Direct and Indirect Effects of Urbanization on Energy Intensity in Chinese Cities: A Regional Heterogeneity Analysis
Abstract
:1. Introduction
2. Literature Review
3. Methodology and Data
3.1. Empirical Method
3.2. Data Processing
4. Empirical Results and Discussion
4.1. Spatial Autocorrelation Tests
4.2. Empirical Results of Spatial Durbin Models
4.3. Decomposition Analysis of Spatial Effects
5. Conclusions and Policy Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sadorsky, P. Financial development and energy consumption in Central and Eastern European frontier economies. Energy Policy 2011, 39, 999–1006. [Google Scholar] [CrossRef]
- Makarenko, D.; Streimikiene, D. Quality of life and environmentally responsible behavior in energy sector. J. Int. Stud. 2014, 7, 179–192. [Google Scholar]
- Stavytskyy, A.; Kharlamova, G.; Giedraitis, V.; Šumskis, V. Estimating the interrelation between energy security and macroeconomic factors in European countries. J. Int. Stud. 2018, 11, 217–238. [Google Scholar] [CrossRef]
- Ang, B.W.; Mu, A.R.; Zhou, P. Accounting frameworks for tracking energy efficiency trends. Energy Econ. 2010, 32, 1209–1219. [Google Scholar] [CrossRef]
- Tvaronavičienė, M.; Prakapienė, D.; Garškaitė-Milvydienė, K.; Prakapas, R.; Nawrot, Ł. Energy Efficiency in the Long-Run in the Selected European Countries. Econ. Sociol. 2018, 11, 245–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ang, B.W. Is-the-energy-intensity-a-less-useful-indicator-than-the-carbon factor. Energy Policy 1999, 27, 943–946. [Google Scholar] [CrossRef]
- Huang, J.; Du, D.; Hao, Y. The driving forces of the change in China’s energy intensity: An empirical research using DEA-Malmquist and spatial panel estimations. Econ. Model. 2017, 65, 41–50. [Google Scholar] [CrossRef]
- Fisher-Vanden, K.; Jefferson, G.H.; Liu, H.; Tao, Q. What is driving China’s decline in energy intensity? Resour. Energy Econ. 2004, 26, 77–97. [Google Scholar] [CrossRef]
- Chai, J.; Guo, J.-E.; Wang, S.-Y.; Lai, K.K. Why does energy intensity fluctuate in China? Energy Policy 2009, 37, 5717–5731. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Energy and carbon intensity in China during the urbanization and industrialization process: A panel VAR approach. J. Clean. Prod. 2017, 168, 780–790. [Google Scholar] [CrossRef]
- Zhou, W.; Zhu, B.; Chen, D.; Griffy-Brown, C.; Ma, Y.; Fei, W. Energy consumption patterns in the process of China’s urbanization. Popul. Environ. 2011, 33, 202–220. [Google Scholar] [CrossRef]
- He, J.; Wang, S.; Liu, Y.; Ma, H.; Liu, Q. Examining the relationship between urbanization and the eco-environment using a coupling analysis: Case study of Shanghai, China. Ecol. Indic. 2017, 77, 185–193. [Google Scholar] [CrossRef]
- Dhakal, S. Urban energy use and carbon emissions from cities in China and policy implications. Energy Policy 2009, 37, 4208–4219. [Google Scholar] [CrossRef]
- Yang, S.; Shi, L. Prediction of long-term energy consumption trends under the New National Urbanization Plan in China. J. Clean. Prod. 2017, 166, 1144–1153. [Google Scholar] [CrossRef]
- Ji, X.; Chen, B. Assessing the energy-saving effect of urbanization in China based on stochastic impacts by regression on population, affluence and technology (STIRPAT) model. J. Clean. Prod. 2017, 163, S306–S314. [Google Scholar] [CrossRef]
- Keho, Y. What drives energy consumption in developing countries? The experience of selected African countries. Energy Policy 2016, 91, 233–246. [Google Scholar] [CrossRef]
- Behera, S.R.; Dash, D.P. The effect of urbanization, energy consumption, and foreign direct investment on the carbon dioxide emission in the SSEA (South and Southeast Asian) region. Renew. Sustain. Energy Rev. 2017, 70, 96–106. [Google Scholar] [CrossRef]
- Bakirtas, T.; Akpolat, A.G. The relationship between energy consumption, urbanization, and economic growth in new emerging-market countries. Energy 2018, 147, 110–121. [Google Scholar] [CrossRef]
- Shahbaz, M.; Chaudhary, A.R.; Ozturk, I. Does urbanization cause increasing energy demand in Pakistan? Empirical evidence from STIRPAT model. Energy 2017, 122, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Bilgili, F.; Koçak, E.; Bulut, Ü.; Kuloğlu, A. The impact of urbanization on energy intensity: Panel data evidence considering cross-sectional dependence and heterogeneity. Energy 2017, 133, 242–256. [Google Scholar] [CrossRef]
- Ma, B. Does urbanization affect energy intensities across provinces in China? Long-run elasticities estimation using dynamic panels with heterogeneous slopes. Energy Econ. 2015, 49, 390–401. [Google Scholar] [CrossRef]
- Sadorsky, P. Do urbanization and industrialization affect energy intensity in developing countries? Energy Econ. 2013, 37, 52–59. [Google Scholar] [CrossRef]
- Song, F.; Zheng, X. What drives the change in China’s energy intensity: Combining decomposition analysis and econometric analysis at the provincial level. Energy Policy 2012, 51, 445–453. [Google Scholar] [CrossRef]
- Belloumi, M.; Alshehry, A. The Impact of Urbanization on Energy Intensity in Saudi Arabia. Sustainability 2016, 8, 375. [Google Scholar] [CrossRef]
- Farajzadeh, Z.; Nematollahi, M.A. Energy intensity and its components in Iran: Determinants and trends. Energy Econ. 2018, 73, 161–177. [Google Scholar] [CrossRef]
- Yan, H. Provincial energy intensity in China: The role of urbanization. Energy Policy 2015, 86, 635–650. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, Y. Asymmetric adjustment of the dynamic relationship between energy intensity and urbanization in China. Energy Econ. 2013, 36, 43–54. [Google Scholar] [CrossRef]
- Elliott, R.J.R.; Sun, P.; Zhu, T. The direct and indirect effect of urbanization on energy intensity: A province-level study for China. Energy 2017, 123, 677–692. [Google Scholar] [CrossRef]
- Huang, J.; Yu, S. Effects of investment on energy intensity: Evidence from China. Chin. J. Popul. Resour. Environ. 2016, 14, 197–207. [Google Scholar] [CrossRef]
- Salim, R.; Rafiq, S.; Shafiei, S.; Yao, Y. Does urbanization increase pollutant emission and energy intensity? evidence from some Asian developing economies. Appl. Econ. 2019, 51, 4008–4024. [Google Scholar] [CrossRef]
- Lv, K.; Yu, A.; Bian, Y. Regional energy efficiency and its determinants in China during 2001–2010: A slacks-based measure and spatial econometric analysis. J. Product. Anal. 2016, 47, 65–81. [Google Scholar] [CrossRef]
- Du, M.; Wang, B.; Zhang, N. National research funding and energy efficiency: Evidence from the National Science Foundation of China. Energy Policy 2018, 120, 335–346. [Google Scholar] [CrossRef]
- Poumanyvong, P.; Kaneko, S. Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis. Ecol. Econ. 2010, 70, 434–444. [Google Scholar] [CrossRef]
- Elliott, R.J.R.; Sun, P.; Chen, S. Energy intensity and foreign direct investment: A Chinese city-level study. Energy Econ. 2013, 40, 484–494. [Google Scholar] [CrossRef]
- Li, Q.; Song, J.; Wang, E.; Hu, H.; Zhang, J.; Wang, Y. Economic growth and pollutant emissions in China: A spatial econometric analysis. Stoch. Environ. Res. Risk Assess. 2013, 28, 429–442. [Google Scholar] [CrossRef]
- Cheng, Z. The spatial correlation and interaction between manufacturing agglomeration and environmental pollution. Ecol. Indic. 2016, 61, 1024–1032. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Kwan, M.-P.; Yang, H.; Chuai, X. The effect of urbanization on carbon dioxide emissions efficiency in the Yangtze River Delta, China. J. Clean. Prod. 2018, 188, 38–48. [Google Scholar] [CrossRef]
- Ma, B.; Yu, Y. Industrial structure, energy-saving regulations and energy intensity: Evidence from Chinese cities. J. Clean. Prod. 2017, 141, 1539–1547. [Google Scholar] [CrossRef]
- Liddle, B.; Lung, S. Age-structure, urbanization, and climate change in developed countries: Revisiting STIRPAT for disaggregated population and consumption-related environmental impacts. Popul. Environ. 2010, 31, 317–343. [Google Scholar] [CrossRef]
- Blázquez Gomez, L.M.; Filippini, M.; Heimsch, F. Regional impact of changes in disposable income on Spanish electricity demand: A spatial econometric analysis. Energy Econ. 2013, 40, S58–S66. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, Z.; Zhang, H. Does industrial agglomeration promote the increase of energy efficiency in China? J. Clean. Prod. 2017, 164, 30–37. [Google Scholar] [CrossRef]
- Du, H.; Matisoff, D.C.; Wang, Y.; Liu, X. Understanding drivers of energy efficiency changes in China. Appl. Energy 2016, 184, 1196–1206. [Google Scholar] [CrossRef]
- Li, K.; Fang, L.; He, L. How urbanization affects China’s energy efficiency: A spatial econometric analysis. J. Clean. Prod. 2018, 200, 1130–1141. [Google Scholar] [CrossRef]
- Elhorst, J.P. Spatial Econometrics; Springer: Heidelberg, Germnay; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2014. [Google Scholar]
- Lesage, J.P.; Pace, R.K. Introduction to Spatial Econometrics; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Shahbaz, M.; Zakaria, M.; Shahzad, S.J.H.; Mahalik, M.K. The energy consumption and economic growth nexus in top ten energy-consuming countries: Fresh evidence from using the quantile-on-quantile approach. Energy Econ. 2018, 71, 282–301. [Google Scholar] [CrossRef] [Green Version]
- Yu, H. The influential factors of China’s regional energy intensity and its spatial linkages: 1988–2007. Energy Policy 2012, 45, 583–593. [Google Scholar] [CrossRef]
- Li, K.; Lin, B. Impacts of urbanization and industrialization on energy consumption/CO 2 emissions: Does the level of development matter? Renew. Sustain. Energy Rev. 2015, 52, 1107–1122. [Google Scholar] [CrossRef]
- Feng, T.; Sun, L.; Zhang, Y. The relationship between energy consumption structure, economic structure and energy intensity in China. Energy Policy 2009, 37, 5475–5483. [Google Scholar] [CrossRef]
- Yuxiang, K.; Chen, Z. Government expenditure and energy intensity in China. Energy Policy 2010, 38, 691–694. [Google Scholar] [CrossRef]
- Ma, C.; Stern, D.I. China’s changing energy intensity trend: A decomposition analysis. Energy Econ. 2008, 30, 1037–1053. [Google Scholar] [CrossRef]
- HÜBler, M.; Keller, A. Energy savings via FDI? Empirical evidence from developing countries. Environ. Dev. Econ. 2009, 15, 59–80. [Google Scholar] [CrossRef] [Green Version]
- Adom, P.K.; Amuakwa-Mensah, F. What drives the energy saving role of FDI and industrialization in East Africa? Renew. Sustain. Energy Rev. 2016, 65, 925–942. [Google Scholar] [CrossRef]
- Wang, S. Impact of FDI on energy efficiency: An analysis of the regional discrepancies in China. Nat. Hazards 2016, 85, 1209–1222. [Google Scholar] [CrossRef]
- Jiang, L.; Ji, M. China’s Energy Intensity, Determinants and Spatial Effects. Sustainability 2016, 8, 544. [Google Scholar] [CrossRef]
- Fan, J.-L.; Zhang, Y.-J.; Wang, B. The impact of urbanization on residential energy consumption in China: An aggregated and disaggregated analysis. Renew. Sustain. Energy Rev. 2017, 75, 220–233. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, H.; Lv, Y.; Zhang, N. The effect of new-type urbanization on energy consumption in China: A spatial econometric analysis. J. Clean. Prod. 2017, 163, S299–S305. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. Industrial structure, technical progress and carbon intensity in China’s provinces. Renew. Sustain. Energy Rev. 2018, 81, 2935–2946. [Google Scholar] [CrossRef]
- Li, Y.; Sun, L.; Feng, T.; Zhu, C. How to reduce energy intensity in China: A regional comparison perspective. Energy Policy 2013, 61, 513–522. [Google Scholar] [CrossRef]
Author | Period | Sample | Methodology | Main Results |
---|---|---|---|---|
Part A—Worldwide research | ||||
Sadorsky [22] | 1980 to 2010 | 76 countries | POLS, FE, MG | URB→EI: Mixed |
Belloumi and Alshehry [24] | 1971 to 2012 | Saudi Arabia | ARDL, GC, FMOLS, DOLS | URB→EI: significantly positive |
Bilgili, Koçak, Bulut and Kuloğlu [20] | 1990 to 2014 | 10 Asian countries | PMG | URB→EI: Negative (both LR and SR) |
Farajzadeh and Nematollahi [25] | 1973 to 2013 | Iran | Regression, ANN | URB→EI: significantly negative |
Part B—Research related to China | ||||
Song and Zheng [23] | 1995 to 2009 | 28 provinces | Fisher ideal index method, FE | insignificant |
Liu and Xie [27] | 1978 to 2010 | National, regional | Non-linear cointegrating and GC, TVECM | URB→EI: Mixed |
Yan [26] | 2000 to 2012 | 30 provinces | Fixed Effects, FGLS, PCSE, DK. | URB→EI/EEI/COI: positive |
Ma [21] | 1986 to 2011 | 30 provinces | CCEMG, AMG | URB→EI/EEI: positive; UR→COI: no |
Huang and Yu [29] | 2004 to 2013 | 27 provinces | PCSE, FE | URB→EI: mixed |
Lv, Yu and Bian [31] | 2001 to 2010 | 31 provinces | DEA; SAR, SEM | URB→TFEE: mixed |
Elliott, Sun and Zhu [28] | 1995 to 2012 | 30 provinces | MG, AMG | URB→EI: mixed |
Lin and Zhu [10] | 2000 to 2015 | 30 provinces | PVAR | URB→EI: inverted U-shaped effect |
Du, Wang and Zhang [32] | 2006 to 2015 | 30 provinces | TFEE, SFA | URB→energy inefficiency: positive |
Salim, Rafiq, Shafiei and Yao [30] | 1980 to 2010 | 13 Asian countries including China | ARDL | URB→EI: insignificant |
Sample | Variables | Mean | SD | Min | Median | Max |
---|---|---|---|---|---|---|
Full Obs. = 2688 N = 224 | EI | 0.140 | 0.457 | −1.050 | 0.122 | 2.168 |
URB | 3.823 | 0.311 | 2.809 | 3.826 | 4.605 | |
IND | 3.871 | 0.215 | 2.929 | 3.900 | 4.410 | |
TER | 3.593 | 0.222 | 2.484 | 3.590 | 4.385 | |
PERGDP | 9.533 | 0.616 | 8.059 | 9.464 | 12.221 | |
PERGDP2 | 91.249 | 11.899 | 64.950 | 89.573 | 149.347 | |
FDI | 0.205 | 1.387 | −8.163 | 0.330 | 8.159 | |
TRADE | 2.058 | 1.673 | −5.005 | 2.081 | 11.764 | |
Eastern Obs. = 1020 N = 85 | EI | −0.113 | 0.429 | −1.050 | −0.163 | 1.543 |
URB | 4.001 | 0.258 | 3.333 | 3.983 | 4.605 | |
IND | 3.900 | 0.168 | 2.958 | 3.918 | 4.410 | |
TER | 3.669 | 0.201 | 2.609 | 3.657 | 4.385 | |
PERGDP | 9.965 | 0.553 | 8.538 | 9.897 | 12.221 | |
PERGDP2 | 99.606 | 11.115 | 72.894 | 97.945 | 149.347 | |
FDI | 0.576 | 0.931 | −2.464 | 0.604 | 2.457 | |
TRADE | 3.270 | 1.053 | −0.206 | 3.202 | 6.701 | |
Central Obs. = 984 N = 82 | EI | 0.258 | 0.406 | −0.777 | 0.207 | 1.459 |
URB | 3.797 | 0.242 | 2.927 | 3.794 | 4.437 | |
IND | 3.893 | 0.219 | 3.056 | 3.923 | 4.314 | |
TER | 3.548 | 0.207 | 2.847 | 3.554 | 4.210 | |
PERGDP | 9.396 | 0.471 | 8.175 | 9.380 | 10.636 | |
PERGDP2 | 88.510 | 8.899 | 66.830 | 87.984 | 113.120 | |
FDI | 0.570 | 1.154 | −4.571 | 0.558 | 8.159 | |
TRADE | 1.719 | 1.403 | −1.527 | 1.554 | 11.764 | |
Western Obs. = 684 N = 57 | EI | 0.350 | 0.387 | −0.462 | 0.305 | 2.168 |
URB | 3.594 | 0.311 | 2.809 | 3.595 | 4.315 | |
IND | 3.797 | 0.253 | 2.929 | 3.805 | 4.396 | |
TER | 3.546 | 0.243 | 2.484 | 3.552 | 4.114 | |
PERGDP | 9.084 | 0.459 | 8.059 | 9.047 | 10.351 | |
PERGDP2 | 82.728 | 8.422 | 64.950 | 81.839 | 107.148 | |
FDI | −0.871 | 1.675 | −8.163 | −1.040 | 5.033 | |
TRADE | 0.737 | 1.554 | −5.005 | 0.768 | 4.781 |
Full | East | Central | West | |||||
---|---|---|---|---|---|---|---|---|
Year | Moran’s I | Geary’s C | Moran’s I | Geary’s C | Moran’s I | Geary’s C | Moran’s I | Geary’s C |
2005 | 0.077 *** | 0.907 *** | 0.101 *** | 0.905 ** | 0.120 *** | 0.833 *** | 0.041 *** | 0.987 |
2006 | 0.079 *** | 0.905 *** | 0.102 *** | 0.905 ** | 0.129 *** | 0.823 *** | 0.043 *** | 0.986 |
2007 | 0.081 *** | 0.903 *** | 0.103 *** | 0.900 ** | 0.125 *** | 0.827 *** | 0.045 *** | 0.985 |
2008 | 0.082 *** | 0.902 ** | 0.098 *** | 0.903 ** | 0.120 *** | 0.833 *** | 0.044 *** | 0.986 |
2009 | 0.104 *** | 0.885 *** | 0.100 *** | 0.901 ** | 0.107 *** | 0.852 *** | 0.058 *** | 0.933 ** |
2010 | 0.101 *** | 0.889 *** | 0.108 *** | 0.894 *** | 0.102 *** | 0.859 *** | 0.057 *** | 0.934 ** |
2011 | 0.104 *** | 0.886 *** | 0.111 *** | 0.891 *** | 0.103 *** | 0.858 *** | 0.058 *** | 0.933 ** |
2012 | 0.104 *** | 0.885 *** | 0.115 *** | 0.890 *** | 0.103 *** | 0.855 *** | 0.062 *** | 0.929 ** |
2013 | 0.106 *** | 0.882 *** | 0.114 *** | 0.890 *** | 0.108 *** | 0.848 *** | 0.065 *** | 0.927 ** |
2014 | 0.100 *** | 0.885 *** | 0.089 *** | 0.933 ** | 0.114 *** | 0.830 *** | 0.060 *** | 0.929 ** |
2015 | 0.1041 *** | 0.885 *** | 0.092 *** | 0.928 ** | 0.124 *** | 0.819 *** | −0.009 | 0.984 |
2016 | 0.099 *** | 0.887 *** | 0.087 *** | 0.934 ** | 0.126 *** | 0.817 *** | −0.020 | 0.992 |
EI | Full (N = 224) | Eastern (N = 85) | Central (N = 82) | Western (N = 57) |
---|---|---|---|---|
URB | −0.170 *** | 0.014 | 0.020 | −0.558 *** |
[0.03] | [0.06] | [0.05] | [0.06] | |
IND | 0.221 *** | 0.288 *** | 0.039 | 0.166 *** |
[0.03] | [0.07] | [0.05] | [0.05] | |
TER | 0.198 *** | 0.217 *** | 0.103 ** | 0.190 *** |
[0.03] | [0.06] | [0.04] | [0.05] | |
PERGDP | 0.480 *** | 1.042 *** | −0.486 | 3.363 *** |
[0.18] | [0.36] | [0.37] | [0.48] | |
PERGDP2 | −0.022 ** | −0.051 *** | 0.030 | −0.180 *** |
[0.01] | [0.02] | [0.02] | [0.03] | |
FDI | −0.007 *** | −0.014 ** | −0.009 * | −0.003 |
[0.00] | [0.01] | [0.00] | [0.00] | |
TRADE | 0.008 ** | 0.027 ** | 0.002 | 0.012 ** |
[0.00] | [0.01] | [0.01] | [0.00] | |
PRICE | 0.002 | 0.189 * | 0.025 *** | −0.578 *** |
[0.01] | [0.11] | [0.01] | [0.13] | |
constant | 10.056 ** | −7.187 | −13.106 | 29.254 ** |
[4.10] | [8.28] | [9.70] | [14.67] | |
W × EI | 0.610 *** | 0.685 *** | 0.564 *** | 0.456 *** |
[0.08] | [0.07] | [0.09] | [0.12] | |
W × URB | 0.056 | −0.762 *** | −0.270 | −0.390 * |
[0.19] | [0.25] | [0.22] | [0.22] | |
W × IND | 0.287 | −0.244 | 0.339 | 0.014 |
[0.20] | [0.30] | [0.28] | [0.23] | |
W × TER | −0.444 ** | −0.230 | −0.349 | 0.340 |
[0.20] | [0.29] | [0.24] | [0.26] | |
W × PERGDP | −2.203 *** | 0.739 | 3.865 * | −9.952 *** |
[0.77] | [1.64] | [2.00] | [3.40] | |
W × PERGDP2 | 0.088 ** | −0.026 | −0.231 ** | 0.542 *** |
[0.04] | [0.07] | [0.11] | [0.19] | |
W × FDI | −0.058 *** | 0.003 | −0.032 | −0.025 |
[0.02] | [0.03] | [0.02] | [0.02] | |
W × TRADE | −0.008 | 0.022 | 0.013 | 0.077 ** |
[0.03] | [0.05] | [0.03] | [0.04] | |
W × PRICE | −0.046 | −0.242 * | −0.105 *** | 0.896 *** |
[0.04] | [0.13] | [0.03] | [0.21] | |
Obs. | 2688 | 1020 | 984 | 684 |
Hausman | 40.46 | 18.87 | 14.91 | 23.96 |
(0.0011) | (0.3363) | (0.6022) | (0.1205) | |
Wald test−spatial lag | 28.81 | 41.00 | 45.44 | 56.28 |
(0.0001) | (0.0000) | (0.0000) | (0.0000) | |
LR test spatial lag | 51.09 | 57.89 | 64.13 | 55.01 |
(0.0000) | (0.0000) | (0.0000) | (0.0000) | |
Wald test−spatial error | 40.56 | 32.30 | 45.71 | 31.75 |
(0.0000) | (0.0000) | (0.0000) | (0.0000) | |
LR test spatial error | 73.32 | 58.55 | 75.61 | 44.87 |
(0.0000) | (0.0000) | (0.0000) | (0.0000) | |
R−square | 0.8227 | 0.8055 | 0.8854 | 0.8132 |
EI | Full (N = 224) | Eastern (N = 85) | Central (N = 82) | Western (N = 57) |
---|---|---|---|---|
Direct effects | ||||
URB | −0.169 *** | −0.013 | 0.018 | −0.570 *** |
[0.03] | [0.06] | [0.05] | [0.06] | |
IND | 0.223 *** | 0.283 *** | 0.044 | 0.165 *** |
[0.03] | [0.07] | [0.05] | [0.05] | |
TER | 0.196 *** | 0.216 *** | 0.098 ** | 0.202 *** |
[0.03] | [0.06] | [0.04] | [0.05] | |
PERGDP | 0.459 *** | 1.099 *** | −0.403 | 3.165 *** |
[0.17] | [0.36] | [0.37] | [0.49] | |
PERGDP2 | −0.021 ** | −0.053 *** | 0.025 | −0.169 *** |
[0.01] | [0.02] | [0.02] | [0.03] | |
FDI | −0.007 *** | −0.014 ** | −0.009 ** | −0.003 |
[0.00] | [0.01] | [0.00] | [0.00] | |
TRADE | 0.008 ** | 0.029 *** | 0.003 | 0.014 *** |
[0.00] | [0.01] | [0.01] | [0.01] | |
PRICE | 0.001 | 0.183 * | 0.022 *** | −0.573 *** |
[0.01] | [0.10] | [0.01] | [0.13] | |
Indirect effects | ||||
URB | −0.041 | −2.397 *** | −0.536 | −1.227 *** |
[0.48] | [0.82] | [0.48] | [0.36] | |
IND | 1.092 * | −0.151 | 0.806 | 0.153 |
[0.56] | [1.00] | [0.68] | [0.45] | |
TER | −0.882 * | −0.267 | −0.704 | 0.871 |
[0.53] | [0.95] | [0.58] | [0.62] | |
PERGDP | −5.221 *** | 4.382 | 8.525 | −16.921 ** |
[2.02] | [5.55] | [5.83] | [7.94] | |
PERGDP2 | 0.205 ** | −0.181 | −0.507 | 0.927 ** |
[0.10] | [0.25] | [0.32] | [0.45] | |
FDI | −0.170 ** | −0.040 | −0.091 * | −0.049 |
[0.07] | [0.11] | [0.05] | [0.04] | |
TRADE | −0.006 | 0.137 | 0.040 | 0.158 ** |
[0.07] | [0.16] | [0.08] | [0.07] | |
PRICE | −0.118 | −0.351 | −0.209 *** | 1.208 *** |
[0.09] | [0.24] | [0.06] | [0.38] | |
Total effects | ||||
URB | −0.210 | −2.410 *** | −0.518 | −1.797 *** |
[0.48] | [0.83] | [0.48] | [0.36] | |
IND | 1.316 ** | 0.132 | 0.850 | 0.318 |
[0.56] | [1.00] | [0.68] | [0.44] | |
TER | −0.686 | −0.051 | −0.606 | 1.073 * |
[0.53] | [0.96] | [0.58] | [0.63] | |
PERGDP | −4.762 ** | 5.481 | 8.122 | −13.756 * |
[2.01] | [5.58] | [5.91] | [8.06] | |
PERGDP2 | 0.184 * | −0.234 | −0.482 | 0.758 * |
[0.10] | [0.25] | [0.32] | [0.45] | |
FDI | −0.177 *** | −0.054 | −0.100 ** | −0.052 |
[0.07] | [0.11] | [0.05] | [0.05] | |
TRADE | 0.003 | 0.166 | 0.043 | 0.172 ** |
[0.07] | [0.16] | [0.08] | [0.07] | |
PRICE | −0.117 | −0.168 | −0.187 *** | 0.635 * |
[0.09] | [0.19] | [0.06] | [0.34] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Y.; Chen, W.; Cheng, J. Direct and Indirect Effects of Urbanization on Energy Intensity in Chinese Cities: A Regional Heterogeneity Analysis. Sustainability 2019, 11, 3167. https://doi.org/10.3390/su11113167
Lv Y, Chen W, Cheng J. Direct and Indirect Effects of Urbanization on Energy Intensity in Chinese Cities: A Regional Heterogeneity Analysis. Sustainability. 2019; 11(11):3167. https://doi.org/10.3390/su11113167
Chicago/Turabian StyleLv, Yulan, Wei Chen, and Jianquan Cheng. 2019. "Direct and Indirect Effects of Urbanization on Energy Intensity in Chinese Cities: A Regional Heterogeneity Analysis" Sustainability 11, no. 11: 3167. https://doi.org/10.3390/su11113167
APA StyleLv, Y., Chen, W., & Cheng, J. (2019). Direct and Indirect Effects of Urbanization on Energy Intensity in Chinese Cities: A Regional Heterogeneity Analysis. Sustainability, 11(11), 3167. https://doi.org/10.3390/su11113167