Increasing Sustainability of Residential Areas Using Rain Gardens to Improve Pollutant Capture, Biodiversity and Ecosystem Resilience
Abstract
:1. Introduction
1.1. Low Impact Development
1.2. Rain Gardens
1.3. Flooding Tolerance
1.4. Phosphorus
1.5. Plant Selection
1.6. Objective
2. Materials and Methods
2.1. Rain Garden Microcosms
2.2. Growth and Physiological Response Study
2.3. Phosphorus Retention Study
2.4. Statistical Analysis
3. Results
3.1. Growth and Physiological Response Study
3.1.1. Plant Response to Short-Term Cyclic Flooding
3.1.2. Whole-Plant Stomatal Conductance Estimates
3.2. Phosphorus Retention Study
3.2.1. Dry Weight and Size Index
3.2.2. Phosphorus Concentration
4. Discussion
4.1. Plant Recommendations
4.2. Flooding and Seasonal Effects on Growth
4.3. The Effects of Polyculture on Growth and Phosphorus Uptake
4.4. Stomatal Conductance in Rain Gardens
4.5. The Rain Garden Plant Selection Conundrum
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Group | Plant | Suitable | Reference | Additional Comments |
---|---|---|---|---|
Grass | Andropogon ternarius broomsedge | Y | [61] | |
Muhlenbergia capillaris muhly grass | Y | [59] | ||
Chasmanthium latifolium river oats | Y | [62] | ||
Evergreen Shrub | Ilex vomitoria ‘Schillings dwarf’ yaupon holly | [59,60] | ||
Illicium floridanum Florida anise | Unknown | [62] | Poor visual quality | |
Morella cerifera wax myrtle | Y | [62] | ||
Ilex glabra ‘Shamrock’ inkberry | Y | [60] | ||
Deciduous shrubs | Itea virginica ‘Henry’s Garnet’ sweetspire | [60] | ||
Viburnum nudum ‘Winterthur’ possumhaw | Y | [60] | ||
Fothergilla x intermedia ‘Mt. Airy’ dwarf witch alder | N | [58] | Flood intolerant | |
Ilex verticillata ‘Winter Red’ winterberry | Y | [58] | ||
Clethra alnifolia ‘Ruby Spice’ summersweet | Y/N | [58] | Young plants not suitable | |
Perennial | Echinacea purpurea ‘Magnus Superior’ purple cone flower | N | [61] | Flood intolerant |
Coreopsis verticillata ‘Zagreb’ whorled coreopsis | Y | [61] | ||
Fern | Osmunda cinnamomea cinnamon fern | Y | [62] | |
Polystichum acrostichoides Christmas fern | N | [62] | Drought intolerant |
References
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The Urban Stream Syndrome: Current Knowledge and the Search for a Cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. Available online: https://pdfs.semanticscholar.org/1925/6fe11e5dcc29bed85d0710c59e196ea74e12.pdf (accessed on 2 May 2019). [CrossRef]
- Erickson, T.O.; Stefan, H.G. Natural Groundwater Recharge Response to Urbanization: Vermillion River Watershed, Minnesota. J. Water Res. Plan Manag. 2009, 135, 512–520. [Google Scholar] [CrossRef]
- Paul, M.J.; Meyer, J.L. Streams in the Urban Landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokohian, M.; Himanshu, S.; Minami, C. Water Quality Improvement Through Bioretention Media: Nitrogen and P Removal. Water Environ. Res. 2006, 78, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Dietz, M.E.; Clausen, J.C. A Field Evaluation of Rain Garden Flow and Pollutant Treatment. Water Air Soil Pollut. 2005, 167, 123–138. Available online: https://link.springer.com/content/pdf/10.1007%2Fs11270-005-8266-8.pdf (accessed on 2 May 2019). [CrossRef]
- Davis Davis, A.P.; Hunt, W.F.; Traver, R.G.; Clar, R.M. Bioretention Technology: Overview of Current Practice and Future Needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency 2009. Nitrogen and P Loads in Large Rivers. Available online: https://cfpub.epa.gov/roe/indicator_pdf.cfm?i=33 (accessed on 2 May 2019).
- Mueller, D.K.; Helsel, D.R. Nutrients in the Nation’s Waters, Too Much of a Good Thing? USGS NAWQA CIRC1136. Available online: http://pubs.usgs.gov/circ/circ1136/ (accessed on 2 May 2019).
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint Pollution of Surface Qaters with P and Nitrogen. Ecol. Appl. 1998, 8, 559–568. Available online: https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/1051-0761%281998%29008%5B0559%3ANPOSWW%5D2.0.CO%3B2 (accessed on 2 May 2019). [CrossRef]
- LeFevre, G.H.; Paus, K.H.; Natarajan, P.; Gulliver, J.S.; Novak, P.J.; Hozalski, R.M. Review of Dissolved Pollutants in Urban Storm Water and Their Removal and Fate in Bioretention Cells. J. Environ. Eng. 2015, 141, 04014050. [Google Scholar] [CrossRef]
- LeBleu, C.; Dougherty, M.; Rahn, K.; Wright, A.; Bowen, R.; Wang, R.; Orjuela, J.; Britton, K. Quantifying Thermal Characteristics of Stormwater through Low Impact Development Systems. Hydrology 2019, 6, 16. [Google Scholar] [CrossRef]
- Thiagarajan, M.; Newman, G.; Zandt, S. The Projected Impact of a Neighborhood-Scaled Green-Infrastructure Retrofit. Sustainability 2018, 10, 3665. [Google Scholar] [CrossRef]
- Yang, Y.-Y.; Toor, G.S. Stormwater Runoff Driven P Transport in an Urban Residential Catchment: Implications for Protecting Water Quality in Urban Watersheds. Sci. Rep. 2018, 8, 11681. [Google Scholar] [CrossRef] [PubMed]
- Guillette, A. Low Impact Development Technologies: WBDG Whole Building Design Guide; National Institute of Building Sciences: Washington, DC, USA, 2016; Available online: https://www.wbdg.org/resources/low-impact-development-technologies (accessed on 12 February 2019).
- Low Impact Development Center. Urban Design Tools. Available online: https://www.lid-stormwater.net/background.htm (accessed on 2 May 2019).
- Monk, E.; Chalmers, L. Mimic Natural Drainage Processes: A Practical Approach for Stormwater Management in Western Australia. In Proceedings of the 1st National Hydropolis Conference Burswood Convention Centre Perth, Canberra, Australia, 8–11 October 2006; p. 16. Available online: https://www.water.wa.gov.au/__data/assets/pdf_file/0018/5148/89891.pdf (accessed on 5 May 2019).
- Kim, S.; Lee, S.-W.; Lee, J.; An, K. Exploring the Relationship between Prior Knowledge on Rain Gardens and Supports for Adopting Rain Gardens Using a Structural Equation Model. Sustainability 2018, 10, 1500. [Google Scholar] [CrossRef]
- Newburn, D.A.; Alberini, A. Household Response to Environmental Incentives for Rain Garden Adoption. Water Resour. Res. 2016, 52, 1345–1357. [Google Scholar] [CrossRef]
- Church, S. Exploring Green Streets and Rain Gardens as Instances of Small Scale Nature and Environmental Learning Tools. Landsc. Urban Plan 2015, 134, 229–240. [Google Scholar] [CrossRef]
- Pak, G.; Park, H.; Cho, Y.; Kim, S. The Removal of Nutrients and Heavy Metals Using Household Rain garden. J. Wetl. Res. 2015, 17, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.; Dunnett, N.; Clayden, A. Residential Landscape Sustainability: A Checklist Tool; Blackwell Publishing: Oxford, UK, 2008; p. 208. ISBN 978-1405158732. [Google Scholar]
- Dietz, M.E. Low Impact Development Practices: A Review of Current Research and Recommendations for Future Directions. Water Air Soil Pollut. 2007, 186, 351–363. [Google Scholar] [CrossRef]
- Prince George’s County, Maryland. Bioretention Design Specifications and Criteria. Prince George’s County, MD, USA. Available online: http://www.leesburgva.gov/home/showdocument?id=5057 (accessed on 2 May 2019).
- Schueler, T.R. Comparative Pollutant Removal Capability of Urban BMPs: A Reanalysis. Watershed Prot. Tech. 1997, 2, 515–520. [Google Scholar]
- Steuer, J.; Selbig, W.; Hornewer, N.; Prey, J. Sources of Contamination in An Urban Basin in Marquette, Michigan and An Analysis of Concentrations, Loads, and Data Quality. USGS Water Res. Invest. Rpt. 1997, 42, 42. Available online: https://doi.org/10.3133/wri974242 (accessed on 2 May 2019).
- Virginia Department of Forestry. Rain Gardens. Available online: http://www.dof.virginia.gov/manage/riparian/rain-gardens.htm (accessed on 2 May 2019).
- Waschbusch, R.J.; Selbig, W.R.; Bannerman, R.T. Sources of P in Stormwater and Street Dirt from Two Urban Residential Basins in Madison, Wisconsin. Available online: https://pubs.er.usgs.gov/publication/wri994021 (accessed on 2 May 2019).
- Dobbie, M. Designing Raingardens for Community Acceptance; Cooperative Research Centre for Water Sensitive Cities: Melbourne, Australia. Available online: https://watersensitivecities.org.au/wp-content/uploads/2016/06/TMR_A4-1_2016_Designing_raingardens_web.pdf (accessed on 4 May 2019).
- American Rivers. How Do Rain Garden And Rain Barrel Initiatives Help Rivers. Available online: file:///C:/Users/leblecm/Zotero/storage/8RYD4AT2/rain-barrel-garden.html (accessed on 2 May 2019).
- Paus, K.H.; Morgan, J.; Gulliver, J.S.; Hozalski, R.M. Effects of Bioretention Media Compost Volume Fraction on Toxic Metals Removal, Hydraulic Conductivity, and Phosphorous Release. J. Environ. Eng. 2014, 140, 04014033. [Google Scholar] [CrossRef]
- Anderson, D.M.; Burkholder, J.M.; Cochlan, W.P.; Glibert, P.M.; Gobler, C.J.; Heil, C.A.; Kudela, R.M.; Parsons, M.L.; Rensel, J.E.J.; Townsend, D.W. Harmful Algal Blooms and Eutrophication: Examining Linkages from Selected Coastal Regions of the United States. Harmful Algae 2008, 8, 39–53. [Google Scholar] [CrossRef]
- Correll, D.L. The Role of P in the Eutrophication of Receiving Waters: A Review. J. Envirnon. Qual. 1998, 27, 261. [Google Scholar] [CrossRef]
- Riley, E.; Kraus, H.; Bilderback, T.; Owen, J.; Hunt, W. Impact of Engineered Filter Bed Substrate Composition and Plants on Stormwater Remediation within a Rain Garden System. J. Environ. Hortic. 2018, 36, 30–44. [Google Scholar]
- Kraus, H.; Bilderback, T.; Pledger, R.; Riley, E.; Fonteno, B.; Jackson, B. Defining Rain Garden Filter Bed Substrates Based on Saturated Hydraulic Conductivity. Acta Hortic. 2014, 1034, 57–64. [Google Scholar] [CrossRef]
- Kraus, H.; Spafford, A. Rain Gardening in the South: Ecologically Designed Gardens for Drought, Deluge and Everything in between; Eno Publishers: Hillsborough, NC, USA, 2009; p. 143. ISBN 978-0982077108. [Google Scholar]
- Seymour, R.M. Capturing Rainwater to Replace Irrigation Water for Landscapes: Rain Harvesting and Rain gardens. In Proceedings of the Georgia Water Resources Conference, Athens, GA, USA, 25–27 April 2005; Available online: http://www.gwri.gatech.edu/sites/default/files/files/docs/2005/seymourR-GWRCpaper%20March21.pdf (accessed on 2 May 2019).
- Dussaillant, A.R.; Cuevas, A.; Potter, K.W. Raingardens for Stormwater Infiltration and Focused Groundwater Recharge: Simulations for Different World Climates. Water Sci. Technol. Water Supply 2005, 5, 173–179. [Google Scholar] [CrossRef]
- Clayden, A.; Dunnett, N. Rain Gardens: Managing Water Sustainably in the Garden and Designed Landscape; Timber Press: Portland, OR, USA, 2007; p. 188. ISBN 978-0881928266. [Google Scholar]
- Steiner, L.M.; Domm, R.W. Rain Gardens: Sustainable Landscaping for a Beautiful Yard and a Healthy World; Voyageur Press: Minneapolis, MN, USA, 2012; p. 192. ISBN 0760340447. [Google Scholar]
- Toran, L. Storm Water Control Management & Monitoring; PA DOT: Harrisburg, PA, USA, 2017. Available online: https://rosap.ntl.bts.gov/view/dot/35094 (accessed on 3 May 2019).
- Jackson, M.B.; Colmer, T.D. Response and Adaptation by Plants to Flooding Stress. Ann. Bot. 2005, 96, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Blom, C.W.P.M.; Voesenek, L.A.C. Flooding: The Survival Strategies of Plants. Trends Ecol. Evol. 1996, 11, 290–295. [Google Scholar] [CrossRef]
- Crawford, R.M.M.; Braendle, R. Oxygen Deprivation Stress in a Changing Environment. J. Exp. Bot. 1996, 47, 145–159. [Google Scholar] [CrossRef]
- Crawford, R.M.M. Whole Plant Adaptations to Fluctuating Water Tables. Folia Geobot. Phytotaxon. 1996, 31, 7–24. Available online: https://link.springer.com/content/pdf/10.1007%2FBF02803990.pdf (accessed on 3 May 2019). [CrossRef]
- Pociecha, E.; Kościelniak, J.; Filek, W. Effects of Root Flooding and Stage of Development on the Growth and Photosynthesis of Field Bean. Acta Physiol. Plant. 2008, 30, 529–535. [Google Scholar] [CrossRef]
- Vartapetian, B.B.; Jackson, M.B. Plant Adaptations to Anaerobic Stress. Ann. Bot. 1997, 79, 3–20. [Google Scholar] [CrossRef]
- Kramer, P.J. Causes of Injury to Plants Resulting from Flooding of the Soil. Plant Physiol. 1951, 26, 722–736. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC437542/pdf/plntphys00258-0086.pdf (accessed on 3 May 2019). [CrossRef] [PubMed]
- Mielke, M.S.; de Almeida, A.-A.F.; Gomes, F.P.; Aguilar, M.A.G.; Mangabeira, P.A.O. Leaf Gas Exchange, Chlorophyll Fluorescence and Growth Responses of Genipa americana Seedlings to Soil Flooding. Environ. Exp. Bot. 2003, 50, 221–231. [Google Scholar] [CrossRef]
- Yordanova, R.Y.; Uzunova, A.N.; Popova, L.P. Effects of Short-Term Soil Flooding on Stomata Behavior and Leaf Gas Exchange in Barley Plants. Biol. Plant. 2005, 49, 317–319. [Google Scholar] [CrossRef]
- Jing, Y.X.; Li, G.L.; Gu, B.H.; Yang, D.J.; Xiao, L.; Liu, R.X.; Peng, C.L. Leaf Gas Exchange, Chlorophyll Fluorescence and Growth Responses of Melaleuca alternifolia Seedlings to Flooding and Subsequent Recovery. Photosynthetica 2009, 47, 595–601. [Google Scholar] [CrossRef]
- McJannet, C.L.; Keddy, P.A.; Pick, F.R. Nitrogen and P Tissue Concentrations in 41 Wetland Plants: A Comparison Across Habitats and Functional Groups. Funct. Ecol. 1995, 9, 231–238. [Google Scholar] [CrossRef]
- Chen, H.; Qualls, R.G.; Blank, R.R. Effect of Soil Flooding on Photosynthesis, Carbohydrate Partitioning and Nutrient Uptake in the Invasive Exotic Lepidium latifolium. J. Aquat. Biol. 1995, 82, 250–268. [Google Scholar] [CrossRef]
- Rubio, G.; Oesterheld, M.; Alvarez, C.R.; Lavado, R. Mechanisms for the Increase in P Uptake of Waterlogged Plants: Soil P Availability, Root Morphology and Uptake Kinetics. Oecologia 1997, 112, 150–155. [Google Scholar] [CrossRef]
- Olila, O.G.; Reddy, K.R.; Stites, D.L. Influence of Draining on Soil P Forms and Distribution in a Constructed Wetland. J. Ecol. Eng. 1997, 9, 157–169. [Google Scholar] [CrossRef]
- Jernigan, K. Nutrient Uptake and Plant Selection in Southeastern Rain Gardens. Master’s Thesis, Auburn University, Auburn, AL, USA, 2010. [Google Scholar]
- Akan, A. Preliminary Design Aid for Bioretention Filters. J. Hydrol. Eng. 2013, 18, 318–323. [Google Scholar] [CrossRef]
- Turk, R.L.; Kraus, H.T.; Bilderback, T.E.; Hunt, W.F.; Fonteno, W.C. Rain Garden Filter Bed Substrates Affect Stormwater Nutrient Remediation. HortScience 2014, 49, 645–652. [Google Scholar] [CrossRef]
- Jernigan, K.J.; Wright, A.N. Effect of Repeated Short Interval Flooding Events on Root and Shoot Growth of Four Landscape Shrub Taxa. J. Environ. Hort. 2011, 29, 220. [Google Scholar] [CrossRef]
- Christian, K.J.; Wright, A.N.; Sibley, J.L.; Brantley, E.F.; Howe, J.A.; Dougherty, M.; LeBleu, C. Effect of P Concentration on Growth of Muhlenbergia capillaris in Flooded and Non-Flooded Conditions. J. Environ. Hort. 2012, 30, 219–222. [Google Scholar] [CrossRef]
- Dylewski, K.L.; Wright, A.N.; Tilt, K.M.; LeBleu, C. Effect of Previous Flood Exposure on Flood Tolerance and Growth of Three Landscape Shrub Taxa Subjected to Repeated Short-Term Flooding. J. Environ. Hort. 2012, 30, 58–64. [Google Scholar] [CrossRef]
- Meder, A. Flooding Tolerance and P Uptake of Southeastern Native Plants in Bioretention Gardens. Master’s Thesis, Auburn University, Auburn, AL, USA, 2013. [Google Scholar]
- Morash, J. Flooding Tolerance of Six Native Landscape Plants for Use in Southeastern Rain Gardens. Master’s Thesis, Auburn University, Auburn, AL, USA, 2016. [Google Scholar]
- Dewar, J.A. Perennial Polyculture Farming: Seeds of Another Agricultural Revolution? Rand Corp: Santa Monica, CA, USA, 2007; No. RAND/OP-179-RPC; Available online: https://www.rand.org/content/dam/rand/pubs/occasional_papers/2007/RAND_OP179.pdf (accessed on 3 May 2019).
- Bracken, M.E.S. Monocultures Versus Polycultures; Encyc. Ecol. Elsevier: Oxford, UK, 2008; pp. 2446–2449. [Google Scholar]
- Kuhn, I.; Klotz, S. Urbanization and Homogenization - Comparing the Floras of Urban and Rural Areas in Germany. Biol. Conserv. 2006, 127, 292–300. Available online: https://www.ufz.de/export/data/2/92437_kuehn_urbanization_homogenization_BiolCons.pdf (accessed on 3 May 2019). [CrossRef]
- Dudley, S.A.; File, A.L. Kin Recognition in an Annual Plant. Biol. Lett. 2007, 3, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Karathanasis, A.D.; Potter, C.L.; Coyne, M.S. Vegetation Effects on Fecal Bacteria, BOD, and Suspended Solid Removal in Constructed Wetlands Treating Domestic Wastewater. Ecol. Eng. 2003, 20, 157–169. [Google Scholar] [CrossRef]
- Liang, M.-Q.; Zhang, C.-F.; Peng, C.-L.; Lai, Z.-L.; Chen, D.-F.; Chen, Z.-H. Plant Growth, Community Structure, and Nutrient Removal in Monoculture and Mixed Constructed Wetlands. Ecol. Eng. 2011, 37, 309–316. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Bessa, V.S.; Mesquita, M.B.R.; Brix, H.; Rangel, A.O.S.S.; Castro, P.M.L. Constructed Wetland with a Polyculture of Ornamental Plants for Wastewater Treatment at a Rural Tourism Facility. Ecol. Eng. 2015, 79, 1–7. [Google Scholar] [CrossRef]
- Turk, R.L.; Kraus, H.T.; Hunt, W.F.; Carmen, N.B.; Bilderback, T.E. Nutrient Sequestration by Vegetation in Bioretention Cells Receiving High Nutrient Loads. J. Environ. Eng. 2016, 143, 06016009. [Google Scholar] [CrossRef]
- Alabama Cooperative Extension System (ACES). Alabama Smart Yards. 27 October. Available online: https://www.slideshare.net/Sotirakou964/alabama-smart-yards (accessed on 3 May 2019).
- North Carolina Cooperative Extension (NCCE). Plants for rain gardens. Available online: https://brunswick.ces.ncsu.edu/wp-content/uploads/2017/11/RAINGARDENS_2017.pdf?fwd=no (accessed on 3 May 2019).
- Logsdon, S. Nutrient Leaching When Soil Is Part of Plant Growth Media. Water 2017, 9, 501. [Google Scholar] [CrossRef]
- Hunt, W.F.; Lord, W.G. Urban Waterways: Bioretention Performance, Design, Construction, and Maintenance; AGW-588-05; North Carolina State University: Raleigh, NC, USA, 2006; Available online: https://content.ces.ncsu.edu/static/publication/js/pdf_js/web/viewer.html?slug=bioretention-performance-design-construction-and-maintenance (accessed on 6 May 2019).
- Liu, J.; Sample, D.J.; Owen, J.S.; Li, J.; Evanylo, G. Assessment of Selected Bioretention Blends for Nutrient Retention Using Mesocosm Experiments. J. Environ. Qual. 2014, 43, 1754. [Google Scholar] [CrossRef] [PubMed]
- Palmer, E.T.; Poor, C.J.; Hinman, C.; Stark, J.D. Nitrate and Phosphate Removal through Enhanced Bioretention Media: Mesocosm Study. Water Environ. Res. 2013, 85, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.D. The pour-through nutrient extraction procedure. HortScience 1986, 21, 227–229. [Google Scholar]
- Hue, N.V.; Evans, C.E. Procedures Used for Soil and Plant Analysis by th Auburn University Soil Testing Laboratory. Agron. Soils Dep. Ser. 1986, 1–12. [Google Scholar]
- Whitlock, M.; Schluter, D. The Analysis of Biological Data; Roberts & Company Publishers: Greenwood Village, CO, USA, 2009; p. 864. ISBN 978-1936221486. [Google Scholar]
- Colmer, T.D. Aerenchyma and An Inducible Barrier to Radial Oxygen Loss Facilitate Root Aeration in Upland, Paddy and Deep-water Rice (Oryza sativa L.). Ann. Bot. 2002, 91, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.; Dewey, J.C.; Hatten, J.A.; Ezell, A.W.; Fan, Z. Changes in Vegetative Communities and Water Table Dynamics Following Timber Harvesting in Small Headwater Streams. For. Ecol. Manag. 2012, 281, 1–11. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Plants Database. Conservation Plant Characteristics: Coreopsis verticillate L. Available online: http://plants.usda.gov/java/charProfile?symbol=COLA5 (accessed on 14 May 2019).
- Thetford, M.; Norcini, J.G.; Ballard, B.; Aldrich, J.H. Ornamental Landscape Performance of Native and Nonnative Grasses Under Low-input Conditions. HortTechnology 2009, 19, 267–285. [Google Scholar] [CrossRef]
- Byun, C.; de Blois, S.; Brisson, J. Plant Functional Group Identity and Diversity Determine Biotic Resistance to Invasion by an Exotic Grass. J. Ecol. 2012, 101, 128–139. [Google Scholar] [CrossRef]
- Pokorny, M.L.; Sheley, R.I.; Zabinski, C.A.; Engel, R.E.; Svejcar, T.J.; Borkoski, J.J. Plant Functional Group Diversity as a Mechanism for Invasion Resistance. Restor. Ecol. 2005, 13, 448–459. [Google Scholar] [CrossRef]
- Sphen, E.M.; Joshi, J.; Schmid, B.; Diemer, M.; Korner, C. Above Ground Resource Use Increases with Plant Species Richness in Experimental Grassland Ecosystem. Funct. Ecol. 2001, 14, 326–337. [Google Scholar] [CrossRef]
- Chapin, F.S. The Mineral Nutrition of Wild Plants. Annu. Rev. Ecol. Syst. 1980, 11, 233–260. [Google Scholar] [CrossRef]
- Grime, J.P. Evidence for the Existence of Three Primary Strategies in Plants and its Relevance to Ecological and Evolutionary Theory. Am. Nat. 1977, 111, 1169–1194. [Google Scholar] [CrossRef]
- Parsons, R.F. The Significance of Growth-Rate Comparisons for Plant Ecology. Am. Nat. 1968, 102, 595–597. [Google Scholar] [CrossRef]
- Read, J.; Wevill, T.; Fletcher, T.; Deletic, A. Variation Among Plant Species in Pollutant Removal from Stormwater in Biofiltration Systems. Water Res. 2008, 42, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Vance, C.P.; Uhde-Stone, C.; Allen, D.I. P Acquisition and Use: Critical Adaptations by plants for Securing a Nonrenewable Resource. New Phytol. 2003, 157, 423–447. [Google Scholar] [CrossRef]
- Milla, R.; Forero, D.M.; Escuder, A.; Iriondo, J.M. Growing with Siblings: A Common Ground for Cooperation or for Fiercer Competition Among Plants? Proc. R. Soc. B Biol. Sci. 2009, 276, 2531–2540. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, T.T. Plant Responses to Flooding of Soil. Biol. Sci. 1984, 34, 162–167. [Google Scholar] [CrossRef]
- Kozlowski, T.T. Responses of Woody Plants to Flooding and Salinity. Tree Phys. Mongr. 1997, 1, 1–29. Available online: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=424063 (accessed on 14 May 2019). [CrossRef]
- Li, S.; Pezeshki, S.R.; Goodwin, S. Effects of Soil Moisture Regimes on Photosynthesis and Growth in Cattail (Typha latifolia). Acta Oecol. 2004, 25, 17–22. [Google Scholar] [CrossRef]
- Rouse, S.E. Effects of Vegetation Type on the Hydrologic Budget and Inorganic Nitrogen in Recently Established Rain Gardens. Master’s Thesis, University of Wisconsin, Madison, WI, USA, 2007. [Google Scholar]
- Dougherty, M.; LeBleu, C.; Brantley, E.; Francis, C. Evaluation of Bioretention Nutrient Removal in a Rain Garden with an Internal Water Storage (IWS) Layer. In Proceedings of the ASABE Annual International Conference, Minneapolis, MN, USA, 17–20 June 2007. [Google Scholar]
Growth and Physiological Study Results Summary | |||||||
---|---|---|---|---|---|---|---|
Type | Species | Run | SI z | LA | LCC | SDW | SC |
Shrub | IF | SU 14 | ND y | ND | ND | ND | NF |
FA 14 | ND | ND | NF | ND | NF | ||
MC | SU 14 | NF | ND | ND | ND | NF- | |
FA 14 | ND | ND | NF | ND | NF | ||
Fern | OC | SP 15 | ND | ND | ND | ND | ND |
SU 15 | ND | ND | ND | ND | ND | ||
PA | SP 15 | ND | ND | ND | ND | F | |
SU 15 | NF | ND | NF over time | ND | NF- | ||
Grass | CL | SU 14 | ND | F | ND | ND | F |
SP 15 | ND | ND | NF | ND | ND | ||
SU 15 | F | F | ND | F | ND |
Whole Plant Transpiration (mol·s−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|
SU 14 | FA 14 | SP 15 | SU15 | ||||||
Type | Species | F | NF | F | NF | F | NF | F | NF |
Shrub | IF | 18.4a z | 0.513b | 0.097 | 0.201 | - | - | - | - |
MC | 0.242 | 0.527 | 0.131 | 0.186 | - | - | - | - | |
Fern | OC | - | - | - | - | 0.095 | 0.075 | 0.054 | 0.053 |
PA | - | - | - | - | 0.021 | 0.018 | 0.002a | 0.018b | |
Grass | CL | 0.141a | 0.047b | - | - | 0.022 | 0.025 | 0.237a | 0.142b |
Type | Species | SI z | SDW | RDW |
---|---|---|---|---|
Shrub | IV | NDy | ND | ND |
Grass | AT | ND | ND | ND |
Perennial | CV | ND | NF | NF |
Type | Species | RTP (mg/kg) | STP (mg/kg) |
---|---|---|---|
Shrub | IV | 1607b z | 2636b |
Grass | AT | 1945b | 2443b |
Perennial | CV | 4089a | 3088a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morash, J.; Wright, A.; LeBleu, C.; Meder, A.; Kessler, R.; Brantley, E.; Howe, J. Increasing Sustainability of Residential Areas Using Rain Gardens to Improve Pollutant Capture, Biodiversity and Ecosystem Resilience. Sustainability 2019, 11, 3269. https://doi.org/10.3390/su11123269
Morash J, Wright A, LeBleu C, Meder A, Kessler R, Brantley E, Howe J. Increasing Sustainability of Residential Areas Using Rain Gardens to Improve Pollutant Capture, Biodiversity and Ecosystem Resilience. Sustainability. 2019; 11(12):3269. https://doi.org/10.3390/su11123269
Chicago/Turabian StyleMorash, Jennifer, Amy Wright, Charlene LeBleu, Amanda Meder, Raymond Kessler, Eve Brantley, and Julie Howe. 2019. "Increasing Sustainability of Residential Areas Using Rain Gardens to Improve Pollutant Capture, Biodiversity and Ecosystem Resilience" Sustainability 11, no. 12: 3269. https://doi.org/10.3390/su11123269
APA StyleMorash, J., Wright, A., LeBleu, C., Meder, A., Kessler, R., Brantley, E., & Howe, J. (2019). Increasing Sustainability of Residential Areas Using Rain Gardens to Improve Pollutant Capture, Biodiversity and Ecosystem Resilience. Sustainability, 11(12), 3269. https://doi.org/10.3390/su11123269