Projection of Forest Fire Danger due to Climate Change in the French Mediterranean Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calculation and Classification of FWI System Components
- The Drought Code (DC) is a numeric rating of the average moisture content of deep, compact organic layers. This code is a useful indicator of seasonal drought effects on forest fuels and the amount of smouldering in deep duff layers and large logs.
- The Initial Spread Index (ISI) is a numeric rating of the expected rate of fire spread. It combines the effects of wind and the Fine Fuel Moisture Code on rate of spread without the influence of variable quantities of fuel.
- FWI represents the potential fireline intensity and it is a good indicator of general fire danger [13].
- The Daily Severity Rating (DSR) is a numeric rating of the difficulty of controlling fires. It is based on the Fire Weather Index but more accurately reflects the fire suppression expected efforts [11]. SSR is the mean value of the DSR during a fire season.
2.2. Description of the Study Area
2.3. Climate Models and RCP Scenarios
2.4. Methodology of Climatic Analysis and Mapping of FWI System Parameters
- Drought Code (DC) as one of the most important of the first level intermediate outputs of the FWI system;
- Initial Spread Index (ISI) as one of the second level intermediate outputs of the FWI system;
- Fire Weather Index (FWI), which was the final output;
- Seasonal Severity Rating (SSR) as the parameter expressing fire danger for an entire fire season.
- (a)
- Seasonal Severity Rating (SSR) for the historic and future fire period for the climatic scenarios RCP 4.5 and RCP 8.5;
- (b)
- Spatial future changes of SSR for RCP 4.5 and RCP 8.5;
- (c)
- Maximum values of Initial Spread Index for the historic and future 10-year fire periods for RCP 4.5 and RCP 8.5;
- (d)
- Drought Code mean values for the historic and future 10-year fire periods for RCP 4.5 and RCP 8.5;
- (e)
- Number of days per fire period for the historic and future 10-year fire periods for RCP 4.5 and RCP 8.5.
3. Results
3.1. Seasonal Severity Rating Mapping
3.2. Initial Spread Index Mapping
3.3. Drought Mapping
3.4. Number of Days with Extreme Fire Weather
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Groot, W.J.; Flannigan, M.D.; Cantin, A.S. Climate change impacts on future boreal fire regimes. For. Ecol. Manag. 2013, 294, 35–44. [Google Scholar] [CrossRef]
- EU parliament’s debate: Climate change and forest fires in Europe. Available online: https://eustafor.eu/climate-change-and-forest-fires-in-europe/ (accessed on 2 May 2019).
- Why wildfires are breaking out in the ‘wrong’ countries. Available online: https://www.bbc.com/news/world-44941999 (accessed on 2 May 2019).
- San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. For. Ecol. Manag. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- De Rigo, D.; Libertà, G.; Houston Durrant, T.; Artés Vivancos, T.; San-Miguel-Ayanz, J. Forest Fire Danger Extremes in Europe Under Climate Change: Variability and Uncertainty; Publications Office of the European Union: Bruxelles, Belgium, 2017. [Google Scholar]
- Vose, J.M.; Peterson, D.L.; Patel-Weynand, T. Effects of Climatic Variability and Change on Forest Ecosystems: A Comprehensive Science Synthesis for the U.S. Forest Sector; Forest Service, Pacific Northwest Research Station: Corvallis, OR, USA, 2012. [Google Scholar]
- Cloppet, E.; Regimbeau, M. Fire Weather Index: From high resolution climatology to Climate change impact study. In Proceedings of the EMS Annual Meeting Abstracts, Zürich, Switzerland, 13–17 September 2010; Volume 7. [Google Scholar]
- Camia, A.; Libertá, G.; San-Miguel-Ayanz, J. Modeling the impacts of climate change on forest fire danger in Europe. Available online: https://core.ac.uk/download/pdf/81685663.pdf (accessed on 2 May 2019).
- Fargeon, H.; Martin-Stpaul, N.; Pimont, F.; De Cáceres, M.; Ruffault, J.; Opitz, T.; Allard, D.; Dupuy, J. Assessing the increase in wildfire occurrence with climate change and the uncertainties associated with this projection. In Proceedings of the ICFFR, Coimbra, Portugal, 10–16 November 2018. [Google Scholar]
- Van Wagner, C.E. Development and Structure of the Canadian Forest Fire Weather Index System; Forestry Technical Report; Canadian Forestry Service: Ottawa, ON, Canada, 1987; Volume 35, 35p. [Google Scholar]
- Van Wagner, C.E.; Pickett, T.L. Equations and FORTRAN program for the Canadian forest fire weather index system. Available online: https://cfs.nrcan.gc.ca/publications?id=19973 (accessed on 20 February 2018).
- Stocks, B.J.; Lawson, B.D.; Alexander, M.E.; Van Wagner, C.E.; McAlpine, R.S.; Lynham, T.; Dubé, D.E. The Canadian forest fire danger rating system: An overview. For. Chron. 1989, 65, 258–265. [Google Scholar] [CrossRef]
- Viegas, D.X.; Biovio, G.; Ferreira, A.; Nosenzo, A.; Sol, B. Comparative study of various methods of fire danger evaluation in southern Europe. Int. J. Wildland Fire 1999, 10, 235–246. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.P.; Bemmerzouk, A.M.; Mitsopoulos, I.D. Evaluation of the Canadian fire weather index system in an eastern Mediterranean environment. Meteorol. Appl. 2011, 18, 83–93. [Google Scholar] [CrossRef]
- Camia, A.; Amatulli, G.; San-Miguel-Ayanz, J. Past and Future Trends of Forest Fire Danger in Europe. Available online: https://pdfs.semanticscholar.org/f286/443eccdce6cce0756949bd6c10e4682332c8.pdf (accessed on 20 February 2018).
- San-Miguel-Ayanz, J.; Schmuck, G.; Camia, A.; Strobl, P.; Liberta, G.; Giovando, C.; Boca, R.; Sedano, F.; Kempeneers, P.; McInerney, D.; et al. Comprehensive monitoring of wildfires in Europe: The European Forest Fire Information System (EFFIS). In Approaches to Managing Disaster—Assessing Hazards, Emergencies and Disaster Impacts; IntechOpen: London, UK, 2012. [Google Scholar]
- Wang, X.; Thompson, D.K.; Marshall, G.A. Increasing frequency of extreme fire weather in Canada with climate change. Clim. Chang. 2015, 130, 573. [Google Scholar] [CrossRef]
- Bergeron, Y.; Flannigan, M.D. Predicting the effects of climate change on fire frequency in the southeastern Canadian boreal forest. Water Air Soil Pollut. 1995, 82, 437. [Google Scholar] [CrossRef]
- Flannigan, M.; Cantin, A.S.; de Groot, W.J.; Wotton, M.; Newbery, A.; Gowman, L.M. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 2013, 294, 54–61. [Google Scholar] [CrossRef]
- Giannakopoulos, C.; Le Sager, P.; Bindi, P.; Moriondo, M.; Kostopoulou, E.; Goodess, C.M. Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Glob. Planet. Chang. 2009, 68, 209–224. [Google Scholar] [CrossRef]
- Alexander, M.E. Proposed Revision of Fire Danger Class Criteria for Forest and Rural Areas in New Zealand; NRFA/NZFRI: Wellington, New Zealand, 1994. [Google Scholar]
- Palheiro, P.M.; Fernandes, P.; Cruz, M.G. A fire behaviour-based fire danger classification for maritime pine stands: Comparison of two approaches. For. Ecol. Manag. 2006, 234, S54. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Schulte, E.; Schmuck, G.; Camia, A. The European Forest Fire Information System in the context of environmental policies of the European Union. For. Policy Econ. 2012, 29, 19–25. [Google Scholar] [CrossRef]
- Varela, V.; Sfetsos, A.; Vlachogiannis, D.; Gounaris, N. Fire Weather Index (FWI) classification for fire danger assessment applied in Greece. Tethys 2018, 15, 31–40. [Google Scholar] [CrossRef]
- IN PICTURES: Wildfires ravage south of France. Available online: https://www.thelocal.fr/20160811/in-pictures-wildfires-ravage-outskirts-of-marseille (accessed on 19 June 2019).
- France wildfires force mass evacuation. Available online: https://www.bbc.com/news/world-europe-40725294 (accessed on 19 June 2019).
- France appeal over ‘virulent’ Riviera and Corsica fires. Available online: https://www.bbc.com/news/world-europe-40712886 (accessed on 19 June 2019).
- EURO-CORDEX. Coordinated downscaling experiment—European domain. Available online: https://www.euro-cordex.net/ (accessed on 2 May 2019).
- Giorgi, F.; Jones, C.; Asrar, G.R. Addressing climate information needs at the regional level: The CORDEX framework. Bull. World Meteorol. Organ. 2009, 58, 175–183. [Google Scholar]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747. [Google Scholar] [CrossRef] [PubMed]
- Kjellström, E.; Bärring, L.; Nikulin, G.; Nilsson, C.; Persson, G.; Strandberg, G. Production and use of regional climate model projections—A Swedish perspective on building climate services. Clim. Serv. 2016, 2, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, C.G.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5. [Google Scholar] [CrossRef]
- Cardoso, R.M.; Soares, P.M.M.; Lima, D.C.A.; Miranda, P.M.A. Mean and extreme temperatures in a warming climate: EURO CORDEX and WRF regional climate high-resolution projections for Portugal. Clim. Dyn. 2019, 52, 129. [Google Scholar] [CrossRef]
- Samuelsson, P.; Jones, C.; Willιn, U.; Ullerstig, A.; Gollvik, S.; Hansson, U.; Kjellstrφm, E.; Nikulin, G.; Wyser, K. The Rossby Centre Regional Climate Model RCA3: Model description and performance. Tellus A Dyn. Meteorol. Oceanogr. 2011, 63, 4–23. [Google Scholar] [CrossRef]
- Voldoire, A.; Sanchez-Gomez, E.; Salas y Mélia, D.; Decharme, B.; Cassou, C.; Sénési, S.; Valcke, S.; Beau, I.; Alias, A.; Chevallier, M.; et al. The CNRM-CM5.1 global climate model: description and basic evaluation. Clim. Dyn. 2013, 40, 2091–2121. [Google Scholar] [CrossRef]
- Giorgetta, M.; Jungclaus, J.; Reick, C.H.; Legutke, S.; Bader, J.; Böttinger, M.; Brovkin, V.; Crueger, T.; Esch, M.; Fieg, K.; et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project Phase 5. J. Adv. Model. Earth Syst. 2013, 5, 572–597. [Google Scholar] [CrossRef]
- Strandberg, G.; Kjellström, E.; Poska, A.; Wagner, S.; Gaillard, M.J.; Trondman, A.K.; Mauri, A.; Davis, B.A.S.; Kaplan, J.O.; Birks, H.J.B.; et al. Regional climate model simulations for Europe at 6 and 0.2 k BP: Sensitivity to changes in anthropogenic deforestation. Clim. Past 2014, 10, 661–680. [Google Scholar] [CrossRef]
ISImax Values | Area (km2)/Historical Period | Area %/Historical Period | Area (km2)/RCP 4.5 | Area %/RCP 4.5 | Area (km2)/RCP 8.5 | Area %/RCP 8.5 |
---|---|---|---|---|---|---|
0–15 | 1188 | 3.464566929 | 72 | 0.209973753 | 378 | 1.102362205 |
15–30 | 16,560 | 48.29396325 | 12,618 | 36.79790026 | 12,834 | 37.42782152 |
30–45 | 11,376 | 33.17585302 | 13,068 | 38.11023622 | 12,654 | 36.90288714 |
45–60 | 4122 | 12.02099738 | 5652 | 16.48293963 | 4698 | 13.7007874 |
60–75 | 864 | 2.519685039 | 2124 | 6.194225722 | 2610 | 7.611548556 |
>75 | 180 | 0.524934383 | 756 | 2.204724409 | 1116 | 3.254593176 |
total | 34,290 | 100 | 34,290 | 100 | 34,290 | 100 |
>60 | 1044 | 3.03 | 2.880 | 8.21 | 3726 | 10.86 |
DC Values | Area (km2)/Historical Period | Area %/Historical Period | Area (km2)/RCP 4.5 | Area %/RCP 4.5 | Area (km2)/RCP 8.5 | Area %/RCP 8.5 |
---|---|---|---|---|---|---|
0–100 | 4500 | 13.12336 | 4302 | 12.54593 | 4446 | 12.96588 |
100–200 | 8316 | 24.25197 | 6534 | 19.05512 | 8280 | 24.14698 |
200–300 | 10,116 | 29.50131 | 9558 | 27.87402 | 10,512 | 30.65617 |
300–400 | 9342 | 27.24409 | 10,548 | 30.76115 | 8748 | 25.51181 |
400–500 | 1368 | 3.989501 | 2916 | 8.503937 | 1692 | 4.934383 |
>500 | 648 | 1.889764 | 432 | 1.259843 | 612 | 1.784777 |
total | 34,290 | 100 | 34,290 | 100 | 34,290 | 100 |
>400 | 2016 | 5.86 | 3348 | 9.75 | 2304 | 6.71 |
Number of Days with FWI > 50 | Area (km2)/Historical Period | Area %/Historical Period | Area (km2)/RCP 4.5 | Area %/RCP 4.5 | Area (km2)/RCP 8.5 | Area %/RCP 8.5 |
---|---|---|---|---|---|---|
0–1 | 18,270 | 53.2808399 | 15,300 | 44.61942257 | 17,550 | 51.18110236 |
2–4 | 9954 | 29.02887139 | 8442 | 24.61942257 | 8748 | 25.51181102 |
5–7 | 4068 | 11.86351706 | 4212 | 12.28346457 | 4356 | 12.70341207 |
8–10 | 1782 | 5.196850394 | 3672 | 10.70866142 | 2700 | 7.874015748 |
11–15 | 216 | 0.62992126 | 2052 | 5.984251969 | 900 | 2.624671916 |
>15 | 0 | 0 | 612 | 1.784776903 | 36 | 0.104986877 |
total | 34,290 | 100 | 34,290 | 100 | 34,290 | 100 |
>7 | 1998 | 5.826771654 | 6336 | 18.47769029 | 3636 | 10.60367454 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varela, V.; Vlachogiannis, D.; Sfetsos, A.; Karozis, S.; Politi, N.; Giroud, F. Projection of Forest Fire Danger due to Climate Change in the French Mediterranean Region. Sustainability 2019, 11, 4284. https://doi.org/10.3390/su11164284
Varela V, Vlachogiannis D, Sfetsos A, Karozis S, Politi N, Giroud F. Projection of Forest Fire Danger due to Climate Change in the French Mediterranean Region. Sustainability. 2019; 11(16):4284. https://doi.org/10.3390/su11164284
Chicago/Turabian StyleVarela, Vassiliki, Diamando Vlachogiannis, Athanasios Sfetsos, Stelios Karozis, Nadia Politi, and Frédérique Giroud. 2019. "Projection of Forest Fire Danger due to Climate Change in the French Mediterranean Region" Sustainability 11, no. 16: 4284. https://doi.org/10.3390/su11164284
APA StyleVarela, V., Vlachogiannis, D., Sfetsos, A., Karozis, S., Politi, N., & Giroud, F. (2019). Projection of Forest Fire Danger due to Climate Change in the French Mediterranean Region. Sustainability, 11(16), 4284. https://doi.org/10.3390/su11164284