# An Optimisation Model to Consider the NIMBY Syndrome within the Landfill Siting Problem

## Abstract

**:**

## 1. Introduction

## 2. Background

## 3. Methodology

#### 3.1. Optimisation Model

**x**= Arg

^{opt}**min (Σ**

_{x}_{i}yc

_{i}(w

_{i}(

**x**)) x

_{i}+ Σ

_{j}d

_{j,min}(

**x**) wp

_{j}c

_{tr}+ Σ

_{i}res

_{i}w

_{i}(

**x**) c

_{comp})

_{i}∈ {0, 1} ∀ i

_{i}x

_{i}≤ l

_{max}

- i indicates an eligible site;
- j indicates a waste source;
**x**is the vector of decision variables x_{i};**x**is the optimal solution;^{opt}- x
_{i}is a binary variable that is equal to 1 if a landfill is located in site i, 0 otherwise; - w
_{i}(**x**) is the annual waste quantity allocated to site i; - yc
_{i}(.) is a function used for calculating the annual cost of the landfill located in site i; it depends on the annual waste quantity to be treated, w_{i}(**x**); - d
_{j,min}(**x**) indicates the distance between a waste source j and the nearest landfill; - wp
_{j}indicates the annual production of waste source j; - c
_{tr}indicates the cost per ton-km of transported waste (€/ton-km); - res
_{i}indicates the number of residents that have to be compensated for a landfill located in site i; - c
_{comp}is the annual compensation cost per ton of waste per resident (€/ton); - l
_{max}is the maximum number of landfills.

_{j}, is sent to the nearest landfill. Under this assumption, we can write:

_{i}(

**x**) = Σ

_{j}wp

_{j}a

_{i,j}(

**x**)

- a
_{i,j}(**x**) is equal to 1 if, under configuration**x**, site i is the nearest to source j (d_{i,j}= d_{j,min}), 0 otherwise, with d_{i,j}indicating the distance between site i and source j.

#### 3.2. Solution Algorithm

_{max}pointer variables, χ

_{k}, that assume an integer value between 0 and n, where n is the number of possible locations. Each pointer variable indicates site i, χ

_{k}= i, where a landfill is provided; otherwise, χ

_{k}= 0 indicates that the pointer variable is not associated to any site i and thus the number of landfills in this solution is lower than the maximum. Figure 1 shows an example of the above approach.

**x**can be represented by a vector of pointer variables,

**χ**, and the optimisation model can be formulated as follows:

**χ**

**= Arg**

^{opt}**min (Σ**

_{χ}_{i}yc

_{i}(w

_{i}(

**χ**)) x

_{i}(

**χ**) + Σ

_{j}d

_{j,min}(

**χ**) wp

_{j}c

_{tr}+ Σ

_{i}res

_{i}w

_{i}(

**χ**) c

_{comp})

_{k}≤ n ∀ k

_{k}integer ∀ k

_{k}χ

_{k}≥ 1

_{k}to 0. Set the objective function value to a very large number, M.

_{max}× n solutions.

_{max}× n).

## 4. Numerical Results

^{2}) has 551 municipalities, about 5.8 million inhabitants and its capital is Naples (about 1 million inhabitants). We assumed 551 waste sources, one per municipality, whose waste production was obtained from official data [56]. We also assumed 551 eligible sites, one inside each municipal area, and that a landfill located in an area will affect only people living in the same municipality. In Figure 3a the territories, with their centroid nodes, are reported, while Figure 3b reports the road network graph, representing about 6000 km of roads, used for calculating the distances between sources and eligible sites. All maps in this paper were generated with the software QGIS and are geo-referenced with the coordinate reference system WGS84/UTM Zone 32. Moreover, we have assumed a compensation cost equal to 0.0001 €/ton per resident and an average transportation cost of 0.4 €/ton-km (obtained from some regional tenders regarding waste management).

_{i}(w

_{i}(

**χ**)) = c

_{0}+ w

_{i}(

**χ**) c

_{1}(w

_{i}(

**χ**))

- c
_{0}is a fixed cost of the landfill (€/year); - c
_{1}is a variable cost per waste ton (€/ton-year), depending on w_{i}for considering the scale economy.

_{0}= 220,000 and c

_{1}(w

_{i}(

**χ**)) = 428.015 w

_{i}(

**χ**)

^{−0.209}.

_{1}(w

_{i}(

**χ**)) by substituting the value 428.015 with the following values: 600, 500, 400, 300, 200 and 100. Figure 6 shows the landfill year costs generated under such assumptions.

_{1}. As expected, solutions with more landfills correspond to lower amounts of the coefficient (5 or 4, if c

_{1}is between 100 and 300; between 1 and 3, if c

_{1}is between 400 and 600), i.e., lower construction/annual maintenance costs. On comparing the results with and without compensation costs, it can be shown that the total number of landfills does not differ so markedly (only in two cases does the model lead to a different number of landfills) although the number of inhabitants involved is very different. Some municipalities recur in the optimal solution; if we consider the compensation costs, this is due to a promising combination of position and inhabitants, while in the other case only the location influences the results.

## 5. Discussion

_{i}(w

_{i}(

**χ**)). In this second case, a specific study on the economic value of such impacts has to be preliminarily conducted.

## 6. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Shen, H.W.; Yu, Y.H. Social and Economic Factors in the Spread of the NIMBY Syndrome against Waste Disposal Sites in Taiwan. J. Environ. Plan. Man.
**1997**, 40, 273–282. [Google Scholar] [CrossRef] - Li, R.Y.M.; Li, H.C.Y. Have Housing Prices Gone with the SmellyWind? Big Data Analysis on Landfill in Hong Kong. Sustainability
**2018**, 10, 341. [Google Scholar] [CrossRef] - Jenkins, R.R.; Maguire, K.M.; Morgan, C. Host Community Compensation and Municipal Solid Waste Landfills; Working Paper #02-04; U.S. Environmental Protection Agency, National Center for Environmental Economics (NCEE): Washington, DC, USA, 2002.
- Gallo, M. A model and algorithm for solving the landfill siting problem in large areas. In Optimization and Decision Science: Methodologies and Applications. ODS 2017; Sforza, A., Sterle, C., Eds.; Springer: Cham, Switzerland, 2017; Volume 217, pp. 267–274. [Google Scholar]
- Kariv, O.; Hakimi, S.L. An algorithmic approach to network location problems, Part II: The p-medians. SIAM J. Appl. Math.
**1979**, 37, 539–560. [Google Scholar] [CrossRef] - ReVelle, C.S.; Eiselt, H.A.; Daskin, M.S. A bibliography of some fundamental problem categories in discrete location science. Eur. J. Oper. Res.
**2008**, 184, 817–848. [Google Scholar] [CrossRef] - Daskin, M.S.; Mass, K.L. The p-Median problem. In Location Science; Laporte, G., Nickel, S., Saldanha da Gama, F., Eds.; Springer: Cham, Switzerland, 2015; pp. 21–45. [Google Scholar]
- Averbakh, I.; Berman, O.; Drezner, Z.; Wesolowsky, G.O. The Plant Location Problem with Demand-Dependent Setup Costs and Centralized Allocation. Eur. J. Oper. Res.
**1998**, 111, 543–554. [Google Scholar] [CrossRef] - Joos, W.; Carabias, V.; Winistoerfer, H.; Stuecheli, A. Social aspects of public waste management in Switzerland. Waste Manag.
**1999**, 19, 417–425. [Google Scholar] [CrossRef] - Simsek, C.; Elci, A.; Gunduz, O.; Taskin, N. An improved landfill site screening procedure under NIMBY syndrome constraints. Landsc. Urban Plan.
**2014**, 132, 1–15. [Google Scholar] [CrossRef] - Morrisey, A.J.; Browne, J. Waste management models and their application to sustainable waste management. Waste Manag.
**2004**, 24, 297–308. [Google Scholar] [CrossRef] [PubMed] - Greco, S.; Ehrgott, M.; Figueira, J.R. Multiple Criteria Decision Analysis. State of the Art Surveys, 2nd ed.; Springer: New York, NY, USA, 2016. [Google Scholar]
- Department for Communities and Local Government. Multi-Criteria Analysis: A Manual; Communities and Local Government, Eland House: London, UK, 2009.
- Tsolaki-Fiaka, S.; Bathrellos, G.D.; Skilodimou, H.D. Multi-Criteria Decision Analysis for an Abandoned Quarry in the Evros Region (NE Greece). Land
**2018**, 7, 43. [Google Scholar] [CrossRef] - Melachrinoudis, E.; Min, H.; Wu, X. A multiobjective model for the dynamic location of landfills. Locat. Sci.
**1995**, 3, 143–166. [Google Scholar] [CrossRef] - Hokkanen, J.; Salminen, P. Choosing a solid waste management system using multicriteria decision analysis. Eur. J. Oper. Res.
**1997**, 98, 19–36. [Google Scholar] [CrossRef] - Cheng, S.; Chan, C.W.; Huang, G.H. An integrated multi-criteria decision analysis and inexact mixed integer linear programming approach for solid waste management. Eng. Appl. Artif. Intell.
**2003**, 16, 543–554. [Google Scholar] [CrossRef] - Vasiloglou, V.C. New tool for landfill location. Waste Manag. Res.
**2004**, 22, 427–439. [Google Scholar] [CrossRef] [PubMed] - Kontos, T.D.; Komilis, D.P.; Halvadakis, C.P. Siting MSW landfills with a spatial multiple criteria analysis methodology. Waste Manag.
**2005**, 25, 818–832. [Google Scholar] [CrossRef] [PubMed] - Chang, N.-B.; Parvathinathan, G.; Breeden, J.B. Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. J. Environ. Manag.
**2008**, 87, 139–153. [Google Scholar] [CrossRef] [PubMed] - Xi, B.D.; Su, J.; Huang, G.H.; Qin, X.S.; Jiang, Y.H.; Huo, S.L.; Ji, D.F.; Yao, B. An integrated optimization approach and multi-criteria decision analysis for supporting the waste-management system of the City of Beijing, China. Eng. Appl. Artif. Intell.
**2010**, 23, 620–631. [Google Scholar] [CrossRef] - Gorsevski, P.V.; Donevska, K.R.; Mitrovski, C.D.; Frizado, J.P. Integrating multi-criteria evaluation techniques with geographic information systems for landfill site selection: A case study using ordered weighted average. Waste Manag.
**2012**, 32, 287–296. [Google Scholar] [CrossRef] [PubMed] - Gbanie, S.P.; Tengbe, P.B.; Momoh, J.S.; Medo, J.; Kabba, V.T.S. Modelling landfill location using Geographic Information Systems (GIS) and Multi-Criteria Decision Analysis (MCDA): Case study Bo, Southern Sierra Leone. Appl. Geogr.
**2013**, 36, 3–12. [Google Scholar] [CrossRef] - Al-Jarrah, O.; Abu-Qdais, H. Municipal solid waste landfill siting using intelligent system. Waste Manag.
**2006**, 26, 299–306. [Google Scholar] [CrossRef] [PubMed] - Sumathi, V.R.; Natesan, U.; Sarkar, C. GIS-based approach for optimized siting of municipal solid waste landfill. Waste Manag.
**2008**, 28, 2146–2160. [Google Scholar] [CrossRef] [PubMed] - Zamorano, M.; Molero, E.; Hurtado, A.; Grindlay, A.; Ramos, A. Evaluation of a municipal landfill site in Southern Spain with GIS-aided methodology. J. Hazard. Mater.
**2008**, 160, 473–481. [Google Scholar] [CrossRef] [PubMed] - Chabuk, A.; Al-Ansari, N.; Hussain, H.M.; Knutsson, S.; Pusch, R.; Laue, J. Combining GIS Applications and Method of Multi-Criteria Decision-Making (AHP) for Landfill Siting in Al-Hashimiyah Qadhaa, Babylon, Iraq. Sustainability
**2017**, 9, 1932. [Google Scholar] [CrossRef] - Al-Anbari, M.A.; Thameer, M.Y.; Al-Ansari, N. Landfill Site Selection by Weighted Overlay Technique: Case Study of Al-Kufa, Iraq. Sustainability
**2018**, 10, 999. [Google Scholar] [CrossRef] - Yousefi, H.; Javadzadeh, Z.; Noorollahi, Y.; Yousefi-Sahzabi, A. Landfill Site Selection Using a Multi-Criteria Decision-Making Method: A Case Study of the Salafcheghan Special Economic Zone, Iran. Sustainability
**2018**, 10, 1107. [Google Scholar] [CrossRef] - Chen, F.; Li, X.; Yang, Y.; Hou, Y.; Liu, G.-J.; Zhang, S. Storing E-waste in Green Infrastructure to Reduce Perceived Value Loss through Landfill Siting and Landscaping: A Case Study in Nanjing, China. Sustainability
**2019**, 11, 1829. [Google Scholar] [CrossRef] - Chabuk, A.; Al-Ansari, N.; Ezz-Aldeen, M.; Laue, J.; Pusch, R.; Hussain, H.M.; Knutsson, S. Two Scenarios for Landfills Design in Special Conditions Using the HELP Model: A Case Study in Babylon Governorate, Iraq. Sustainability
**2018**, 10, 125. [Google Scholar] [CrossRef] - Eiselt, H.A. Locating landfills-Optimization vs. reality. Eur. J. Oper. Res.
**2007**, 179, 1040–1049. [Google Scholar] [CrossRef] - Eiselt, H.A.; Marianov, V. A bi-objective model for the location of landfills for municipal solid waste. Eur. J. Oper. Res.
**2014**, 235, 187–194. [Google Scholar] [CrossRef] - Guiqin, W.; Li, Q.; Guoxue, L.; Lijun, C. Landfill site selection using spatial information technologies and AHP: A case study in Beijing, China. J. Environ. Manag.
**2009**, 90, 2414–2421. [Google Scholar] - Kariv, O.; Hakimi, S.L. An algorithmic approach to network location problems, Part I: The p-centers. SIAM J. Appl. Math.
**1979**, 37, 513–538. [Google Scholar] [CrossRef] - Hochbaum, D.S. When are NP-hard location problems easy? Ann. Oper. Res.
**1984**, 1, 201–214. [Google Scholar] [CrossRef] - Eiselt, H.A.; Sandblom, C.-L. Decision Analysis, Location Models, and Scheduling Problems; Springer: New York, NY, USA, 2004. [Google Scholar]
- Kratica, J.; Tosic, D.; Filipovic, V.; Ljubic, I. Solving the simple plant location problem by genetic algorithm. RAIRO-Oper. Res.
**2001**, 35, 127–142. [Google Scholar] [CrossRef][Green Version] - Jaramillo, J.H.; Bhadury, J.; Batta, R. On the use of genetic algorithms to solve location problems. Comput. Oper. Res.
**2002**, 29, 761–779. [Google Scholar] [CrossRef] - Alp, O.; Erkut, E.; Drezner, Z. An Efficient Genetic Algorithm for the p-Median Problem. Ann. Oper. Res.
**2003**, 122, 21–42. [Google Scholar] [CrossRef] - Maric, M. An efficient genetic algorithm for solving the multi-level uncapacitated facility location problem. Comput. Inform.
**2010**, 29, 183–201. [Google Scholar] - Fernandes, D.R.M.; Rocha, C.; Aloise, D.; Ribeiro, G.M.; Santos, E.M.; Silva, A. A simple and effective genetic algorithm for the two-stage capacitated facility location problem. Comput. Ind. Eng.
**2014**, 75, 200–208. [Google Scholar] [CrossRef] - Murray, A.T.; Church, R.L. Applying simulated annealing to location-planning models. J. Heuristics
**1996**, 2, 31–53. [Google Scholar] [CrossRef] - Bornstein, C.T.; Azlan, H.B. The use of reduction tests and simulated annealing for the capacitated plant location problem. Locat. Sci.
**1998**, 6, 67–81. [Google Scholar] [CrossRef] - Berman, O.; Drezner, Z.; Wesolowsky, G.O. Location of Facilities on a Network with Groups of Demand Points. IIE Trans.
**2001**, 33, 637–648. [Google Scholar] [CrossRef] - Berman, O.; Drezner, Z.; Wesolowsky, G.O. The Facility and Transfer Plant Location Problem. Int. Trans. Oper. Res.
**2005**, 12, 387–402. [Google Scholar] [CrossRef] - Berman, O.; Drezner, A. Location of congested capacitated facilities with distance sensitive demand. IIE Trans.
**2006**, 38, 213–221. [Google Scholar] [CrossRef] - Delmaire, H.; Dìaz, J.A.; Fernandez, E.; Ortega, M. Reactive GRASP and Tabu Search Based Heuristics for the Single Source Capacitated Plant Location Problem. INFOR
**1998**, 37, 194–225. [Google Scholar] [CrossRef] - Al-Sultan, K.S.; Al-Fawzan, M.A. A Tabu Search Approach to the Uncapacitated Facility Location Problem. Ann. Oper. Res.
**1999**, 86, 91–103. [Google Scholar] [CrossRef] - Mladenovic, N.; Labbé, M.; Hansen, P. Solving the p-center problem with tabu search and variable neighborhood search. Networks
**2003**, 42, 48–64. [Google Scholar] [CrossRef] - Ghosh, D. Neighborhood Search Heuristics for the Uncapacitated Facility Location Problem. Eur. J. Oper. Res.
**2003**, 150, 150–162. [Google Scholar] [CrossRef] - Sun, M. A tabu search heuristic procedure for the capacitated facility location problem. J. Heuristics
**2012**, 18, 91–118. [Google Scholar] [CrossRef] - Ho, S.C. An iterated tabu search heuristic for the Single Source Capacitated Facility Location Problem. Appl. Soft Comput.
**2015**, 27, 169–178. [Google Scholar] [CrossRef] - Whitaker, R. A Fast Algorithm for the Greedy Interchange of Large-Scale Clustering and Median Location Problems. INFOR
**1983**, 21, 95–108. [Google Scholar] [CrossRef] - Resende, M.G.C.; Werneck, R.F. A Hybrid Heuristic for the p-Median Problem. J. Heuristics
**2004**, 10, 59–88. [Google Scholar] [CrossRef] - ISPRA Catasto Rifiuti. Available online: http://www.catasto-rifiuti.isprambiente.it/index.php_?pg=provincia&aa=2015®id=Campania (accessed on 25 February 2019).
- Chan, Y.S.G.; Chu, L.M.; Wong, M.H. Influence of landfill factors on plants and soil fauna—An ecological perspective. Environ. Pollut.
**1997**, 97, 39–44. [Google Scholar] [CrossRef] - Caplan, A.; Grijalva, T.; Jackson-Smith, D. Using choice question formats to determine compensable values: The case of a landfill-siting process. Ecol. Econ.
**2007**, 60, 834–846. [Google Scholar] [CrossRef][Green Version] - Ferreira, S.; Gallagher, L. Protest responses and community attitudes toward accepting compensation to host waste disposal infrastructure. Land Use Policy
**2010**, 27, 638–652. [Google Scholar] [CrossRef] - Giaccaria, S.; Frontuto, V. Perceived health status and environmental quality in the assessment of external costs of waste disposal facilities. An empirical investigation. Waste Manag. Res.
**2012**, 30, 864–870. [Google Scholar] [CrossRef] [PubMed] - Jones, N.; Evangelinos, K.; Halvadakis, C.P.; Iosifides, T.; Sophoulis, C.M. Social factors influencing perceptions and willingness to pay for a market-based policy aiming on solid waste management. Resour. Conserv. Recy.
**2010**, 54, 533–540. [Google Scholar] [CrossRef] - Lu, W.; Peng, Y.; Webster, C.; Zuo, J. Stakeholders’ willingness to pay for enhanced construction waste management: A Hong Kong study. Renew. Sustain. Energy Rev.
**2015**, 47, 233–240. [Google Scholar] [CrossRef] - Challcharoenwattana, A.; Pharino, C. Wishing to finance a recycling program? Willingness-to-pay study for enhancing municipal solid waste recycling in urban settlements in Thailand. Habitat Int.
**2016**, 51, 23–30. [Google Scholar] [CrossRef] - Gallagher, L.; Ferreira, S.; Convery, F. Host community attitudes towards solid waste landfill infrastructure: Comprehension before compensation. J. Environ. Plan. Man.
**2008**, 51, 233–257. [Google Scholar] [CrossRef] - Hong, J.; Jung, M.J.; Kim, Y.-B.; Seo, Y.-C.; Koo, J. Analysis of the compensation system at the Environmental-Adverse-Effect Zone of a large-scale waste landfill site. J. Mater. Cycles Waste Manag.
**2012**, 14, 351–359. [Google Scholar] [CrossRef] - Liu, J.; Teng, Y.; Jiang, Y.; Gong, E. A cost compensation model for construction and demolition waste disposal in South China. Environ. Sci. Pollut. Res.
**2019**, 26, 13773–13784. [Google Scholar] [CrossRef] - Ren, X.; Che, Y.; Yang, K.; Tao, Y. Risk perception and public acceptance toward a highly protested Waste-to-Energy facility. Waste Manag.
**2016**, 48, 528–539. [Google Scholar] [CrossRef] - Bathrellos, G.; Skilodimou, H.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Suitability estimation for urban development using multi-hazard assessment map. Sci. Total Environ.
**2017**, 575, 119–134. [Google Scholar] [CrossRef] [PubMed] - Skilodimou, H.D.; Bathrellos, G.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Multi-hazard assessment modeling via multi-criteria analysis and GIS: A case study. Environ. Earth Sci.
**2019**, 78, 21. [Google Scholar] [CrossRef] - D’Alisa, G.; Burgalassi, D.; Healy, H.; Walter, M. Conflict in Campania: Waste emergency or crisis of democracy. Ecol. Econ.
**2010**, 70, 239–249. [Google Scholar] [CrossRef] - Cantoni, R. The waste crisis in Campania, South Italy: A historical perspective on an epidemiological controversy. Endeavour
**2016**, 40, 102–113. [Google Scholar] [CrossRef] [PubMed] - De Rosa, S.P. A political geography of ‘waste wars’ in Campania (Italy): Competing territorialisations and socio-environmental conflicts. Political Geogr.
**2018**, 67, 46–55. [Google Scholar] [CrossRef] - Di Nola, M.F.; Escapa, M.; Ansah, J.P. Modelling solid waste management solutions: The case of Campania, Italy. Waste Manag.
**2018**, 78, 717–729. [Google Scholar] [CrossRef] - Esposito, F.; Nardone, A.; Fasano, E.; Scognamiglio, G.; Esposito, D.; Agrelli, D.; Ottaiano, L.; Fagnano, M.; Adamo, P.; Beccaloni, E.; et al. A systematic risk characterization related to the dietary exposure of the population to potentially toxic elements through the ingestion of fruit and vegetables from a potentially contaminated area. A case study: The issue of the "Land of Fires" area in Campania region, Italy. Environ. Pollut.
**2018**, 243, 1781–1790. [Google Scholar] - Cembalo, L.; Caso, D.; Carfora, V.; Caracciolo, F.; Lombardi, A.; Cicia, G. The “Land of Fires” ToxicWaste Scandal and Its Effect on Consumer Food Choices. Int. J. Environ. Res. Public Health
**2019**, 16, 165. [Google Scholar] [CrossRef] - Garofalo, A.; Castellano, R.; Agovino, M.; Punzo, G.; Musella, G. How Far is Campania from the Best-Performing Region in Italy? A Territorial-Divide Analysis of Separate Waste Collection. Soc. Indic. Res.
**2019**, 142, 667–688. [Google Scholar] [CrossRef]

With Compensation Costs | Without Compensation Costs | |
---|---|---|

Number of landfills | 2 | 2 |

Municipalities | Massa di Somma; Giungano | Casoria; Battipaglia |

Total inhabitants | 6702 | 128,440 |

Transportation costs | 34,274,833 | 30,270,389 |

Landfill annual costs | 54,311,274 | 55,754,544 |

Compensation costs | 1,312,718 | − |

Objective function value | 89,898,825 | 86,024,933 |

Coeff. | With Compensation Costs | Without Compensation Costs | |
---|---|---|---|

100 | Number of landfills | 5 | 5 |

Municipalities | Bellizzi; Carinaro; Pietradefusi; San Sebastiano al Vesuvio; Sant’Egidio del Monte Albino | Aversa; Capaccio; Napoli; Pietradefusi; Sant’Egidio del Monte Albino | |

Total inhabitants | 41,202 | 1,061,188 | |

Transportation costs | 21,349,521.53 | 19,291,800.69 | |

Landfill annual costs | 17,018,714.56 | 17,055,619.52 | |

Compensation costs | 2,168,097.22 | - | |

Objective function value | 40,536,333.30 | 36,347,420.21 | |

200 | Number of landfills | 5 | 5 |

Municipalities | Capaccio; Carinaro; Pietradefusi; San Sebastiano al Vesuvio; Sant’Egidio del Monte Albino | Benevento; Casavatore; Pompei; Salerno; Vallo della Lucania | |

Total inhabitants | 50,444 | 247,902 | |

Transportation costs | 21,206,069.45 | 21,448,200.66 | |

Landfill annual costs | 32,918,528.70 | 31,482,230.56 | |

Compensation costs | 2,326,336.09 | - | |

Objective function value | 56,450,934.24 | 52,930,431.21 | |

300 | Number of landfills | 5 | 4 |

Municipalities | Bellizzi; Carinaro; Celle di Bulgheria; Pietradefusi; San Sebastiano al Vesuvio | Benevento; Casavatore; Salerno; Torre Orsaia | |

Total inhabitants | 34,215 | 216,131 | |

Transportation costs | 22,913,058.23 | 24,290,867.40 | |

Landfill annual costs | 47,126,152.86 | 43,748,060.61 | |

Compensation costs | 2,173,152.10 | - | |

Objective function value | 72,212,363.19 | 68,038,928.02 | |

400 | Number of landfills | 3 | 3 |

Municipalities | Giungano; Massa di Somma; Pietradefusi | Battipaglia; Casavatore; Pietradefusi | |

Total inhabitants | 9072 | 71,795 | |

Transportation costs | 30,418,540.86 | 26,547,423.82 | |

Landfill annual costs | 54,645,985.51 | 55,576,136.54 | |

Compensation costs | 1,239,271.64 | - | |

Objective function value | 86,303,798.02 | 82,123,560.36 | |

500 | Number of landfills | 2 | 2 |

Municipalities | Giungano; Massa di Somma | Battipaglia; Casavatore | |

Total inhabitants | 6724 | 69,447 | |

Transportation costs | 34,274,833.33 | 30,109,769.18 | |

Landfill annual costs | 63,371,526.24 | 65,128,788.33 | |

Compensation costs | 1,312,717.53 | - | |

Objective function value | 98,959,077.10 | 95,238,557.51 | |

600 | Number of landfills | 1 | 2 |

Municipalities | Massa di Somma | Casoria; Agropoli | |

Total inhabitants | 5444 | 99,123 | |

Transportation costs | 39,204,346.81 | 32,079,796.38 | |

Landfill annual costs | 70,697,991.09 | 75,959,521.84 | |

Compensation costs | 1,397,663.58 | - | |

Objective function value | 111,300,001.49 | 108,039,318.22 |

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gallo, M.
An Optimisation Model to Consider the NIMBY Syndrome within the Landfill Siting Problem. *Sustainability* **2019**, *11*, 3904.
https://doi.org/10.3390/su11143904

**AMA Style**

Gallo M.
An Optimisation Model to Consider the NIMBY Syndrome within the Landfill Siting Problem. *Sustainability*. 2019; 11(14):3904.
https://doi.org/10.3390/su11143904

**Chicago/Turabian Style**

Gallo, Mariano.
2019. "An Optimisation Model to Consider the NIMBY Syndrome within the Landfill Siting Problem" *Sustainability* 11, no. 14: 3904.
https://doi.org/10.3390/su11143904