Sustainability Assessment of Provincial-Level Regions in China Using Composite Sustainable Indicator
Abstract
:1. Introduction
2. Methods
3. Case Study: Sustainability Assessment of Provincial-Level Regions in China
3.1. Index System
- (1)
- What is the priority in the current period from the policy dialogue?
- (2)
- What dimensions of sustainability should be taken into account?
- (3)
- Which criteria represent better each dimension at the macro level?
3.2. The Implementation of the CSI
4. Discussion
5. Conclusions and Suggestion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brundtland, G.H. Our Common Future; Oxford University Press: New York, NY, USA, 1987. [Google Scholar]
- Li, X.J.; Peterson, J.; Liu, G.J.; Qian, L.X. Assessing regional sustainability: The case of land use and land cover change in the middle Yiluo catchment of the Yellow River basin, China. Appl. Geogr. 2001, 21, 87–106. [Google Scholar] [CrossRef]
- Lukman, R.; Krajnc, D.; Glavič, P. Fostering collaboration between universities regarding regional sustainability initiatives—The University of Maribor. J. Clean. Prod. 2009, 17, 1143–1153. [Google Scholar] [CrossRef]
- Graymore, M.L.M.; Wallis, A.M.; Richards, A.J. An index of regional sustainability: A GIS-based multiple criteria analysis decision support system for progressing sustainability. Ecol. Complex. 2009, 6, 453–462. [Google Scholar] [CrossRef]
- Munda, G.; Saisana, M. Methodological Considerations on Regional Sustainability Assessment Based on Multicriteria and Sensitivity Analysis. Reg. Stud. 2011, 45, 261–276. [Google Scholar] [CrossRef]
- Kurka, T. Application of the analytic hierarchy process to evaluate the regional sustainability of bioenergy developments. Energy 2013, 62, 393–402. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Yuan, Y. China’s regional sustainability and diversified resource allocation: DEA environmental assessment on economic development and air pollution. Energy Econ. 2015, 49, 239–256. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. On the social shaping dimensions of smart sustainable cities: A study in science, technology, and society. Sustain. Cities Soc. 2017, 29, 219–246. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xu, Y.; Yeh, C.H.; Liu, Y.; Zhou, D.Q. City sustainability evaluation using MCDM with objective weights of interdependent criteria. J. Clean. Prod. 2016, 131, 491–499. [Google Scholar] [CrossRef]
- Garcia, D.A. Green areas management and bioengineering techniques for improving urban ecological sustainability. Sustain. Cities Soc. 2017, 30, 108–117. [Google Scholar] [CrossRef]
- Lin, W.; Li, Y.; Li, X.; Xu, D. The dynamic analysis and evaluation on tourist ecological footprint of city: Take shanghai as an instance. Sustain. Cities Soc. 2018, 37, 541–549. [Google Scholar] [CrossRef]
- Graymore, M.L.M.; Sipe, N.G.; Rickson, R.E. Regional sustainability: How useful are current tools of sustainability assessment at the regional scale? Ecol. Econ. 2008, 67, 362–372. [Google Scholar] [CrossRef]
- Gibson, R.B. Beyond the pillars: Sustainability assessment as a framework for effective integration of social, economic and ecological considerations in significant decision-making. J. Environ. Assess. Policy Manag. 2006, 8, 259–280. [Google Scholar] [CrossRef]
- Elkington, J. Cannibals with Forks: The Triple Bottom Line of the 21st Century; Oxford Press: Oxford, UK, 1998. [Google Scholar]
- Costanza, R.; Wainger, L. Ecological Economics: The Science and Management of Sustainability; Columbia University Press: New York, NY, USA, 1991. [Google Scholar]
- Munasinghe, M. Environmental Economics and Sustainable Development; World Bank: Washington, DC, USA, 1993. [Google Scholar]
- Ali-Toudert, F.; Ji, L.M. Modeling and measuring urban sustainability in multi-criteria based systems—A challenging issue. Ecol. Indic. 2017, 73, 597–611. [Google Scholar] [CrossRef]
- Ravetz, J. Integrated assessment for sustainability appraisal in cities and regions. Environ. Impact Assess. Rev. 2000, 20, 31–64. [Google Scholar] [CrossRef]
- Krajnc, D.; Glavič, P. A model for integrated assessment of sustainable development. Resour. Conserv. Recycl. 2005, 43, 189–208. [Google Scholar] [CrossRef]
- Lozano, R. Envisioning sustainability three-dimensionally. J. Clean. Prod. 2008, 16, 1838–1846. [Google Scholar] [CrossRef]
- Spindler, E. Geschichte der Nachhaltigkeit–Vom Werden und Wirken Eines Beliebten Begriffes. 2012. Available online: http://www.nachhaltigkeit.info/media/1326279587phpeJPyvC.pdf (accessed on 24 September 2019).
- Hawkes, J. The Fourth Pillar of Sustainability: Culture’s Essential Role in Public Planning; Common Ground P/L: Melbourne, Australia, 2001. [Google Scholar]
- Higgins, K.L. From bud to blossom: Nurturing sustainable stewardship. In Economic Growth and Sustainability; Higgins, K.L., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 167–180. [Google Scholar]
- Valentin, A.; Spangenberg, J.H. A guide to community sustainability indicators. Environ. Impact Assess. Rev. 2000, 20, 381–392. [Google Scholar] [CrossRef]
- Curwell, S.; Deakin, M.; Symes, M. Sustainability Urban Development: The Environmental Assessment Methods; Taylor & Francis: London, UK, 2007. [Google Scholar]
- Geneletti, D. Impact assessment of proposed ski areas: A GIS approach integrating biological, physical and landscape indicators. Environ. Impact Assess. Rev. 2008, 28, 116–130. [Google Scholar] [CrossRef]
- Zhou, L.; Tokos, H.; Krajnc, D.; Yang, Y.R. Sustainability performance evaluation in industry by composite sustainability index. Clean Technol. Environ. Policy 2012, 14, 789–803. [Google Scholar] [CrossRef]
- Nardo, M.; Saisana, M.; Saltelli, A.; Tarantola, S.; Hoffman, A.; Giovannini, E. Handbook on Constructing Composite Indicators: Methodology and User Guide; OECD Publishing: Paris, France, 2008. [Google Scholar]
- Shults, W.D.; Beauchamp, J.J. Statistically based air-quality indices. In Indicators of Environmental Quality; Thomas, W.A., Ed.; Plenum Press: London, UK, 1972. [Google Scholar]
- Malkina-Pykh, I.G. Integrated assessment models and response function models: Pros and cons for sustainable development indices design. Ecol. Indic. 2002, 2, 93–108. [Google Scholar] [CrossRef]
- Ihsan, Z.; Idris, M.Y.; Abdullah, A.H. Attribute normalization techniques and performance of intrusion classifiers: A comparative analysis. Life Sci. J. 2013, 10, 2568–2576. [Google Scholar]
- Wang, W.; Zhang, X.L.; Gombault, S.; Knapskog, S.J. Attribute normalization in network intrusion detection. In Proceedings of the 10th International Symposium on Pervasive Systerms, Algorithms and Networks, Kaohsiung, Taiwan, 14–16 December 2009; pp. 448–453. [Google Scholar]
- Liu, G. Development of a general sustainability indicator for renewable energy systems: A review. Renew. Sustain. Energy Rev. 2014, 31, 611–621. [Google Scholar] [CrossRef]
- Saaty. Decision making – the analytic hierarchy and network processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 2004, 13, 1–35. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Büyükozkan, G.; Karabulut, Y. Energy project performance evaluation with sustainability perspective. Energy 2017, 119, 549–560. [Google Scholar] [CrossRef]
- Hu, A.H.; Chen, L.T.; Hsu, C.W.; Ao, J.G. An evaluation framework for scoring corporate sustainability reports in Taiwan. Environ. Eng. Sci. 2011, 28, 843–858. [Google Scholar] [CrossRef]
- Lee, G.K.L.; Chan, E.H.W. The analytic hierarchy process (AHP) approach for assessment of urban renewal proposals. Soc. Indic. Res. 2008, 89, 155–168. [Google Scholar] [CrossRef]
- Erol, I.; Turgay, S.; Sari, R. A new fuzzy multi-criteria framework for measuring sustainability performance of a supply chain. Ecol. Econ. 2011, 70, 1088–1100. [Google Scholar] [CrossRef]
- Zinatizadeh, S.; Azmi, A.; Monavari, S.M.; Sobhanardakani, S. Evaluation and prediction of sustainability of urban areas: A case study for Kermanshah city, Iran. Cities 2017, 66, 1–9. [Google Scholar] [CrossRef]
- Yan, J.H.; Feng, C.H.; Li, L. Sustainability assessment of machining process based on extension theory and entropy weight approach. Int. J. Adv. Manuf. Technol. 2014, 71, 1419–1431. [Google Scholar] [CrossRef]
- Peng, Y.; Lai, Y.; Li, X.; Zhang, X. An alternative model for measuring the sustainability of urban regeneration: The way forward. J. Clean. Prod. 2015, 109, 76–83. [Google Scholar] [CrossRef]
- Begic, F.; Afgan, N. Sustainability assessment tool for the decision making in selection of energy system-bosnian case. Energy 2007, 32, 1979–1985. [Google Scholar] [CrossRef]
- Afgan, N.H.; Carvalho, M.G. Sustainability assessment of hydrogen energy systems. Int. J. Hydrog. Energy 2004, 29, 1327–1342. [Google Scholar] [CrossRef]
- Van de Kerk, G.; Manuel, A.R. A comprehensive index for a sustainable society: The SSI-the sustainable society index. Ecol. Econ. 2008, 66, 228–242. [Google Scholar] [CrossRef]
- Afgan, N.; Carvalho, M.; Hovanov, N. Energy system assessment with sustainability indicators. Energy Policy 2000, 28, 603–612. [Google Scholar] [CrossRef]
- Hossain, M.; Mekhilef, S.; Olatomiwa, L. Performance evaluation of a stand-alone PV-wind-diesel-battery hybrid system feasible for a large resort center in South China Sea, Malaysia. Sustain. Cities Soc. 2017, 28, 358–366. [Google Scholar] [CrossRef]
- Jovanovic, M.; Afgan, N.; Bakic, V. An analytical method for the measurement of energy system sustainability in urban areas. Energy 2010, 35, 3909–3920. [Google Scholar] [CrossRef]
- Govindan, K.; Khodaverdi, R.; Jafarian, A. A fuzzy multi criteria approach for measuring sustainability performance of a supplier based on triple bottom line approach. J. Clean. Prod. 2013, 47, 345–354. [Google Scholar] [CrossRef]
- Zhao, H.; Li, N. Performance evaluation for sustainability of strong smart grid by using stochastic AHP and fuzzy TOPSIS methods. Sustainability 2016, 8, 129. [Google Scholar] [CrossRef]
- Phillis, Y.; Davis, B. Assessment of corporate sustainability via fuzzy logic. J. Intell. Robot. Syst. 2009, 55, 3–20. [Google Scholar] [CrossRef]
- Jin, J.; Wang, R.; Li, F.; Huang, J.; Zhou, C.; Zhang, H.; Yang, W. Conjugate ecological restoration approach with a case study in Mentougou district, Beijing. Ecol. Complex. 2011, 8, 161–170. [Google Scholar] [CrossRef]
- Mischen, P.A.; Homsy, G.C.; Lipo, C.P.; Holahan, R.; Imbruce, V.; Pape, A.; Zhu, W.; Graney, J.; Zhang, Z.; Holmes, L.M.; et al. A foundation for measuring community sustainability. Sustainability 2019, 11, 1903. [Google Scholar] [CrossRef]
- Li, W.; Yi, P.; Zhang, D. Sustainability evaluation of cities in northeastern China using dynamic TOPSIS-entropy methods. Sustainability 2018, 10, 4542. [Google Scholar] [CrossRef]
- Lu, C.; Xue, B.; Lu, C.; Wang, T.; Jiang, L.; Zhang, Z.; Ren, W. Sustainability investigation of resource-based cities in Northeastern China. Sustainability 2016, 8, 1058. [Google Scholar] [CrossRef]
- Research Group on Sustainable Development Strategy, Chinese Academy of Sciences (CAS). China Sustainability Development Report 2015: Reshaping the Governance for Sustainability Development; Science Press: Beijing, China, 2015. [Google Scholar]
- Ding, L.; Shao, Z.; Zhang, H.; Xu, C.; Wu, D. A comprehensive evaluation of urban sustainable development in China based on the TOPSIS-entropy method. Sustainability 2016, 8, 746. [Google Scholar] [CrossRef]
- Tan, F.; Lu, Z. Assessing regional sustainable development through an integration of nonlinear principal component analysis and Gram Schmidt orthogonalization. Ecol. Indic. 2016, 63, 71–81. [Google Scholar] [CrossRef]
- Xu, C.; Wang, S.; Zhou, Y.; Wang, L.; Liu, W. A comprehensive quantitative evaluation of new sustainable urbanization level in 20 Chinese urban agglomerations. Sustainability 2016, 8, 91. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, W.; Chen, L.; Deng, F. Sustainable urban development capacity measure—A case study in Jiangsu Province, China. Sustainability 2016, 8, 270. [Google Scholar] [CrossRef]
- Yi, P.; Li, W.; Zhang, D. Assessment of City Sustainability Using MCDM with Interdependent Criteria Weight. Sustainability 2019, 11, 1632. [Google Scholar] [CrossRef]
- UNEP (United Nations Environment Programme). Sustainable Consumption and Production Policies Report; UNEP: Nairobi, Kenya, 2009. [Google Scholar]
- UNEP (United Nations Environment Programme). Regional Resource Centre for Asia and the Pacific (RRC.AP). Environmental Indicators North East Asia; UNEP: Nairobi, Kenya, 2004. [Google Scholar]
- Kemmler, A.; Spreng, D. Energy indicators for tracking sustainability in developing countries. Energy Policy 2007, 64, 143–151. [Google Scholar] [CrossRef]
- UN-Habitat (United Nations Human Settlements Programme). The State of the World’s Cities Report 2006/2007; Earthscan: London, UK, 2006. [Google Scholar]
- Yi, P.; Li, W.; Li, L. Evaluation and Prediction of City Sustainability Using MCDM and Stochastic Simulation Methods. Sustainability 2018, 10, 3771. [Google Scholar] [CrossRef]
80494.95 | 0.15 | 0.00315 | 0.51 | 1.4 | 32903.03 | |
83448.56 | 0.23 | 0.00160 | 0.15 | 3.6 | 26920.86 | |
33856.87 | 0.20 | 0.00098 | 1.16 | 3.8 | 18292.23 | |
31276.23 | 0.22 | 0.00090 | 2.13 | 3.5 | 18123.87 | |
57856.08 | 0.23 | 0.00165 | 47.43 | 3.8 | 20407.57 | |
50711.16 | 0.20 | 0.00219 | 4.61 | 3.7 | 20466.84 | |
38446.09 | 0.22 | 0.00141 | 30.71 | 3.7 | 17796.57 | |
32816.90 | 0.21 | 0.00188 | 39.67 | 4.1 | 15696.18 | |
81788.20 | 0.12 | 0.00521 | 0.04 | 3.5 | 36230.48 | |
62172.77 | 0.19 | 0.00301 | 0.44 | 3.2 | 26340.73 | |
59159.53 | 0.17 | 0.00193 | 3.15 | 3.1 | 30970.68 |
0.9390 | 0.1449 | 0.8025 | 0.2554 | 1 | 0.8858 | |
1 | 0.8869 | 0.3146 | 0.0595 | 0.5000 | 0.6903 | |
0.1323 | 0.4813 | 0.0320 | 0.3528 | 0.2143 | 0.2593 | |
0 | 0.7753 | 0 | 0.5000 | 0.6000 | 0.2416 | |
0.5000 | 1 | 0.3484 | 1 | 0.2143 | 0.4934 | |
0.4177 | 0.5000 | 0.6073 | 0.5400 | 0.3333 | 0.5000 | |
0.2764 | 0.7344 | 0.2096 | 0.8596 | 0.3333 | 0.2090 | |
0.0790 | 0.6433 | 0.5000 | 0.9349 | 0 | 0 | |
0.9657 | 0 | 1 | 0 | 0.6000 | 1 | |
0.5801 | 0.3362 | 0.7891 | 0.2296 | 0.7692 | 0.6732 | |
0.5242 | 0.2071 | 0.5152 | 0.5165 | 0.7821 | 0.8195 |
0.6256 | 0.5260 | 0.9423 | |
0.9554 | 0.1857 | 0.5962 | |
0.2701 | 0.1942 | 0.2370 | |
0.3059 | 0.2528 | 0.4188 | |
0.6973 | 0.6778 | 0.3554 | |
0.4502 | 0.5733 | 0.4176 | |
0.4572 | 0.5382 | 0.2705 | |
0.3017 | 0.7198 | 0.0000 | |
0.5846 | 0.4945 | 0.8022 | |
0.4838 | 0.5063 | 0.7207 | |
0.3991 | 0.5158 | 0.8010 |
0.5830 | 0.9423 | 0.7626 | |
0.6259 | 0.5962 | 0.6111 | |
0.2376 | 0.2370 | 0.2373 | |
0.2832 | 0.4188 | 0.3510 | |
0.6889 | 0.3554 | 0.5222 | |
0.5029 | 0.4176 | 0.4602 | |
0.4918 | 0.2705 | 0.3812 | |
0.4807 | 0.0000 | 0.2403 | |
0.5460 | 0.8022 | 0.6741 | |
0.4934 | 0.7207 | 0.6071 | |
0.4490 | 0.8010 | 0.6250 |
Dimension | Criteria | Sub-Criteria | Unit | Property | References |
---|---|---|---|---|---|
Economic () (0.33)③ | Economic quantity () (0.5)② | GDP per capita () (0.2)① | Yuan | Benefit | [9,54,57,58,59,60,61] |
Growth rate of GDP () (0.2) | % | Benefit | [9,54,57,58,59,60,61] | ||
Investment in fixed assets per capita () (0.2) | Yuan | Benefit | [9,54,57,61] | ||
Growth rate of consumer goods’ retail sales () (0.2) | % | Benefit | [54,60,61] | ||
Total export-import volume per capita () (0.2) | USD | Benefit | [9,54,57,58,59,60] | ||
Economic quality () (0.5) | Proportion of GDP generated by the service industry () (0.2) | % | Benefit | [9,54,57,58,59,60,61] | |
Wastewater discharged amount per unit of GDP () (0.2) | Ton | Cost | [56,62] | ||
Power consumption amount per unit of GDP () (0.2) | Kilowatt-hour | Cost | [56,57,62] | ||
Industrial SO2 emissions per industrial added value () (0.2) | Ton | Cost | [56,62] | ||
Industrial smoke and dust emissions per industrial added value () (0.2) | Ton | Cost | [56,62] | ||
Social () (0.33) | Population & infrastructure () (0.5) | Natural growth rate of population () (0.2) | % | Benefit | [9,54,57,60,63] |
Population density () (0.2) | Person/Km2 | Cost | [56,63] | ||
Per capita area of paved roads () (0.2) | m2 | Benefit | [56,60] | ||
Number of public transportation vehicles per 10000 population () (0.2) | unit | Benefit | [56] | ||
Coverage rate of Urban population with access to tap water () (0.2) | % | Benefit | [56,63] | ||
Living & security () (0.5) | Registered urban unemployment rate () (0.2) | % | Cost | [9,54,57,58,59,60,61] | |
Per capita disposable income () (0.2) | Yuan | Benefit | [9,54,57,58,59,60] | ||
Coverage rate of basic person insurance () (0.2) | % | Benefit | [55,57,60] | ||
Medical technical personnel per 1000 persons () (0.2) | Person | Benefit | [56,60] | ||
Investment in social safety and employment as a proportion of GDP () (0.2) | % | Benefit | [56] | ||
Environmental () (0.33) | Resources & ecosystems () (0.5) | Water resources per capita () (0.2) | m3 | Benefit | [9,54,56,57,58,59,60] |
Arable land per capita () (0.2) | Acre | Benefit | [56,63] | ||
Ratio green coverage of built up areas () (0.2) | % | Benefit | [56,60,61] | ||
Per capita green area () (0.2) | m2 | Benefit | [9,53,57,58,59,60,61] | ||
Per capita stock volume of forest () (0.2) | Hectare | Benefit | [56,60,63] | ||
Environmental protection () (0.5) | Investment in environmental protection as a proportion of GDP () (0.2) | % | Benefit | [9,53,57,58,59,60] | |
Treatment rate of consumption wastes () (0.2) | % | Benefit | [56,60,62] | ||
Ratio of industrial solid wastes utilized () (0.2) | % | Benefit | [9,53,57,58,59,60] | ||
Investment completed in the treatment of industrial pollution as a proportion of GDP () (0.2) | % | Benefit | [56,62] | ||
Per capita afforestation area () (0.2) | Hectare | Benefit | [56,62] |
The Composite Sustainability Indicator (CSI) | Average Score① | Growth Rate② | ||||||
---|---|---|---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | |||
Beijing Tianjin Hebei Shanxi Inner Mongolia Liaoning Jilin Heilongjiang Shanghai Jiangsu Zhejiang Anhui Fujian Jiangxi Shandong Henan Hubei Hunan Guangdong Guangxi Hainan Chongqing Sichuan Guizhou Yunnan Tibet Shaanxi Gansu Qinghai Ningxia Xinjiang East China③ Middle China West China Northeastern China | 0.565 0.562 0.403 0.407 0.522 0.474 0.406 0.393 0.450 0.530 0.534 0.412 0.487 0.403 0.537 0.330 0.421 0.398 0.474 0.415 0.547 0.496 0.388 0.393 0.427 0.534 0.483 0.421 0.476 0.457 0.500 0.509 0.395 0.459 0.424 | 0.590 0.555 0.401 0.419 0.523 0.486 0.442 0.397 0.455 0.517 0.545 0.430 0.525 0.420 0.537 0.337 0.446 0.431 0.451 0.431 0.596 0.531 0.401 0.427 0.432 0.550 0.521 0.429 0.485 0.481 0.494 0.517 0.414 0.475 0.442 | 0.609 0.553 0.414 0.442 0.532 0.515 0.455 0.432 0.449 0.555 0.576 0.503 0.537 0.450 0.572 0.351 0.458 0.433 0.482 0.436 0.595 0.541 0.407 0.422 0.446 0.560 0.532 0.442 0.490 0.501 0.498 0.534 0.439 0.484 0.467 | 0.605 0.513 0.426 0.434 0.556 0.509 0.466 0.431 0.477 0.547 0.588 0.483 0.547 0.423 0.574 0.382 0.501 0.464 0.471 0.443 0.585 0.571 0.417 0.452 0.457 0.582 0.526 0.442 0.504 0.512 0.515 0.533 0.448 0.498 0.469 | 0.588 0.522 0.467 0.437 0.558 0.509 0.467 0.432 0.496 0.566 0.594 0.510 0.574 0.450 0.561 0.402 0.518 0.508 0.514 0.477 0.569 0.572 0.460 0.473 0.449 0.582 0.545 0.430 0.502 0.503 0.546 0.545 0.471 0.508 0.469 | 0.634 0.515 0.503 0.482 0.598 0.453 0.517 0.460 0.556 0.586 0.613 0.582 0.586 0.507 0.588 0.484 0.574 0.551 0.534 0.522 0.598 0.604 0.512 0.518 0.504 0.558 0.568 0.474 0.549 0.551 0.567 0.571 0.530 0.544 0.477 | 0.598 0.537 0.436 0.437 0.548 0.491 0.459 0.424 0.480 0.550 0.575 0.486 0.543 0.442 0.561 0.381 0.486 0.464 0.488 0.454 0.582 0.553 0.431 0.448 0.452 0.561 0.529 0.440 0.501 0.501 0.520 0.535 0.449 0.495 0.458 | 2.44% −1.66% 4.93% 3.70% 2.89% −0.91% 5.46% 3.42% 4.69% 2.11% 2.96% 8.25% 4.03% 5.20% 1.90% 9.30% 7.27% 7.70% 2.54% 5.18% 1.87% 4.36% 6.41% 6.35% 3.58% 0.92% 3.53% 2.49% 3.06% 4.15% 2.68% 2.45% 6.83% 3.68% 2.46% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, P.; Wang, L.; Zhang, D.; Li, W. Sustainability Assessment of Provincial-Level Regions in China Using Composite Sustainable Indicator. Sustainability 2019, 11, 5289. https://doi.org/10.3390/su11195289
Yi P, Wang L, Zhang D, Li W. Sustainability Assessment of Provincial-Level Regions in China Using Composite Sustainable Indicator. Sustainability. 2019; 11(19):5289. https://doi.org/10.3390/su11195289
Chicago/Turabian StyleYi, Pingtao, Lu Wang, Danning Zhang, and Weiwei Li. 2019. "Sustainability Assessment of Provincial-Level Regions in China Using Composite Sustainable Indicator" Sustainability 11, no. 19: 5289. https://doi.org/10.3390/su11195289
APA StyleYi, P., Wang, L., Zhang, D., & Li, W. (2019). Sustainability Assessment of Provincial-Level Regions in China Using Composite Sustainable Indicator. Sustainability, 11(19), 5289. https://doi.org/10.3390/su11195289