K. J. (2019). Habitat Analysis of Endangered Korean Long-Tailed Goral (Naemorhedus caudatus raddeanus) with Weather Forecasting Model. Sustainability, 11(21), 6086. https://doi.org/10.3390/su11216086