# Modeling Evacuation of High-Rise Buildings Based on Intelligence Decision P System

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Intelligence Decision P System for Evacuation of High-Rise Buildings

#### 2.1. Update the Knowledge Base

#### 2.2. Behavior Adjustment Mechanism

#### 2.3. The Speed of Evacuees

## 3. Simulation Results and Discussions

#### 3.1. Sensitivity Analysis

#### 3.1.1. The Threshold of the Evacuees’ Density ${\rho}_{t}$

#### 3.1.2. The Interaction Probability $P$

#### 3.1.3. Global Sensitivity Analysis

_{i}and the total sensitivity index S

_{Ti}are used to measure the global sensitivity of parameters. The calculation formulas are as follows: [51]:

#### 3.2. The Effect of Stair Speed

#### 3.3. The Effect of Staircase Width

#### 3.4. The Initial Number of Pedestrians on Each Floor

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Rendon, K.; Arellana, J.; Santander-Mercado, A.; Jubiz-Diaz, M. Modelling building emergency evacuation plans considering the dynamic behaviour of pedestrians using agent-based simulation. Saf. Sci.
**2019**, 113, 276–284. [Google Scholar] [CrossRef] - Marzouk, M.; Mohamed, B. Integrated agent-based simulation and multi-criteria decision making approach for buildings evacuation evaluation. Saf. Sci.
**2019**, 112, 57–65. [Google Scholar] [CrossRef] - Ashutosh, T.; Shrisha, R. Agent-Based Modeling of Emergency Evacuations Considering Human Panic Behavior. IEEE Trans. Comput. Soc. Syst.
**2018**, 5, 277–288. [Google Scholar] - Chen, J.; Ma, J.; Lo, S.M. Event-driven modeling of elevator assisted evacuation in ultra high-rise buildings. Simul. Model. Pract. Theory
**2017**, 74, 99–116. [Google Scholar] [CrossRef] - Fu, L.; Fang, J.; Cao, S.; Lo, S. A Cellular Automaton Model for Exit Selection Behavior Simulation during Evacuation Processes. Procedia Eng.
**2018**, 211, 169–175. [Google Scholar] [CrossRef] - Alizadeh, R. A dynamic cellular automaton model for evacuation process with obstacles. Saf. Sci.
**2011**, 49, 315–323. [Google Scholar] [CrossRef] - Zheng, X.; Li, W.; Guan, C. Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics. Physica A
**2010**, 389, 2177–2188. [Google Scholar] [CrossRef] - Tsorvas, D.; Georgoudas, G.; Seredynski, F.; Sirakoulis, G.C. Enhanced multi-parameterized cellular automaton model for crowd evacuation: The case of a university building. Cell. Autom.
**2016**, 9863, 376–386. [Google Scholar] - Liu, Q. A social force model for the crowd evacuation in a terrorist attack. Physica A
**2018**, 502, 315–330. [Google Scholar] [CrossRef] - Zhang, H.; Liu, H.; Qin, X.; Liu, B. Modified two-layer social force model for emergency earthquake evacuation. Physica A
**2018**, 492, 1107–1119. [Google Scholar] [CrossRef] - AbuBakar, N.A.; Majid, M.A.; Adam, K.; Allegra, M. Social Force as a Microscopic Simulation Model for Pedestrian Behavior in Crowd Evacuation. Adv. Sci. Lett.
**2018**, 24, 7611–7616. [Google Scholar] - Yuan, Z.; Jia, H.; Zhang, L.; Bian, L. A social force evacuation model considering the effect of emergency signs. Simulation
**2018**, 94, 723–737. [Google Scholar] [CrossRef] - Mesmer, B.; Bloebaum, C. Incorporation of decision, game, and Bayesian game theory in an emergency evacuation exit decision model. Fire Saf. J.
**2014**, 67, 121–134. [Google Scholar] [CrossRef] - Bouzat, S.; Kuperman, M. Game theory in models of pedestrian room evacuation. Phys. Rev. E
**2014**, 89, 032806. [Google Scholar] [CrossRef] [Green Version] - Shi, D.; Zhang, W.; Wang, B. Modeling pedestrian evacuation by means of game theory. J. Stat. Mech.-Theory Exp.
**2017**, 2017, 043407. [Google Scholar] [CrossRef] - Azhar, M.; Venkat, I.; Philippe, D. Uncertainty in a spatial evacuation model. Physic A
**2017**, 479, 485–497. [Google Scholar] [Green Version] - Christensen, K.; Sasaki, Y. Agent-based emergency evacuation simulation with individuals with disabilities in the population. J. Artif. Soc. Soc. Simul.
**2008**, 11, 9–21. [Google Scholar] - Peacock, R.D.; Reneke, P.A.; Kuligowski, E.D.; Hagwood, R.C. Movement on Stairs during Building Evacuations. Fire Technol.
**2017**, 53, 845–871. [Google Scholar] [CrossRef] - Luo, M.; Wong, K.H.L. Evacuation strategy for super high rise building. In Proceedings of the 5th Annual Seminar on Tall Building construction and Maintenance, Hong Kong, China, 17 March 2006. [Google Scholar]
- Ma, Y.; Li, L.; Zhang, H.; Chen, T. Experimental study on small group behavior and crowd dynamics in a tall office building evacuation. Physica A
**2017**, 474, 488–500. [Google Scholar] [CrossRef] - Sano, T.; Yajima, M.; Kadokura, H.; Sekizawa, A. Human behavior in a staircase during a total evacuation drill in a high-rise building. Fire Mater.
**2017**, 41, 375–386. [Google Scholar] [CrossRef] - Huo, F.Z.; Song, W.G.; Chen, L.; Liu, C.; Liew, K.M. Experimental study on characteristics of pedestrian evacuation on stairs in a high-rise building. Saf. Sci.
**2016**, 86, 165–173. [Google Scholar] [CrossRef] - Tan, L.; Hu, M.Y.; Lin, H. Agent-based simulation of building evacuation: Combining human behavior with predictable spatial accessibility in a fire emergency. Inf. Sci.
**2015**, 295, 53–66. [Google Scholar] [CrossRef] - Fu, Y.-W.; Liang, J.-H.; Liu, Q.-P.; Hu, X.-Q. Crowd Simulation for Evacuation Behaviors Based on Multi-agent System and Cellular Automaton. In Proceedings of the International Conference on Virtual Reality and Visualization, Shenyang, China, 30–31 August 2014; pp. 103–109. [Google Scholar]
- Ma, J.; Lo, S.M.; Song, W.G. Cellular automaton modeling approach for optimum ultra high-rise building evacuation design. Fire Saf. J.
**2012**, 54, 57–66. [Google Scholar] [CrossRef] - Ding, N.; Zhang, H.; Chen, T. Simulation-based optimization of emergency evacuation strategy in ultra-high-rise buildings. Nat. Hazards
**2017**, 89, 1167–1184. [Google Scholar] [CrossRef] - Wang, C.Y.; Weng, W.G. Study on evacuation characteristics in an ultra high-rise building with social force model. In Proceedings of the 2014 IEEE 17th International Conference on Intelligent Transportation Systems, Qingdao, China, 8–11 October 2014; pp. 566–571. [Google Scholar]
- Vermuyten, H.; Belien, J.; Boeck, L.D.; Reniers, G.; Wauters, T. A review of optimisation models for pedestrian evacuation and design problems. Saf. Sci.
**2016**, 87, 174–175. [Google Scholar] [CrossRef] - Ronchi, E.; Nilsson, D. Fire evacuation in high-rise buildings: A review of human behaviour and modelling research. Fire Sci. Rev.
**2013**, 2, 1–21. [Google Scholar] [CrossRef] - Ronchi, E.; Nilsson, D. Modelling total evacuation strategies for high-rise buildings. Build. Simul.
**2014**, 7, 73–87. [Google Scholar] [CrossRef] - Ye, Y.; Zhao, L.D. Research on mathematical model and simulation of stair-evacuation time in high-rise buildings. In Proceedings of the International Conference on e-Risk Management, Nanjing, China, 27–30 June 2008. [Google Scholar]
- Wu, G.Y.; Huang, H.C. Modeling the emergency evacuation of the high rise building based on the control volume model. Saf. Sci.
**2015**, 73, 62–72. [Google Scholar] [CrossRef] - Păun, G. Computing with membranes. J. Comput. Syst. Sci.
**2000**, 61, 108–143. [Google Scholar] [CrossRef] - Ionescu, M.; Păun, G.; Yokomori, T. Spiking neural P systems. Fundam. Inform.
**2006**, 71, 279–308. [Google Scholar] - Zeng, X.; Pan, L.; Pérez-Jiménez, M.J. Small universal simple spiking neural P systems with weights. Sci. China Inf. Sci.
**2014**, 57, 1–11. [Google Scholar] [CrossRef] - Zhang, Z.; Wu, T.; Păun, A.; Pan, L. Universal enzymatic numerical P systems with small number of enzymatic variables. Sci. China Inf. Sci.
**2018**, 61, 1–12. [Google Scholar] [CrossRef] - Alhazov, A.; Martin-Vide, C.; Pan, L. Solving a PSPACE-complete problem by recognizing P systems with restricted active membranes. Fundam. Inform.
**2003**, 58, 66–77. [Google Scholar] - Zhang, X.; Wang, S.; Niu, Y.; Pan, L. Tissue P systems with cell separation: Attacking the partition problem. Sci. China Inf. Sci.
**2011**, 54, 293–304. [Google Scholar] [CrossRef] - Pan, L.; Păun, G.; Pérez-Jiménez, M.J. Spiking neural P systems with neuron division and budding. Sci. China Inf. Sci.
**2011**, 54, 1596–1607. [Google Scholar] [CrossRef] [Green Version] - Zhang, G.; Rong, H.; Cheng, J.; Qin, Y. A population-membrane-system-inspired evolutionary algorithm for distribution network reconfiguration. Chin. J. Electron.
**2014**, 23, 437–441. [Google Scholar] - Zhang, G.; Rong, H.; Neri, F.; Pérez-Jiménez, M.J. An optimization spiking neural P system for approximately solving combinatorial optimization problems. Int. J. Neural Syst.
**2014**, 24, 1–16. [Google Scholar] [CrossRef] - Peng, H.; Shi, P.; Wang, J.; Riscos-Núñez, A.; Pérez-Jiménez, M.J. Multi objective fuzzy clustering approach based on tissue-like membrane systems. Knowl.-Based Syst.
**2017**, 125, 74–82. [Google Scholar] [CrossRef] - Ciobanu, G.; Pérez-Jiménez, M.J.; Păun, G. Applications of Membrane Computing; Springer: Berlin/Heidelberg, Germany, 2006; Volume 287, pp. 73–100. [Google Scholar]
- Peng, H.; Wang, J.; Shi, P.; Pérez-Jiménez, M.J.; Riscos-Núñez, A. Fault diagnosis of power systems using fuzzy tissue-like P systems. Integr. Comput.-Aided Eng.
**2017**, 24, 401–411. [Google Scholar] [CrossRef] - Barbuti, R.; Bove, P.; Milazzo, P.; Pardini, G. Minimal probabilistic P systems for modelling ecological systems. Theor. Comput. Sci.
**2015**, 608, 36–56. [Google Scholar] [CrossRef] - Sakellariou, I.; Stamatopoulou, I.; Kefalas, P. Using membranes to model a multi-agent system towards underground metro station crowd behaviour simulation. In Proceedings of the Workshop on Intelligent Agents in Urban Simulations and Smart Cities, Montpellie, France, 27–31 August 2012; pp. 5–10. [Google Scholar]
- Păun, G.; Rozenberg, G.; Salomaa, A. The Oxford Handbook of Membrane Computing; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Păun, G. Membrane Computing. An Introduction; Springer: Berlin, Germany, 2002. [Google Scholar]
- Niu, Y.; Zhang, Y.; Zhang, J.; Xiao, J. Running cells with decision-making mechanism: Intelligence decision P System for evacuation simulation. Int. J. Comput. Commun.
**2018**, 13, 865–880. [Google Scholar] [CrossRef] - Code of Practice on Building Works for Lifts and Escalators; Building Authority: Hong Kong, China, 2002.
- Kang, J.; Aldstadt, J. Using multiple-scale space-time patterns in variance-based global sensitivity analysis for spatially explicit agent-based models. Comput. Environ. Urban Syst.
**2019**, 75, 170–183. [Google Scholar] [CrossRef] - Zhao, H.; Winter, S. A Time-Aware Routing Map for Indoor Evacuation. Sensors
**2016**, 16, 112. [Google Scholar] [CrossRef] [PubMed]

${\mathit{\rho}}_{\mathit{t}}$ | The number of evacuees | SD | |||
---|---|---|---|---|---|

Staircase 1 | Staircase 2 | Staircase 3 | Staircase 4 | ||

0.6 | 795 | 912 | 903 | 690 | 104.5 |

0.7 | 787 | 897 | 915 | 701 | 100.2 |

0.8 | 793 | 903 | 897 | 707 | 93.5 |

0.9 | 779 | 934 | 930 | 657 | 133.2 |

1.0 | 754 | 976 | 996 | 574 | 200.1 |

${\mathit{\rho}}_{\mathit{t}}$ | The number of evacuees | SD | ||||||||
---|---|---|---|---|---|---|---|---|---|---|

Exit 1 | Exit 2 | Exit 3 | Exit 4 | Exit 5 | Exit 6 | Exit 7 | Exit 8 | Exit 9 | ||

0.6 | 439 | 320 | 134 | 124 | 175 | 537 | 470 | 660 | 741 | 227.2 |

0.7 | 451 | 316 | 129 | 136 | 147 | 531 | 460 | 669 | 761 | 234.6 |

0.8 | 430 | 321 | 139 | 138 | 175 | 553 | 437 | 652 | 755 | 226.1 |

0.9 | 445 | 315 | 124 | 114 | 139 | 568 | 450 | 680 | 765 | 244.4 |

1.0 | 476 | 261 | 118 | 105 | 129 | 596 | 494 | 624 | 797 | 255.0 |

${\mathit{\rho}}_{\mathit{t}}$ | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
---|---|---|---|---|---|

$Time(s)$ | 2798.5 | 2816.1 | 2731.2 | 2897.3 | 3011.0 |

$\mathit{P}$ | The number of evacuees | SD | |||
---|---|---|---|---|---|

Staircase 1 | Staircase 2 | Staircase 3 | Staircase 4 | ||

0.0 | 828 | 926 | 901 | 645 | 127.0 |

0.2 | 759 | 925 | 915 | 701 | 112.3 |

0.4 | 776 | 918 | 916 | 690 | 111.9 |

0.6 | 793 | 903 | 897 | 707 | 93.5 |

0.8 | 801 | 931 | 869 | 699 | 99.4 |

1.0 | 805 | 927 | 877 | 691 | 102.4 |

$\mathit{P}$ | The number of evacuees | SD | ||||||||
---|---|---|---|---|---|---|---|---|---|---|

Exit 1 | Exit 2 | Exit 3 | Exit 4 | Exit 5 | Exit 6 | Exit 7 | Exit 8 | Exit 9 | ||

0.0 | 463 | 265 | 164 | 70 | 97 | 546 | 416 | 878 | 701 | 278.2 |

0.2 | 436 | 235 | 146 | 81 | 120 | 546 | 465 | 836 | 735 | 274.1 |

0.4 | 425 | 259 | 161 | 122 | 141 | 561 | 435 | 788 | 708 | 248.6 |

0.6 | 430 | 321 | 139 | 138 | 175 | 553 | 437 | 652 | 755 | 226.1 |

0.8 | 419 | 313 | 154 | 117 | 169 | 523 | 470 | 712 | 723 | 230.1 |

1.0 | 393 | 309 | 134 | 126 | 180 | 530 | 453 | 759 | 716 | 237.4 |

$\mathit{P}$ | 0.0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 |
---|---|---|---|---|---|---|

Time(s) | 2851 | 2816.3 | 2763 | 2731.2 | 2820.3 | 2827.9 |

Scenario | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 |
---|---|---|---|---|

Stair speed | 0.224 | 0.416 | 0.608 | random |

Time(s) | 4348.5 | 2556.1 | 1751.2 | 2731.2 |

Staircase Width (m) | The number of evacuees | Time (s) | |||
---|---|---|---|---|---|

Staircase 1 | Staircase 2 | Staircase 3 | Staircase 4 | ||

2 | 793 | 903 | 897 | 707 | 2731.2 |

3 | 784 | 916 | 869 | 731 | 2580.1 |

4 | 771 | 927 | 883 | 719 | 2772.4 |

5 | 769 | 919 | 891 | 721 | 3223.7 |

6 | 747 | 902 | 906 | 745 | 3722.8 |

Floor | The number of evacuees | ||||||||
---|---|---|---|---|---|---|---|---|---|

Exp#1 | Exp#2 | Exp#3 | Exp#4 | Exp#5 | Exp#6 | Exp#7 | Exp#8 | Exp#9 | |

1st floor | 25 | 50 | 100 | 200 | 300 | 400 | 500 | 550 | 570 |

2nd floor | 50 | 100 | 500 | 400 | 300 | 200 | 100 | 500 | 550 |

4th floor | 100 | 200 | 500 | 400 | 300 | 200 | 100 | 400 | 500 |

5th floor | 125 | 250 | 100 | 200 | 300 | 400 | 500 | 350 | 475 |

6th floor | 150 | 300 | 500 | 400 | 300 | 200 | 100 | 300 | 450 |

7th floor | 450 | 300 | 100 | 200 | 300 | 400 | 500 | 300 | 150 |

8th floor | 475 | 350 | 500 | 400 | 300 | 200 | 100 | 250 | 125 |

9th floor | 500 | 400 | 100 | 200 | 300 | 400 | 500 | 200 | 100 |

10th floor | 525 | 450 | 500 | 400 | 300 | 200 | 100 | 150 | 75 |

11th floor | 550 | 500 | 100 | 200 | 300 | 400 | 500 | 100 | 50 |

12th floor | 575 | 550 | 500 | 400 | 300 | 200 | 100 | 50 | 25 |

Experiment | Exp#1 | Exp#2 | Exp#3 | Exp#4 | Exp#5 | Exp#6 | Exp#7 | Exp#8 | Exp#9 |
---|---|---|---|---|---|---|---|---|---|

Time(s) | 2839.8 | 2800.1 | 2773.5 | 2760.7 | 2731.2 | 2769.3 | 2707.2 | 2564.4 | 2557.3 |

SD | 58.7 | 51.7 | 61.5 | 46.0 | 58.4 | 52.8 | 40.5 | 48.5 | 76.4 |

Upper Limit | 2828.1 | 2789.6 | 2761.2 | 2751.5 | 2719.6 | 2785.7 | 2699.1 | 2554.6 | 2542.1 |

Lower Limit | 2851.6 | 2810.3 | 2785.8 | 2770.1 | 2743 | 2806.9 | 2715.3 | 2574.1 | 2572.6 |

Model | Pros | Cons |
---|---|---|

IDPS | 1. Intelligent decision with knowledge base. 2. Rich and convenient regular expressions. | 1. Computational efficiency needs to be improved. 2. No typical software tool. |

Agent-base model | 1. Observe situation, respond in time. 2. Collaborative interactivity. | 1. Non-optimal decision. |

Cellular automaton model | 1. Perceive system and neighborhood information, respond in time. | 1. Non-optimal decision without unique knowledge base. 2. Lack of interaction. |

Social-force model | 1. Calculate the resultant force, respond in time. | 1. Non-optimal decision without unique knowledge base. 2. Force interaction without intelligent behavior. |

Game theory model | 1. Perceive neighborhood strategies and make decisions. | 1. Game interaction of specific game rules. |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Niu, Y.; Zhang, J.; Zhang, Y.; Xiao, J.
Modeling Evacuation of High-Rise Buildings Based on Intelligence Decision P System. *Sustainability* **2019**, *11*, 4685.
https://doi.org/10.3390/su11174685

**AMA Style**

Niu Y, Zhang J, Zhang Y, Xiao J.
Modeling Evacuation of High-Rise Buildings Based on Intelligence Decision P System. *Sustainability*. 2019; 11(17):4685.
https://doi.org/10.3390/su11174685

**Chicago/Turabian Style**

Niu, Yunyun, Jieqiong Zhang, Yongpeng Zhang, and Jianhua Xiao.
2019. "Modeling Evacuation of High-Rise Buildings Based on Intelligence Decision P System" *Sustainability* 11, no. 17: 4685.
https://doi.org/10.3390/su11174685