Modelling Soil Carbon Content in South Patagonia and Evaluating Changes According to Climate, Vegetation, Desertification and Grazing
Abstract
:1. Introduction
2. Material and Methods
2.1. Soil Organic Carbon
2.2. GIS-Derived Independent Variables
2.3. Modelling and Data Analyses
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lindenmayer, D.B.; Likens, G.E. Adaptive monitoring: A new paradigm for long-term research and monitoring. Trends Ecol. Evol. 2009, 24, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Lindenmayer, D.B.; Likens, G.E. The science and application of ecological monitoring. Biol. Conserv. 2010, 143, 1317–1328. [Google Scholar] [CrossRef]
- Peri, P.L.; Lencinas, M.V.; Bousson, J.; Lasagno, R.; Soler, R.; Bahamonde, H.; Martínez Pastur, G. Biodiversity and ecological long-term plots in Southern Patagonia to support sustainable land management: The case of PEBANPA network. J. Nat. Conserv. 2016, 34, 51–64. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Wardle, D.A. Herbivore mediated linkages between aboveground and belowground communities. Ecology 2003, 84, 2258–2268. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Reynolds, J.F.; Cunningham, G.L.; Huenneke, L.F.; Jarrell, W.M.; Virginia, R.A.; Whitford, W.G. Biological feedbacks in global desertification. Science 1990, 247, 1043–1048. [Google Scholar] [CrossRef] [PubMed]
- Peri, P.L.; Lasagno, R.G. Biomass, carbon and nutrient storage for dominant grasses of cold temperate steppe grasslands in southern Patagonia, Argentina. J. Arid Environ. 2010, 74, 23–34. [Google Scholar] [CrossRef]
- Peri, P.L. Carbon Storage in Cold Temperate Ecosystems in Southern Patagonia, Argentina. In Biomass and Remote Sensing of Biomass; Atazadeh, I., Ed.; InTech Publisher: Rijeka, Croacia, 2011; pp. 213–226. ISBN 978-953-307-490-0. [Google Scholar]
- Ziter, C.; MacDougall, A.S. Nutrients and defoliation increase soil carbon inputs in grassland. Ecology 2013, 94, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Bahamonde, H.; Gargaglione, V.; Peri, P.L. Sheep faeces decomposition and nutrient release across an environmental gradient in Southern Patagonia. Ecol. Austral 2017, 27, 18–28. [Google Scholar]
- Sheil, D.; Ladd, B.; Silva, L.C.R.; Laffan, S.W.; Heist, M.V. How are soil carbon and tropical biodiversity related? Environ. Conserv. 2016, 43, 231–241. [Google Scholar] [CrossRef]
- Miller, R.W.; Donahue, R.L. Soils: An Introduction to Soils and Plant Growth, 6th ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1990. [Google Scholar]
- Doran, J.W.; Parkin, T.B. Quantitative indicators of soil quality: A minimum data set. In Methods for Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; Soil Science Society of America, Special Publication: Madison, WI, USA, 1996; pp. 25–37. [Google Scholar]
- Martínez Pastur, G.; Peri, P.L.; Lencinas, M.V.; Garcia-Llorente, M.; Nartin-Lopez, B. Spatial patterns of cultural ecosystem services provision in Southern Patagonia. Landsc. Ecol. 2016, 31, 383–399. [Google Scholar] [CrossRef]
- Golluscio, R.A.; Deregibus, V.; Paruelo, J.M. Sustainability and range management in the Patagonian steppe. Ecol. Austral 1998, 8, 265–284. [Google Scholar]
- Borrelli, P.; Boggio, F.; Sturzenbaum, P.; Paramidani, M.; Heinken, R.; Pague, C.; Stevens, M.; Nogués, A. GRASS: Grassland Regeneration and Sustainability Standard; Food and Agriculture Organization: Rome, Italy, 2013; Available online: http://www.fao.org/nr/sustainability/grassland/best-practices/projects-detail/en/c/237687/ (accessed on 10 October 2017).
- Lal, R. Soil quality and food security: The global perspective. In Soil Quality and Soil Erosion; Lal, R., Ed.; CRC Press: Boca Raton, FL, USA, 1999; pp. 3–16. [Google Scholar]
- Peri, P.L.; Gargaglione, V.; Martínez Pastur, G. Dynamics of above- and below-ground biomass and nutrient accumulation in an age sequence of Nothofagus antarctica forest of Southern Patagonia. For. Ecol. Manag. 2006, 233, 85–99. [Google Scholar] [CrossRef]
- Peri, P.L.; Gargaglione, V.; Martínez Pastur, G. Above- and belowground nutrients storage and biomass accumulation in marginal Nothofagus antarctica forests in Southern Patagonia. For. Ecol. Manag. 2008, 255, 2502–2511. [Google Scholar] [CrossRef]
- Peri, P.L.; Gargaglione, V.; Martínez Pastur, G.; Lencinas, M.V. Carbon accumulation along a stand development sequence of Nothofagus antarctica forests across a gradient in site quality in Southern Patagonia. For. Ecol. Manag. 2010, 260, 229–237. [Google Scholar] [CrossRef]
- Frank, A.B.; Tanaka, D.L.; Hofmann, L.; Follett, R.F. Soil carbon and nitrogen of Northern great plains grasslands as influenced by long-term grazing. J. Range Manag. 1995, 48, 470–474. [Google Scholar] [CrossRef]
- Del Valle, H.F.; Elissalde, N.O.; Gagliardini, D.A.; Milovich, J. Status of desertification in the Patagonian region: Assessment and mapping from satellite imagery. Arid Land Res. Manag. 1998, 12, 95–121. [Google Scholar] [CrossRef]
- Gonzalez, L.; Rial, P. Guía Geográfica Interactiva de Santa Cruz; INTA: Buenos Aires, Argentina, 2004. [Google Scholar]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Zomer, R.J.; Trabucco, A.; Bossio, D.A.; VanStraaten, O.; Verchot, L.V. Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 2008, 126, 67–80. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- ORNL DAAC. MODIS Collection 5 Land Products Global Subsetting and Visualization Tool; ORNL DAAC: Oak Ridge, TN, USA, 2008.
- Zhao, M.; Running, S.W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Environmental Systems Research Institute (ESRI). ArcGIS Desktop: Release 10; Environmental Systems Research Institute Inc.: Redlands, CA, USA, 2011. [Google Scholar]
- Peri, P.L.; Ladd, B.; Lasagno, R.G.; Martínez Pastur, G. The effects of land management (grazing intensity) vs. the effects of topography, soil properties, vegetation type, and climate on soil carbon concentration in Southern Patagonia. J. Arid Environ. 2016, 134, 73–78. [Google Scholar] [CrossRef]
- Ladd, B.; Laffan, S.W.; Amelung, W.; Peri, P.L.; Silva, L.C.R.; Gervassi, P.; Bonser, S.P.; Navall, M.; Sheil, D. Estimates of soil carbon concentration in tropical and temperate forest and woodland from available GIS data on three continents. Glob. Ecol. Biogeogr. 2013, 22, 461–469. [Google Scholar] [CrossRef]
- Kunkel, M.L.; Flores, A.N.; Smith, T.J.; McNamara, J.P.; Benner, S.G. A simplified approach for estimating soil carbon and nitrogen stocks in semi-arid complex terrain. Geoderma 2011, 165, 1–11. [Google Scholar] [CrossRef]
- Oechel, W.C.; Hastings, S.J.; Vourlitis, G.; Jenkins, M.; Riechers, G. Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature 1993, 361, 520–523. [Google Scholar] [CrossRef]
- Davidson, E.A.; Trumbore, S.E.; Amundson, R. Biogeochemistry: Soil warming and organic carbon content. Nature 2000, 408, 789–790. [Google Scholar] [CrossRef] [PubMed]
- Kreps, G.; Martínez Pastur, G.; Peri, P.L. Cambio Climático en Patagonia Sur: Escenarios Futuros en el Manejo de los Recursos Naturales; Ediciones INTA: Buenos Aires, Argentina, 2012; ISBN 978-987-679-137-3.
- Knapp, A.K.; Fay, P.A.; Blair, J.M.; Collins, S.L.; Smith, M.D.; Carlisle, J.D.; Harper, C.W.; Danner, B.T.; Lett, M.S.; McCarron, J.K. Rainfall variability, carbon cycling, and plant species diversity in a Mesic grassland. Science 2002, 298, 2202–2205. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, Z.; Wan, S. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob. Chang. Biol. 2009, 15, 184–195. [Google Scholar] [CrossRef]
- Sala, O.E.; Parton, W.J.; Joyce, L.A.; Lauenroth, W.K. Primary production of the central grassland region of the United States. Ecology 1988, 69, 40–45. [Google Scholar] [CrossRef]
- Burke, I.C.; Yonker, C.M.; Parton, W.J.; Cole, C.V.; Flach, K.; Schimel, D.S. Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Sci. Soc. Am. J. 1989, 53, 800–805. [Google Scholar] [CrossRef]
- Mulugeta, L.; Itanna, F. Soil carbon stocks and turnovers in various vegetation types and arable lands along an elevation gradient in southern Ethiopia. Geoderma 2004, 123, 177–188. [Google Scholar]
- McCulley, R.L.; Boutton, T.W.; Archer, S.R. Soil respiration in a subtropical savanna parkland: Response to water additions. Soil Sci. Soc. Am. J. 2007, 71, 820–828. [Google Scholar] [CrossRef]
- Bahn, M.; Rodeghiero, M.; Anderson-Dunn, M.; Dore, S.; Gimeno, C.; Drösler, M.; Williams, M.; Ammann, C.; Berninger, F.; Flechard, C.; et al. Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems 2008, 11, 1352–1367. [Google Scholar] [CrossRef] [PubMed]
- Marignani, M.; Chiarucci, A.; Sadori, L.; Mercuri, A.M. Natural and human impact in Mediterranean landscapes: An intriguing puzzle or only a question of time? Plant Biosyst. 2017, 151, 900–905. [Google Scholar] [CrossRef]
- Birks, H.J.B. Contributions of Quaternary palaeoecology to nature conservation. J. Veg. Sci. 1996, 7, 89–98. [Google Scholar] [CrossRef]
- Schäbitz, F. Holocene climatic variations in northern Patagonia, Argentina. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994, 109, 287–294. [Google Scholar] [CrossRef]
- Horta, L.R.; Marcos, M.A.; Bozzuto, D.L.; Mancini, M.V.; Sacchi, M. Paleogeographic and paleoenvironmental variations in the area of the Pueyrredón, Posadas and Salitroso lakes, Santa Cruz Province, Argentina, during the Holocene and its relationship with occupational dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 449, 541–552. [Google Scholar] [CrossRef]
Category | Description | Code | Unit | Data Source |
---|---|---|---|---|
Climate | mean annual temperature | AMT | °C | WorldClim (1) |
mean diurnal range | MDR | °C | WorldClim (1) | |
isothermality | ISO | % | WorldClim (1) | |
temperature seasonality | TS | °C | WorldClim (1) | |
max temperature of warmest month | MAXWM | °C | WorldClim (1) | |
min temperature of coldest month | MINCM | °C | WorldClim (1) | |
temperature annual range | TAR | °C | WorldClim (1) | |
mean temperature of wettest quarter | MTWEQ | °C | WorldClim (1) | |
mean temperature of driest quarter | MTDQ | °C | WorldClim (1) | |
mean temperature of warmest quarter | MTWAQ | °C | WorldClim (1) | |
mean temperature of coldest quarter | MTCQ | °C | WorldClim (1) | |
mean annual precipitation | AP | mm years−1 | WorldClim (1) | |
precipitation of wettest month | PWEM | mm years−1 | WorldClim (1) | |
precipitation of driest month | PDM | mm years−1 | WorldClim (1) | |
precipitation seasonality | PS | % | WorldClim (1) | |
precipitation of wettest quarter | PWEQ | mm years−1 | WorldClim (1) | |
precipitation of driest quarter | PDQ | mm years−1 | WorldClim (1) | |
precipitation of warmest quarter | PWAQ | mm years−1 | WorldClim (1) | |
precipitation of coldest quarter | PCQ | mm years−1 | WorldClim (1) | |
global potential evapo-transpiration | EVTP | mm years−1 | CSI (2) | |
Topography | elevation | ELE | m.a.s.l. | DEM (3) |
slope | SLO | % | DEM (3) | |
aspect | ASPC | cosine | DEM (3) | |
aspect | ASPS | sine | DEM (3) | |
distance to water bodies | DWB | km | SIT Santa Cruz (4) | |
distance to rivers | DR | km | SIT Santa Cruz (4) | |
Landscape and land-use | normalized difference vegetation index | NDVI | dimensionless | MODIS (5) |
net primary productivity | NPP | gr C m−2 year−1 | MODIS (6) | |
desertification | DES | degree | CENPAT (7) | |
ecological area | EA | dimensionless | SIT Santa Cruz (4) | |
stocking rate | SR | (ewe/ha/year) | SIT Santa Cruz (4) | |
carrying capacity | RF | (ewe/ha/year) | SIT Santa Cruz (4) |
Category | Variables | SOC | |
---|---|---|---|
Correlation | p-Value | ||
Climate | AMT | −0.40 | <0.001 |
MDR | −0.32 | <0.001 | |
ISO | 0.35 | <0.001 | |
TS | −0.51 | <0.001 | |
MAXWM | −0.44 | <0.001 | |
MINCM | −0.27 | =0.001 | |
TAR | −0.44 | <0.001 | |
MTWEQ | −0.10 | =0.252 | |
MTDQ | −0.42 | <0.001 | |
MTWAQ | −0.44 | <0.001 | |
MTCQ | −0.30 | <0.001 | |
AP | 0.48 | <0.001 | |
PWEM | 0.41 | <0.001 | |
PDM | 0.54 | <0.001 | |
PS | −0.42 | <0.001 | |
PWEQ | 0.42 | <0.001 | |
PDQ | 0.52 | <0.001 | |
PWAQ | 0.56 | <0.001 | |
PCQ | 0.39 | <0.001 | |
EVTP | −0.50 | <0.001 | |
Topography | ELE | −0.06 | =0.502 |
SLO | 0.24 | =0.005 | |
ASPC | −0.16 | =0.052 | |
ASPS | 0.13 | =0.118 | |
DWB | −0.15 | =0.073 | |
DR | 0.01 | =0.868 | |
Landscape and land-use | NDVI | 0.60 | <0.001 |
NPP | 0.53 | <0.001 | |
DES | −0.46 | <0.001 |
Variable | Total | Low | Middle | High |
---|---|---|---|---|
AMT | 7.77 (2.40) | 8.57 (2.66) | 8.48 (2.06) | 6.25 (1.59) |
MDR | 10.33 (0.65) | 10.45 (0.67) | 10.49 (0.54) | 10.07 (0.67) |
ISO | 46.1 (1.5) | 45.3 (1.1) | 45.8 (1.1) | 47.2 (1.5) |
TS | 4.47 (0.44) | 4.67 (0.43) | 4.59 (0.32) | 4.16 (0.38) |
MAXWM | 19.56 (3.16) | 20.77 (3.47) | 20.50 (2.53) | 17.42 (2.10) |
MINCM | (-2.65) (2.20) | (−2.09) (2.43) | (−2.15) (2.12) | (−3.71) (1.54) |
TAR | 22.21 (1.76) | 22.86 (1.73) | 22.65 (1.38) | 21.13 (1.60) |
MTWEQ | 5.67 (2.95) | 6.03 (3.17) | 4.58 (1.93) | 6.42 (3.21) |
MTDQ | 9.81 (3.72) | 12.46 (3.45) | 10.06 (2.83) | 6.90 (2.42) |
MTWAQ | 13.21 (2.84) | 14.34 (3.10) | 14.04 (2.28) | 11.25 (1.84) |
MTCQ | 1.85 (2.11) | 2.45 (2.34) | 2.42 (1.93) | 0.68 (1.43) |
AP | 245.92 (181.38) | 251.45 (219.82) | 222.28 (140.29) | 262.68 (169.31) |
PWEM | 30.15 (18.90) | 32.42 (22.31) | 27.47 (14.82) | 30.40 (18.15) |
PDM | 13.61 (12.52) | 13.21 (15.48) | 12.48 (9.88) | 15.13 (11.30) |
PS | 24.41 (6.57) | 29.26 (6.55) | 23.58 (4.54) | 20.35 (4.97) |
PWEQ | 79.81 (53.24) | 84.29 (62.82) | 72.67 (41.44) | 82.36 (52.35) |
PDQ | 46.38 (41.07) | 46.00 (51.11) | 42.46 (32.03) | 50.41 (36.41) |
PWAQ | 53.62 (42.92) | 48.65 (54.03) | 49.29 (33.29) | 62.92 (36.76) |
PCQ | 67.33 (46.03) | 71.97 (53.70) | 62.10 (35.32) | 67.56 (45.92) |
EVTP | 807.88 (101.56) | 848.78 (107.69) | 839.90 (78.57) | 735.15 (71.02) |
GAI | 0.33 (0.36) | 0.33 (0.45) | 0.28 (0.30) | 0.37 (0.28) |
ELE | 468.83 (383.85) | 556.10 (411.60) | 388.62 (366.35) | 460.13 (348.21) |
SLO | 5.00 (5.76) | 5.07 (5.99) | 4.49 (5.00) | 5.43 (6.14) |
NDVI | 0.21 (0.12) | 0.13 (0.06) | 0.17 (0.04) | 0.32 (0.14) |
NPP | 1275.68 (684.62) | 971.12 (306.50) | 1124.78 (422.34) | 1708.11 (899.45) |
Variable | Category | Mean (SD) | Area (km2) |
---|---|---|---|
Desertification | No desertification | 6.82 (3.38) | 15,061 |
Slight degraded | 7.52 (2.47) | 12,085 | |
Moderate desertification | 6.52 (1.80) | 34,135 | |
Moderate to severe desertification | 5.11 (1.30) | 84,011 | |
Severe desertification | 4.72 (0.93) | 63,502 | |
Very severe desertification | 4.26 (0.61) | 29,828 | |
simple ecosystem classiffication | Humid magellanic grass steppe | 9.64 (1.14) | 6056 |
Andean vegetation | 7.51 (3.70) | 15,815 | |
Dry magellanic grass steppe | 7.29 (0.77) | 11,796 | |
Mata negra thicket | 6.35 (0.77) | 28,374 | |
Sub-andean grassland | 5.88 (1.74) | 19,540 | |
Central plateau | 4.62 (0.73) | 131,911 | |
Shrub steppe San Jorge Gulf | 4.59 (0.71) | 11,990 | |
Mountains and plateaus | 3.76 (0.87) | 13,125 | |
potential stocking rate (ewes/ha/yr) | <0.1 | 4.56 (0.46) | 17,119 |
0.1 a 0.20 | 4.59 (0.71) | 84,363 | |
0.13 a 0.25 | 4.11 (0.68) | 18,654 | |
0.16 a 0.30 | 3.76 (0.86) | 13,166 | |
0.20 a 0.30 | 5.83 (1.22) | 71,911 | |
0.3 a 0.4 | 7.40 (2.84) | 27,493 | |
>0.4 | 9.71 (1.17) | 5917 | |
Actual Stocking rate (ewes/ha/yr) | 0.07 | 4.62 (0.73) | 131,758 |
0.13 | 5.64 (1.55) | 60,872 | |
0.18 | 4.60 (0.71) | 11,886 | |
0.22 | 7.29 (0.76) | 11,707 | |
0.3 | 7.52 (3.69) | 15,738 | |
0.5 | 9.66 (1.14) | 5886 |
Vegetation | N | Carbon | Modelled | Mean Error | Absolute Error |
---|---|---|---|---|---|
Shrub steppe | 23 | 4.54 | 5.52 | −0.98 | 2.27 |
Dwarf shrub steppe | 28 | 3.98 | 4.77 | −0.79 | 1.81 |
Shrub steppe | 5 | 3.06 | 3.84 | −0.78 | 1.82 |
Grass steppe | 55 | 5.35 | 5.92 | −0.57 | 2.15 |
Nothofagus antarctica forest | 10 | 12.46 | 12.08 | 0.38 | 4.33 |
Nothofagus pumilio forest | 12 | 13.73 | 12.29 | 1.44 | 4.12 |
Grassland | 11 | 11.24 | 6.67 | 4.57 | 5.75 |
Nothofagus betuloides forest | 1 | 20.25 | 12.34 | 7.91 | 7.91 |
Stocking rate (ewes/ha/yr) | |||||
<0.1 | 38 | 8.85 | 8.15 | 0.70 | 3.08 |
0.1–0.17 | 41 | 4.43 | 4.60 | −0.17 | 1.71 |
0.18–0.25 | 30 | 5.79 | 6.76 | −0.96 | 2.97 |
>0.25 | 36 | 7.41 | 7.18 | 0.23 | 3.27 |
% bare soil | |||||
<16.7 | 35 | 11.06 | 9.76 | 1.31 | 4.68 |
16.7–30.0 | 36 | 5.51 | 5.82 | −0.31 | 2.10 |
30.1–48.0 | 39 | 5.11 | 5.57 | −0.47 | 1.98 |
>48.0 | 35 | 4.97 | 5.45 | −0.49 | 2.22 |
% shrubs | |||||
<1.0 | 35 | 6.91 | 7.11 | −0.20 | 2.48 |
1–6.0 | 39 | 6.17 | 6.30 | −0.13 | 2.43 |
6.1–21.3 | 35 | 4.32 | 5.25 | −0.93 | 2.01 |
>21.3 | 36 | 9.03 | 7.81 | 1.22 | 3.96 |
% dwarf-shrubs | |||||
<0.3 | 35 | 7.85 | 8.01 | −0.16 | 2.64 |
0.4–3.0 | 38 | 7.28 | 6.74 | 0.54 | 2.89 |
3.1–20.0 | 38 | 6.62 | 6.65 | −0.03 | 3.24 |
>20.0 | 34 | 4.58 | 5.01 | −0.43 | 2.02 |
% grasses | |||||
<10.9 | 37 | 8.18 | 8.84 | −0.66 | 3.83 |
11.0–22.5 | 36 | 5.19 | 5.14 | 0.05 | 1.70 |
22.6–35.9 | 36 | 5.28 | 6.19 | −0.91 | 2.16 |
>36.0 | 36 | 7.75 | 6.23 | 1.51 | 3.16 |
% Herbs | |||||
<1.8 | 35 | 4.83 | 4.77 | 0.06 | 2.01 |
1.9–4.3 | 38 | 4.86 | 5.53 | −0.68 | 2.01 |
4.4–14.0 | 37 | 6.99 | 7.09 | −0.11 | 2.60 |
>14.0 | 35 | 9.90 | 9.13 | 0.77 | 4.32 |
% trees | |||||
none | 119 | 5.27 | 5.43 | −0.16 | 2.33 |
0.1–50.0 | 16 | 11.50 | 11.84 | −0.33 | 4.63 |
>50.0 | 10 | 14.72 | 12.38 | 2.34 | 4.29 |
Total general | 145 | 6.61 | 6.62 | −0.01 | 2.72 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peri, P.L.; Rosas, Y.M.; Ladd, B.; Toledo, S.; Lasagno, R.G.; Martínez Pastur, G. Modelling Soil Carbon Content in South Patagonia and Evaluating Changes According to Climate, Vegetation, Desertification and Grazing. Sustainability 2018, 10, 438. https://doi.org/10.3390/su10020438
Peri PL, Rosas YM, Ladd B, Toledo S, Lasagno RG, Martínez Pastur G. Modelling Soil Carbon Content in South Patagonia and Evaluating Changes According to Climate, Vegetation, Desertification and Grazing. Sustainability. 2018; 10(2):438. https://doi.org/10.3390/su10020438
Chicago/Turabian StylePeri, Pablo Luis, Yamina Micaela Rosas, Brenton Ladd, Santiago Toledo, Romina Gisele Lasagno, and Guillermo Martínez Pastur. 2018. "Modelling Soil Carbon Content in South Patagonia and Evaluating Changes According to Climate, Vegetation, Desertification and Grazing" Sustainability 10, no. 2: 438. https://doi.org/10.3390/su10020438
APA StylePeri, P. L., Rosas, Y. M., Ladd, B., Toledo, S., Lasagno, R. G., & Martínez Pastur, G. (2018). Modelling Soil Carbon Content in South Patagonia and Evaluating Changes According to Climate, Vegetation, Desertification and Grazing. Sustainability, 10(2), 438. https://doi.org/10.3390/su10020438