Effects of pH Conditions and Application Rates of Commercial Humic Substances on Cu and Zn Mobility in Anthropogenic Mine Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Samples and Commercial Humic Substances
2.2. Single-Step Extraction Procedure
2.3. Chemical Speciation Modeling
2.4. Analytical Methods
2.5. Statistical Analyses
3. Results and Discussion
3.1. Characteristics of the Contaminated Soil and Commercial Humic Substances
3.2. Effects of the Addition of Commercial Humic Substances to Soil on Water Soluble Organic Carbon and E4/E6 Ratio
3.3. Effects of Commercial Humic Substances on Cu and Zn Mobility
3.4. Chemical Species of Metals in Soil Solution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alloway, B.J. Heavy Metals in Soils, 3rd ed.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Rodríguez-Vila, A.; Asensio, V.; Forján, R.; Covelo, E.F. Remediation of a copper mine soil with organic amendments: Compost and biochar versus Technosol and biochar. Span. J. Soil Sci. 2015, 5, 130–143. [Google Scholar]
- Soler-Rovira, P.; Madejón, E.; Madejón, P.; Plaza, C. In situ remediation of metal-contaminated soils with organic amendments: Role of humic acids in copper bioavailability. Chemosphere 2010, 79, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Hbaieb, R.; Soubrand, M.; Joussein, E.; Medhioub, M.; Casellas, M.; Gady, C.; Saladin, G. Assisted phytostabilisation of As, Pb and Sb-contaminated Technosols with mineral and organic amendments using Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Environ. Sci. Pollut. Res. 2018, 25, 32292–32302. [Google Scholar] [CrossRef] [PubMed]
- Mendez, M.O.; Maier, R.M. Phytoremediation of mine tailings in temperate and arid environments. Rev. Environ. Sci. Bio Technol. 2008, 7, 47–59. [Google Scholar] [CrossRef]
- Hattab, N.; Soubrand, M.; Guégan, R.; Motelica-Heino, M.; Bourrat, X.; Faure, O.; Bouchardon, J.L. Effect of organic amendments on the mobility of trace elements in phytoremediated techno-soils: Role of the humic substances. Environ. Sci. Pollut. Res. 2014, 21, 10470–10480. [Google Scholar] [CrossRef]
- Schwab, A.P.; Zhu, D.S.; Banks, M.K. Heavy metal leaching from mine tailings as affected by organic amendments. Bioresour. Technol. 2007, 98, 2935–2941. [Google Scholar] [CrossRef] [PubMed]
- Clemente, R.; Bernal, M.P. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids. Chemosphere 2006, 64, 1264–1273. [Google Scholar] [CrossRef] [PubMed]
- Özkaraova Güngör, E.B.; Bekbölet, M. Zinc release by humic and fulvic acid as influenced by pH, complexation and DOC sorption. Geoderma 2010, 159, 131–138. [Google Scholar] [CrossRef]
- Dar, M.I.; Khan, F.A.; Green, I.D.; Naikoo, M.I. The transfer and fate of Pb from sewage sludge amended soil in a multi-trophic food chain: A comparison with the labile elements Cd and Zn. Environ. Sci. Pollut. Res. 2015, 22, 16133–16142. [Google Scholar] [CrossRef]
- Evangelou, M.W.H.; Daghan, H.; Schaeffer, A. The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere 2004, 57, 207–213. [Google Scholar] [CrossRef]
- Kloster, N.; Avena, M. Interaction of humic acids with soil minerals: Adsorption and surface aggregation induced by Ca2+. Environ. Chem. 2015, 12, 731–738. [Google Scholar] [CrossRef]
- Römkens, P.F.A.M.; Dolfing, J. Effect of Ca on the solubility and molecular size distribution of DOC and Cu binding in soil solution samples. Environ. Sci. Technol. 1998, 32, 363–369. [Google Scholar] [CrossRef]
- Vermeer, A.W.P.; van Riemsdijk, W.H.; Koopal, L.K. Adsorption of humic acid to mineral particles. 1. Specific and electrostatic interactions. Langmuir 1998, 14, 2810–2819. [Google Scholar] [CrossRef]
- You, S.J.; Yin, Y.; Allen, H.E. Partitioning of organic matter in soils: Effects of pH and water/soil ratio. Sci. Total Environ. 1999, 227, 155–160. [Google Scholar] [CrossRef]
- Ondrasek, G.; Rengel, Z.; Romic, D. Humic acids decrease uptake and distribution of trace metals, but not the growth of radish exposed to cadmium toxicity. Ecotoxicol. Environ. Safe. 2018, 151, 55–61. [Google Scholar] [CrossRef]
- Vargas, C.; Pérez-Esteban, J.; Escolástico, C.; Masaguer, A.; Moliner, A. Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids. Environ. Sci. Pollut. Res. 2016, 23, 13521–13530. [Google Scholar] [CrossRef] [PubMed]
- Angin, I.; Turan, M.; Ketterings, Q.M.; Cakici, A. Humic acid addition enhances B and Pb phytoextraction by vetiver grass (Vetiveria zizanioides (L.) Nash). Water Air Soil Pollut. 2008, 188, 335–343. [Google Scholar] [CrossRef]
- Jiménez, R.; Jordá, L.; Jordá, R.; Prado, P. La minería metálica en Madrid desde 1417 hasta nuestros días. Bocamina 2004, 14, 52–89. (In Spanish) [Google Scholar]
- Mazadiego Martínez, L.F.; Puche Riart, O. La Minas de cobre de Colmenarejo. 1999. Available online: http://oa.upm.es/9908/1/colmenarejo.pdf (accessed on 18 July 2019). (In Spanish).
- Álvarez-Puebla, R.A.; Valenzuela-Calahorro, C.; Garrido, J.J. Modeling the adsorption and precipitation processes of Cu (II) on humin. J. Colloid Interface Sci. 2004, 277, 55–61. [Google Scholar] [CrossRef]
- Gustafsson, J.P. Visual MINTEQ, v.3.1. 2018. Available online: https://vminteq.lwr.kth.se (accessed on 18 July 2019).
- Pérez-Esteban, J.; Escolástico, C.; Moliner, A.; Masaguer, A. Chemical speciation and mobilization of copper and zinc in naturally contaminated mine soils with citric and tartaric acids. Chemosphere 2013, 90, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Esteban, J.; Escolástico, C.; Masaguer, A.; Vargas, C.; Moliner, A. Soluble organic carbon and pH of organic amendments affect metal mobility and chemical speciation in mine soils. Chemosphere 2014, 103, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Kinniburgh, D.G.; Van Riemsdijk, W.H.; Koopal, L.K.; Borkovec, M.; Benedetti, M.F.; Avena, M.J. Ion binding to natural organic matter: Competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids Surf. A Physicochem. Eng. Aspects 1999, 151, 147–166. [Google Scholar] [CrossRef]
- Smith, R.M.; Martell, A.E.; Motekaitis, R.J. NIST critically selected stability constants of metal complexes database. In NIST Standard Reference Database 46, Version 7.0; National Institute of Standard and Technology: Gaithersburg, MD, USA, 2003. [Google Scholar]
- Milne, C.J.; Kinniburgh, D.G.; Van Riemsdijk, W.H.; Tipping, E. Generic NICA−Donnan model parameters for metal-ion binding by humic substances. Environ. Sci. Technol. 2003, 37, 958–971. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Day, P.R. Particle fractionation and particle-size analysis. In Methods of Soil Analysis, Part 1; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 545–567. [Google Scholar]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Islam, K.R.; Weil, R.R. A rapid microwave digestion method for colorimetric measurement of soil organic carbon. Commun. Soil Sci. Plant Anal. 1998, 29, 2269–2284. [Google Scholar] [CrossRef]
- Ciavatta, C.; Govi, M.; Antisari, L.V.; Sequi, P. Determination of organic carbon in aqueous extracts of soils and fertilizers. Commun. Soil Sci. Plant Anal. 1991, 22, 795–807. [Google Scholar] [CrossRef]
- Sims, J.R.; Haby, V.A. Simplified colorimetric determination of soil organic matter. Soil Sci. 1971, 112, 137–141. [Google Scholar] [CrossRef]
- Chen, Y.; Senesi, N.; Schnitzer, M. Information provided on humic substances by E4/E6 ratios. Soil Sci. Soc. Am. J. 1977, 41, 352–358. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Ashworth, D.J.; Alloway, B.J. Influence of dissolved organic matter on the solubility of heavy metals in sewage-sludge-amended soils. Commun. Soil Sci. Plant Anal. 2008, 39, 538–550. [Google Scholar] [CrossRef]
- Chica, A.; Mohedo, J.J.; Martín, M.A.; Martín, A. Determination of the stability of MSW compost using a respirometric technique. Compost Sci. Util. 2003, 11, 169–175. [Google Scholar] [CrossRef]
- Zmora-Nahum, S.; Markovitch, O.; Tarchitzky, J.; Chen, Y. Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biol. Biochem. 2005, 37, 2109–2116. [Google Scholar] [CrossRef]
- Komy, Z.R.; Shaker, A.M.; Heggy, S.E.M.; El-Sayed, M.E.A. Kinetic study for copper adsorption onto soil minerals in the absence and presence of humic acid. Chemosphere 2014, 99, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Lützenkirchen, J. Ionic strength effects on cation sorption to oxides: Macroscopic observations and their significance in microscopic interpretation. J. Colloid Interface Sci. 1997, 195, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.; Adriano, D.; Mani, S.; Khan, A. Adsorption, complexation, and phytoavailability of copper as influenced by organic manure. Environ. Toxicol. Chem. 2003, 22, 450–456. [Google Scholar] [CrossRef]
- Zhou, L.X.; Wong, J.W.C. Effect of dissolved organic matter from sludge compost on soil copper sorption. J. Environ. Qual. 2001, 30, 878–883. [Google Scholar] [CrossRef]
- Prado, A.G.S.; Torres, J.D.; Martins, P.C.; Pertusatti, J.; Bolzon, L.B.; Faria, E.A. Studies on copper(II)- and zinc(II)-mixed ligand complexes of humic acid. J. Hazard. Mater. 2006, 136, 585–588. [Google Scholar] [CrossRef]
- Matijevic, L.; Romic, D.; Romic, M. Soil organic matter and salinity affect copper bioavailability in root zone and uptake by Vicia faba L. plants. Environ. Geochem. Health 2014, 36, 883–896. [Google Scholar] [CrossRef]
- Baker, B.J. Investigation of the Competitive Effects of Copper and Zinc on Fulvic Acid Complexation: Modeling and Analytical Approaches. Master’s Thesis, Colorado School of Mines, Golden, CO, USA, 2012. Available online: https://mountainscholar.org/bitstream/handle/11124/76824/Baker_mines_0052N_10049.pdf (accessed on 18 July 2019).
Properties | Soil | HS |
---|---|---|
Clay (% w/w) | 7 | nd |
Silt (%) | 14 | nd |
Sand (%) | 79 | nd |
pH (H2O 1/2.5 w/v) | 5.9 | 11.2 |
EC (dS m−1 H2O 1/2.5 w/v) | 0.05 | 58.4 |
OC (% w/w) | 0.3 | 38.6 |
Humic acids (% w/w) | nd | 53 |
Fulvic acids (% w/w) | nd | 12 |
Solubility (g L−1) | nd | 100 |
K2O (% w/w) | nd | 17 |
Cu 1 + 2 + 3 (mg kg−1) | 660 | nd |
Zn 1 + 2 + 3 (mg kg−1) | 6.3 | nd |
Total Cu (mg kg−1) | 2838 | 9 |
Total Zn (mg kg−1) | 240 | 119 |
Total Cd (mg kg−1) | 3.2 | dl |
Total Pb (mg kg−1) | 127 | 4 |
Treatment | WSOC (g kg−1) | E4/E6 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH 4.5 | pH 6.0 | pH 8.0 | pH 4.5 | pH 6.0 | pH 8.0 | |||||||
HS0 1 | 0.29 Aa | ±0.10 | 0.44 Aa | ±0.08 | 0.32 Aa | ±0.04 | 0.71 Ab | ±0.04 | 0.65 Aab | ±0.04 | 0.61 Aa | ±0.01 |
HS0.5 | 0.42 Aa | ±0.04 | 0.35 Aa | ±0.01 | 0.66 Bb | ±0.04 | 0.65 Aa | ±0.02 | 0.68 ABa | ±0.03 | 0.69 ABa | ±0.02 |
HS2 | 0.26 Aa | ±0.03 | 0.31 Aa | ±0.02 | 1.26 Cb | ±0.00 | 0.79 Aa | ±0.01 | 0.85 Bab | ±0.04 | 0.93 Bb | ±0.02 |
HS10 | 0.64 Ba | ±0.03 | 0.75 Ba | ±0.07 | 4.37 Db | ±0.07 | 1.70 Ba | ±0.27 | 2.46 Cb | ±0.13 | 3.31 Cc | ±0.23 |
df | F | df | F | |||||||||
Treatment 2 | 3 | 1070.180 *** | 3 | 238.504 *** | ||||||||
pH | 2 | 1011.084 *** | 2 | 13.257 ** | ||||||||
Treatm *pH | 6 | 638.605 *** | 6 | 14.114 *** |
Treatment | Final pH | EC (dS m−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH 4.5 | pH 6.0 | pH 8.0 | pH 4.5 | pH 6.0 | pH 8.0 | |||||||
HS0 1 | 5.58 Ca | ±0.11 | 5.63 Ba | ±0.04 | 5.47 Aa | ±0.02 | 0.06 Aa | ±0.00 | 0.05 Aa | ±0.00 | 0.09 Ab | ±0.00 |
HS0.5 | 5.13 Ba | ±0.02 | 5.30 Ab | ±0.06 | 5.52 ABc | ±0.04 | 0.31 Bc | ±0.01 | 0.17 Bb | ±0.03 | 0.11 Aa | ±0.00 |
HS2 | 4.99 Ba | ±0.02 | 5.24 Ab | ±0.02 | 5.64 Bc | ±0.01 | 0.61 Cc | ±0.01 | 0.45 Cb | ±0.00 | 0.33 Ba | ±0.01 |
HS10 | 4.70 Aa | ±0.01 | 5.65 Bb | ±0.05 | 6.34 Cc | ±0.01 | 2.67 Dc | ±0.04 | 2.07 Db | ±0.02 | 1.64 Ca | ±0.04 |
df | F | df | F | |||||||||
Treatment 2 | 3 | 46.310 *** | 3 | 9930.254 *** | ||||||||
pH | 2 | 342.183 *** | 2 | 404.898 *** | ||||||||
Treatm *pH | 6 | 117.174 *** | 6 | 180.377 *** |
Treatment | Cu (mg kg−1) | Zn (mg kg−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH 4.5 | pH 6.0 | pH 8.0 | pH 4.5 | pH 6.0 | pH 8.0 | |||||||
HS0 1 | 3.2 Ab | ±0.4 | 3.4 Ab | ±0.9 | 1.4 Aa | ±0.0 | 0.1 Aa | ±0.0 | 0.1 Aa | ±0.0 | 0.1 Aa | ±0.0 |
HS0.5 | 7.4 Bb | ±0.7 | 4.3 Aa | ±1.0 | 11.3 Ac | ±0.9 | 0.4 Bb | ±0.1 | 0.2 Aa | ±0.0 | 0.6 Bb | ±0.0 |
HS2 | 13.1 Ca | ±0.1 | 12.0 Ba | ±0.7 | 32.1 Bb | ±3.0 | 0.4 Ba | ±0.0 | 0.3 Ba | ±0.0 | 0.4 Ba | ±0.2 |
HS10 | 44.1 Da | ±2.0 | 34.5 Ca | ±3.7 | 151.9 Cb | ±6.3 | 1.1 Cc | ±0.1 | 0.4 Ca | ±0.0 | 0.7 Bb | ±0.0 |
df | F | df | F | |||||||||
Treatment 2 | 3 | 862.542 *** | 3 | 294.548 *** | ||||||||
pH | 2 | 284.866 *** | 2 | 89.210 *** | ||||||||
Treatm *pH | 6 | 247.480 *** | 6 | 46.712 *** |
Treatm. | Cu-Fulvic Acid (%) | Cu-Humic Acid (%) | Zn-Fulvic Acid (%) | Zn-Humic Acid (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Carbox | Phenol | Donnan | Carbox | Phenol | Donnan | Carbox | Phenol | Donnan | Carbox | Phenol | Donnan | |
pH 4.5 | ||||||||||||
HS0 | 5.3 | 0.1 | 15.0 | 49.4 | 3.0 | 27.3 | 0.0 | 0.0 | 31.9 | 8.3 | 1.5 | 58.2 |
HS0.5 | 5.0 | 0.1 | 18.1 | 44.4 | 2.3 | 30.1 | 0.0 | 0.0 | 35.0 | 6.2 | 0.7 | 58.1 |
HS2 | 4.1 | 0.1 | 22.8 | 36.8 | 1.5 | 34.7 | 0.0 | 0.0 | 36.8 | 6.7 | 0.6 | 55.9 |
HS10 | 4.3 | 0.1 | 23.4 | 37.4 | 1.4 | 33.4 | 0.0 | 0.0 | 37.9 | 7.4 | 0.6 | 54.0 |
pH 6.0 | ||||||||||||
HS0 | 5.7 | 0.1 | 13.1 | 53.2 | 3.6 | 24.3 | 0.0 | 0.0 | 31.2 | 9.1 | 1.8 | 57.8 |
HS0.5 | 5.3 | 0.1 | 15.8 | 48.4 | 2.8 | 27.7 | 0.0 | 0.0 | 33.1 | 7.7 | 1.2 | 58.1 |
HS2 | 4.0 | 0.1 | 21.7 | 37.6 | 1.7 | 35.0 | 0.0 | 0.0 | 35.3 | 6.9 | 0.8 | 57.0 |
HS10 | 3.7 | 0.1 | 22.1 | 36.1 | 1.6 | 36.4 | 0.0 | 0.0 | 34.1 | 8.3 | 1.4 | 56.3 |
pH 8.0 | ||||||||||||
HS0 | 6.5 | 0.2 | 10.2 | 59.3 | 4.7 | 19.1 | 0.0 | 0.0 | 30.8 | 9.5 | 2.0 | 57.6 |
HS0.5 | 4.7 | 0.1 | 17.4 | 44.5 | 2.4 | 30.8 | 0.0 | 0.0 | 33.5 | 6.3 | 0.8 | 59.4 |
HS2 | 4.2 | 0.1 | 19.5 | 40.5 | 2.0 | 33.7 | 0.0 | 0.0 | 32.5 | 9.3 | 1.9 | 56.3 |
HS10 | 4.5 | 0.1 | 21.9 | 38.7 | 1.7 | 33.3 | 0.0 | 0.0 | 33.8 | 12.0 | 2.6 | 51.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Esteban, J.; Escolástico, C.; Sanchis, I.; Masaguer, A.; Moliner, A. Effects of pH Conditions and Application Rates of Commercial Humic Substances on Cu and Zn Mobility in Anthropogenic Mine Soils. Sustainability 2019, 11, 4844. https://doi.org/10.3390/su11184844
Pérez-Esteban J, Escolástico C, Sanchis I, Masaguer A, Moliner A. Effects of pH Conditions and Application Rates of Commercial Humic Substances on Cu and Zn Mobility in Anthropogenic Mine Soils. Sustainability. 2019; 11(18):4844. https://doi.org/10.3390/su11184844
Chicago/Turabian StylePérez-Esteban, Javier, Consuelo Escolástico, Inés Sanchis, Alberto Masaguer, and Ana Moliner. 2019. "Effects of pH Conditions and Application Rates of Commercial Humic Substances on Cu and Zn Mobility in Anthropogenic Mine Soils" Sustainability 11, no. 18: 4844. https://doi.org/10.3390/su11184844
APA StylePérez-Esteban, J., Escolástico, C., Sanchis, I., Masaguer, A., & Moliner, A. (2019). Effects of pH Conditions and Application Rates of Commercial Humic Substances on Cu and Zn Mobility in Anthropogenic Mine Soils. Sustainability, 11(18), 4844. https://doi.org/10.3390/su11184844