Urban Expansion and the Loss of Prairie and Agricultural Lands: A Satellite Remote-Sensing-Based Analysis at a Sub-Watershed Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Processing
2.3. Methodology
Image Classification and Accuracy Assessment
2.4. Analysis of Urban Expansion in Study Area (Six Sub-Watersheds)
2.4.1. Percent Change in Urban Expansion
2.4.2. Rate of Urban Expansion
2.5. Dynamics of Agricultural Land/Grassland Loss in the Six Sub-Watersheds
3. Results
3.1. Accuracy Assessment
3.2. Change in LULC for the Six Sub-Watersheds
3.3. Urban Expansion and Loss of Agricultural Land/Grassland in the Six Sub-Watersheds
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cohen, B. Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability. Technol. Soc. 2006, 28, 63–80. [Google Scholar] [CrossRef]
- Fenta, A.A.; Yasuda, H.; Haregeweyn, N.; Belay, S.A.; Hadush, Z.; Gebremedhin, A.M.; Mekonnen, G. The dynamics of urban expansion and land use/land cover changes using remote sensing and spatial metrics: The case of Mekelle City of northern Ethiopia. Int. J. Remote Sens. 2017, 38, 4107–4129. [Google Scholar] [CrossRef]
- Soffanian, A.; Nadoushan, A.M.; Yaghmaei, L.; Falahatkar, S. Mapping and analyzing urban expansion using remotely sensed imagery in Isfahan, Iran. World Appl. Sci. J. 2010, 9, 1370–1378. [Google Scholar]
- Tewolde, M.G.; Cabral, P. Urban sprawl analysis and modelling in Asmara, Eritrea. Remote Sens. 2011, 3, 2148–2165. [Google Scholar] [CrossRef]
- Araya, Y.H.; Cabral, P. Analysis and modelling of urban land cover change in Setubal and Sesimbra, Portugal. Remote Sens. 2010, 2, 1549–1563. [Google Scholar] [CrossRef]
- Mundia, C.N.; Murayama, Y. Modelling spatial processes of urban growth in African cities: A case study of Nairobi City. Urban Geogr. 2010, 31, 259–272. [Google Scholar] [CrossRef]
- Hansen, T.; Francis, C. Multifunctional Rural Landscapes; University Nebraska Center for Applied Rural Innovation (CARI): Lincoln, NE, USA, 2007; Available online: http://cari.unl.edu/SustainableAg/pdf/ MultifunctionalRuralLandscapes.pdf (accessed on 3 May 2019).
- World Bank. World Bank Database. 2015. Available online: http://data.worldbank.org (accessed on 3 May 2019).
- United Nations. World Urbanization Prospects: The 2014 Revision. Available online: http://esa.un.org/unpd/wup/index.htm (accessed on 3 June 2019).
- Francis, A.C.; Hansen, E.T.; Fox, A.A.; Hesje, J.P.; Nelson, E.H.; Lawseth, E.A.; English, A. Farmland conversion to non-agricultural uses in the US and Canada: Current impacts and concerns for the future. Int. J. Agric. Sustain. 2012, 10, 8–24. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, B.; Zhang, L.; Lu, C.; Cheng, X. Spatiotemporal evolution of urban land uses in modern urbanization of China. Chin. Geogr. Sci. 2010, 20, 132–138. [Google Scholar] [CrossRef]
- Shrestha, M.K.; York, A.M.; Boone, C.G.; Zhang, S. Land fragmentation due to rapid urbanization in the Phoenix Metropolitan Area: Analyzing the spatiotemporal patterns and drivers. Appl. Geogr. 2012, 32, 522–531. [Google Scholar] [CrossRef]
- Li, B.; Chen, D.; Wu, S.; Zhou, S.; Wang, T.; Chen, H. Spatio-temporal assessment of urbanization impacts on ecosystem services: Case study of Nanjing City, China. Ecol. Indic. 2016, 71, 416–427. [Google Scholar] [CrossRef]
- Qiu, B.; Li, H.; Zhou, M.; Zhang, L. Vulnerability of ecosystem services provisioning to urbanization: A case of China. Ecol. Indic. 2015, 57, 505–513. [Google Scholar] [CrossRef]
- Wang, H.; He, Q.; Liu, X.; Zhuang, Y.; Hong, S. Global urbanization research from 1991 to 2009: A systematic research review. Landsc. Urban Plan. 2012, 104, 299–309. [Google Scholar] [CrossRef]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extents from the DMSP-OLS night-lights. Remote Sens. Environ 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Tan, M.; Li, X.; Xie, H.; Lu, C. Urban land expansion and arable land loss in China—A case study of Beijing–Tianjin–Hebei region. Land Use Policy 2005, 22, 187–196. [Google Scholar] [CrossRef]
- Jiang, L.; Deng, X.; Seto, K.C. The impact of urban expansion on agricultural land use intensity in China. Land Use Policy 2013, 35, 33–39. [Google Scholar] [CrossRef]
- Ji, W.; Ma, J.; Twibell, R.W.; Underhill, K. Characterizing urban sprawl using multi-stage remote sensing images and landscape metrics. Comput. Environ. Urban Syst. 2006, 30, 861–879. [Google Scholar] [CrossRef]
- Sharma, L.; Pandey, C.P.; Nathawat, S.M. Assessment of land consumption rate with urban dynamics change using geospatial techniques. J. Land Use Sci. 2012, 7, 135–148. [Google Scholar] [CrossRef]
- Boori, S.M.; Netzband, M.; Choudhary, K.; Voženílek, V. Monitoring and modeling of urban sprawl through remote sensing and GIS in Kuala Lumpur, Malaysia. Ecol. Process. 2015, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Zubair, A.O.; Ji, W.; Weilert, E.T. Modeling the Impact of Urban Landscape Change on Urban Wetlands Using Similarity Weighted Instance-Based Machine Learning and Markov Model. Sustainability 2017, 9, 2223. [Google Scholar] [CrossRef]
- MARC (Mid-America Regional Council). Census Data for the MARC Region. 2010. Available online: http://www.marc.org/Data-Economy/Metrodataline/Population/Census-2010 (accessed on 3 May 2019).
- Weilert, E.T.; Ji, W.; Zubair, A.O. Article Assessing the Impacts of Streamside Ordinance Protection on the Spatial and Temporal Variability in Urban Riparian Vegetation. ISPRS Int. J. Geo-Inf. 2018, 7, 282. [Google Scholar] [CrossRef]
- Zubair, O.A.; Ji, W. Assessing the Impact of Land Cover Classification Methods on the Accuracy of Urban Land Change Prediction. Can. J. Remote Sens. 2015, 41, 170–190. [Google Scholar] [CrossRef]
- Chen, D.; Stow, D. The effect of training strategies on supervised classification at different spatial resolutions. Photogramm. Eng. Remote Sens. 2002, 68, 1155–1162. [Google Scholar]
- Olofsson, P.; Food, M.G.; Herold, M.; Stehmand, V.S.; Woodcock, E.C.; Wulder, A.M. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, Y.; Ge, J.; Tateishi, R.; Tang, C.; Liang, Y.; Huang, Z. Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landsc. Urban Plan. 2006, 75, 69–80. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondi’Zio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2407. [Google Scholar] [CrossRef]
- ERDAS Field Guide. 1999. Available online: http://web.pdx.edu/~emch/ip1/FieldGuide.pdf (accessed on 3 June 2019).
- Ji, W.; Xu, X.; Murambadoro, D. Understanding urban wetland dynamics: Cross-scale detection and analysis of remote sensing. Int. J. Remote Sens. 2015, 36, 1763–1788. [Google Scholar] [CrossRef]
- Bagan, H.; Yamagata, Y. Land-cover change analysis in 50 global cities by using a combination of Landsat data and analysis of grid cells. Environ. Res. Lett. 2014, 9, 064015. [Google Scholar] [CrossRef]
- Megahed, Y.; Cabral, P.; Silva, J.; Caetano, M. Land Cover Mapping Analysis and Urban Growth Modelling Using Remote Sensing Techniques in Greater Cairo Region—Egypt. ISPRS Int. J. Geo-Inf. 2015, 4, 1750–1769. [Google Scholar] [CrossRef]
- Cao, H.; Liu, J.; Fu, C.; Zhang, W.; Wang, G.; Yang, G.; Luo, L. Urban Expansion and Its Impact on the Land Use Pattern in Xishuangbanna since the Reform and Opening up of China. Remote Sens. 2017, 2, 137. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Forests of Missouri. 2014. Available online: https://www.fs.fed.us/nrs/pubs/ru/ru_fs40.pdf (accessed on 28 February 2019).
- Kansas Forest Service. Forest in Kansas. 2018. Available online: https://www.kansasforests.org/kansas_forest_services/forestsinkansas.html (accessed on 28 February 2019).
- The World Bank Open Data. World Bank Database. 2019. Available online: https://data.worldbank.org/indicator/AG.LND.FRST.ZS?end=2016&locations=US&start=1990&view=chart (accessed on 28 February 2019).
- Rouse. Assessing Urban Wetlands. Final Report to the U.S. Environmental Protection Agency, Region 7. 2004. Available online: https://dnr.mo.gov/geology/wrc/docs/urban-wetlands.pdf?/env/wrc/docs/urban-wetlands.pdf (accessed on 28 February 2019).
Sensor | Date | Spectral Mode | No. of Bands | Processing Level | Spatial Resolution (m) | Source |
---|---|---|---|---|---|---|
SPOT 2 | 29 January 1992 | XS | 3 | 1A | 20 | SPOT image corporation |
SPOT 5 | 11 August 2014 | J | 4 | 2A | 10 | SPOT image corporation |
Land Cover Category | Description |
---|---|
Impervious surfaces | Residential areas, shopping centers, industrial and commercial facilities, highways and major streets, and associated properties and parking lots |
Forestland | Areas of land with collection of trees |
Agricultural land/grasslands | Areas with grasses, brush, crops, and in general, non-forest vegetation |
Wetlands | Open water bodies and vegetated lowlands such as riparian areas |
Accuracy Assessment | ||||
---|---|---|---|---|
Land Use/Cover Classes | 1992 | 2014 | ||
Accuracy Assessment (%) | ||||
Producer’s | User’s | Producer’s | User’s | |
Agricultural land/grassland | 88.7 | 93.4 | 95.52 | 90.14 |
Forestland | 94.8 | 87.3 | 87.27 | 85.71 |
Impervious surfaces | 91.5 | 86.1 | 86.79 | 97.87 |
Wetland | 92.1 | 90.3 | 62.50 | 100.00 |
Overall classification accuracy | 90.1 | 90.8 |
Land Cover Classes | HIC | EFLBR | BC-MR | BRO | USC-MR | HLBR | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Area (%) | Area (%) | Area (%) | Area (%) | Area (%) | Area (%) | |||||||
1992 | 2014 | 1992 | 2014 | 1992 | 2014 | 1992 | 2014 | 1992 | 2014 | 1992 | 2014 | |
Wetlands | 0.70 | 0.31 | 7.06 | 7.94 | 4.45 | 4.86 | 1.11 | 0.49 | 0.15 | 1.26 | 0.65 | 1.26 |
Agricultural land/grassland | 77.82 | 55.13 | 60.04 | 47.95 | 65.47 | 38.34 | 79.88 | 50.45 | 81.52 | 67.63 | 85.44 | 67.63 |
Impervious surfaces | 15.23 | 37.64 | 3.32 | 15.56 | 20.03 | 45.07 | 12.82 | 35.14 | 3.35 | 14.65 | 6.53 | 14.65 |
Forest | 6.25 | 6.92 | 29.58 | 28.55 | 10.05 | 12.46 | 6.19 | 13.92 | 14.98 | 16.46 | 7.38 | 16.46 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Sub-Watersheds | Rate of Urban Expansion |
---|---|
Headwaters Indian Creek | 5.7 |
East Fork Little Blue River | 16.8 |
Buckeye Creek-Missouri River | 6.8 |
Blue River Outlet | 5.5 |
Upper Shoal Creek-Missouri River | 14.4 |
Headwaters Little Blue River | 7.9 |
Sub-Watersheds | Area in Hectares | |||||
---|---|---|---|---|---|---|
Urbanized Areas | Agricultural Land/Grassland | |||||
1992 (ha) | 2014 (ha) | % Change | 1992 (ha) | 2014 (ha) | % Change | |
Headwaters Indian Creek | 1710.96 | 3868.80 | 126 | 5590.92 | 3291.12 | −41 |
East Fork Little Blue River | 342.32 | 1604.88 | 369 | 6184.68 | 4946.88 | −20 |
Buckeye Creek-Missouri River | 1501.16 | 3731.44 | 149 | 7671.48 | 5465.32 | −29 |
Blue River Outlet | 510.44 | 1147.24 | 125 | 6677.32 | 5293.92 | −21 |
Upper Shoal Creek-Missouri River | 219.44 | 915.4 | 317 | 5344.36 | 4166.68 | −22 |
Headwaters Little Blue River | 920.92 | 2528.64 | 175 | 5735.72 | 3629.44 | −37 |
Sub-Watershed | Total Loss (ha) | Loss Due to Urban Expansion | |
---|---|---|---|
(ha) | (%) | ||
Headwaters Indian Creek | 2299.8 | 2225.72 | 96.77 |
East Fork Little Blue River | 1237.8 | 1140.00 | 92.09 |
Buckeye Creek-Missouri River | 2206.16 | 2193.52 | 99.43 |
Blue River Outlet | 1383.40 | 810.56 | 58.59 |
Upper Shoal Creek-Missouri River | 1177.68 | 722.48 | 61.35 |
Headwaters Little Blue River | 2106.28 | 1763.12 | 83.71 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubair, O.A.; Ji, W.; Festus, O. Urban Expansion and the Loss of Prairie and Agricultural Lands: A Satellite Remote-Sensing-Based Analysis at a Sub-Watershed Scale. Sustainability 2019, 11, 4673. https://doi.org/10.3390/su11174673
Zubair OA, Ji W, Festus O. Urban Expansion and the Loss of Prairie and Agricultural Lands: A Satellite Remote-Sensing-Based Analysis at a Sub-Watershed Scale. Sustainability. 2019; 11(17):4673. https://doi.org/10.3390/su11174673
Chicago/Turabian StyleZubair, Opeyemi A., Wei Ji, and Olusola Festus. 2019. "Urban Expansion and the Loss of Prairie and Agricultural Lands: A Satellite Remote-Sensing-Based Analysis at a Sub-Watershed Scale" Sustainability 11, no. 17: 4673. https://doi.org/10.3390/su11174673
APA StyleZubair, O. A., Ji, W., & Festus, O. (2019). Urban Expansion and the Loss of Prairie and Agricultural Lands: A Satellite Remote-Sensing-Based Analysis at a Sub-Watershed Scale. Sustainability, 11(17), 4673. https://doi.org/10.3390/su11174673