Can Agriculture Balance Its Energy Consumption and Continue to Produce Food? A Framework for Assessing Energy Neutrality Applied to French Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Energy Analysis of Food Systems
2.2. Primary Biomass Equivalent of External Energy Inputs
2.3. Energy Recovery Potential and the Net Energy Balance of Agriculture
3. Results
3.1. Feed Use and the Energy Budget of Agriculture
3.2. Energy Recovery Potential from Crop Residues and Manure
3.3. Energy Neutrality Scenarios
4. Discussion
4.1. Energy Recovery Potential and the Role of Livestock
4.2. Structural Dependencies on Fossil Fuels and Constraints in the Electrification of Agriculture
4.3. Current Energy Efficiency in Agriculture Already at Maximum
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smil, V. Energy and Civilization: A History; The MIT Press: Cambridge, MA, USA; London, UK, 2017; ISBN 978-0-262-03577-4. [Google Scholar]
- Arizpe, N.; Giampietro, M.; Ramos-Martin, J. Food Security and Fossil Energy Dependence: An International Comparison of the Use of Fossil Energy in Agriculture (1991–2003). Crit. Rev. Plant Sci. 2011, 30, 45–63. [Google Scholar] [CrossRef]
- Pelletier, N.; Audsley, E.; Brodt, S.; Garnett, T.; Henriksson, P.; Kendall, A.; Kramer, K.J.; Murphy, D.; Nemecek, T.; Troell, M. Energy Intensity of Agriculture and Food Systems. Ann. Rev. Environ. Resour. 2011, 36, 223–246. [Google Scholar] [CrossRef]
- Harchaoui, S.; Chatzimpiros, P. Energy, Nitrogen, and Farm Surplus Transitions in Agriculture from Historical Data Modeling. France, 1882–2013. J. Ind. Ecol. 2018. [Google Scholar] [CrossRef]
- Odum, H. Energetics of world food production. In The World Food Problem, Report of the President’s Science Advisory Committee, Panel on World Food Supply; The White House: Washington, DC, USA, 1967; Volume 3, pp. 55–94. [Google Scholar]
- Energy and Agreicultur; Advanced Series in Agricultural Sciences; Stanhill, G. (Ed.) Springer: Berlin/Heidelberg, Germany, 1984; ISBN 978-3-540-13476-3. [Google Scholar]
- Pimentel, D.; Pimentel, M. Food, Energy, and Society, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2008; ISBN 978-1-4200-4667-0. [Google Scholar]
- Woods, J.; Williams, A.; Hughes, J.K.; Black, M.; Murphy, R. Energy and the food system. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2991–3006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galán, E.; Padró, R.; Marco, I.; Tello, E.; Cunfer, G.; Guzmán, G.I.; González de Molina, M.; Krausmann, F.; Gingrich, S.; Sacristán, V.; et al. Widening the analysis of Energy Return on Investment (EROI) in agro-ecosystems: Socio-ecological transitions to industrialized farm systems (the Vallès County, Catalonia, c.1860 and 1999). Ecol. Model. 2016, 336, 13–25. [Google Scholar] [CrossRef]
- Pimentel, D.; Hurd, L.E.; Bellotti, A.C.; Forster, M.J.; Oka, I.N.; Sholes, O.D.; Whitman, R.J. Food Production and the Energy Crisis. Science 1973, 182, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Haberl, H. The Energetic Metabolism of Societies: Part II: Empirical Examples. J. Ind. Ecol. 2001, 5, 71–88. [Google Scholar] [CrossRef]
- Haberl, H.; Erb, K.-H.; Krausmann, F.; Bondeau, A.; Lauk, C.; Müller, C.; Plutzar, C.; Steinberger, J.K. Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields. Biomass Bioenergy 2011, 35, 4753–4769. [Google Scholar] [CrossRef]
- Gerbens-Leenes, P.W.; Mekonnen, M.M.; Hoekstra, A.Y. The water footprint of poultry, pork and beef: A comparative study in different countries and production systems. Water Resour. Ind. 2013, 1–2, 25–36. [Google Scholar] [CrossRef]
- Miglietta, P.P.; Giove, S.; Toma, P. An optimization framework for supporting decision making in biodiesel feedstock imports: Water footprint vs. import costs. Ecol. Indic. 2018, 85, 1231–1238. [Google Scholar] [CrossRef]
- Galloway, J.N.; Winiwarter, W.; Leip, A.; Leach, A.M.; Bleeker, A.; Erisman, J.W. Nitrogen footprints: Past, present and future. Environ. Res. Lett. 2014, 9, 115003. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhang, H.; Wang, X.; Fang, J. Evolution of Sustainable Carbon Cycling Processes in China. Chin. J. Popul. Resour. Environ. 2004, 2, 4–10. [Google Scholar]
- Odum, H.T. Energy, Ecology, and Economics. Ambio 1973, 2, 220–227. [Google Scholar]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Energy-Smart Food for People and Climate; Issue Paper; Food and Agriculture Organization of the United Nations—Issue Paper; The Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Canning, P.; Rehkamp, S.; Waters, A.; Etemadnia, H. The Role of Fossil Fuels in the U.S. Food System and the American Diet; ERR-224; U.S. Department of Agriculture: Washington, DC, USA, 2017; p. 97.
- Sachs, I.; Silk, D. Food and Energy: Strategies for Sustainable Development; United Nations University Press: Tokyo, Japan, 1990; ISBN 978-92-808-0757-8. [Google Scholar]
- Halberg, N.; Dalgaard, R.; Olesen, J.E.; Dalgaard, T. Energy self-reliance, net-energy production and GHG emissions in Danish organic cash crop farms. Renew. Agric. Food Syst. 2008, 23, 30–37. [Google Scholar] [CrossRef]
- Pimentel, D.; Patzek, T.W. Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower. Nat. Resour. Res. 2005, 14, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Markussen, M.V.; Pugesgaard, S.; Oleskowicz-Popiel, P.; Schmidt, J.E.; Østergård, H. Net-Energy Analysis of Integrated Food and Bioenergy Systems Exemplified by a Model of a Self-Sufficient System of Dairy Farms. Front. Energy Res. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Krausmann, F. Milk, Manure, and Muscle Power. Livestock and the Transformation of Preindustrial Agriculture in Central Europe. Hum. Ecol. 2004, 32, 735–772. [Google Scholar] [CrossRef]
- FAOSTAT. FAO Statistical Database; The Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Smil, V. Crop Residues: Agriculture’s Largest Harvest. BioScience 1999, 49, 299–308. [Google Scholar] [CrossRef]
- Harchaoui, S.; Chatzimpiros, P. Reconstructing production efficiency, land use and trade for livestock systems in historical perspective. The case of France, 1961–2010. Land Use Policy 2017, 67, 378–386. [Google Scholar] [CrossRef]
- Agreste Les exploitations agricoles consomment majoritairement des produits pétroliers. Agreste 2014, 311.
- Huang, W.-D.; Zhang, Y.-H.P. Energy Efficiency Analysis: Biomass-to-Wheel Efficiency Related with Biofuels Production, Fuel Distribution, and Powertrain Systems. PLoS ONE 2011, 6, e22113. [Google Scholar] [CrossRef] [PubMed]
- McKendry, P. Energy production from biomass (part 2): Conversion technologies. Bioresour. Technol. 2002, 83, 47–54. [Google Scholar] [CrossRef]
- Ademe. Estimation des gisements potentiels de substrats utilisables en méthanisation; Ademe; Agence de l’Environnement et de la Maîtrise de l’Energie: Angers, France, 2013; p. 117. [Google Scholar]
- Nutrient Requirements of Dairy Cattle, 7th ed.; National Research, Council (Ed.) Nutrient Requirements of Domestic Animals; National Academy Press: Washington, DC, USA, 2001; ISBN 978-0-309-06997-7. [Google Scholar]
- Ministère de la Transition Ecologique et Solidaire Transport Revue Transport; Cerema, Centre d’études et d’expertise sur les risques, l’environnement, la mobilité et l’aménagement: Provins, France, 2014.
- MAN Diesel & Turbo Two-stroke Low Speed Diesel Engines; MAN Diesel & Turbo: Copenhagen, Denmark, 2013; p. 20.
- Smil, V. Energy in Nature and Society: General Energetics of Complex Systems; MIT Press: Cambridge, MA, USA, 2008; ISBN 978-0-262-19565-2. [Google Scholar]
- Hakawati, R.; Smyth, B.M.; McCullough, G.; De Rosa, F.; Rooney, D. What is the most energy efficient route for biogas utilization: Heat, electricity or transport? Appl. Energy 2017, 206, 1076–1087. [Google Scholar] [CrossRef]
- Smil, V. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production; MIT: Cambridge, MA, USA; London, UK, 2001; ISBN 978-0-262-69313-4. [Google Scholar]
- Agreste. L’artificialisation des Terres de 2006 à 2014: Pour Deux Tiers sur des Espaces Agricoles; Agreste—La Statistique Agricole: Montreuil-sous-Bois, France, 2015. [Google Scholar]
- Grassland Productivity and Ecosystem Services; Lemaire, G.; Hodgson, J.; Chabbi, A. (Eds.) CABI: Wallingford, UK, 2011; ISBN 978-1-84593-809-3. [Google Scholar]
- Chatzimpiros, P. Les empreintes environnementales de l’approvisionnement alimentaire: Paris ses viandes et lait XIXème—XXIème siècles. Thèse de doctorat, Université Paris-Est, Champs-sur-Marne, France, 2011. (in French). [Google Scholar]
- Gerbens-Leenes, P.W.; Nonhebel, S. Critical water requirements for food, methodology and policy consequences for food security. Food Policy 2004, 29, 547–564. [Google Scholar] [CrossRef]
- Monteleone, M.; Cammerino, A.R.B.; Garofalo, P.; Delivand, M.K. Straw-to-soil or straw-to-energy? An optimal trade off in a long term sustainability perspective. Appl. Energy 2015, 154, 891–899. [Google Scholar] [CrossRef]
- Smil, V. Nitrogen in crop production: An account of global flows. Glob. Biogeochem. Cycles 1999, 13, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Smil, V. Feeding the World: A Challenge for the Twenty-First Century; MIT Press: Cambridge, MA, USA; London, UK, 2000; ISBN 978-0-262-19432-7. [Google Scholar]
- Ferrell, C.L.; Oltjen, J.W. ASAS CENTENNIAL PAPER: Net energy systems for beef cattle—Concepts, application, and future models1. J. Anim. Sci. 2008, 86, 2779–2794. [Google Scholar] [CrossRef]
- Velayudhan, D.E.; Kim, I.H.; Nyachoti, C.M. Characterization of Dietary Energy in Swine Feed and Feed Ingredients: A Review of Recent Research Results. Asian-Aust. J. Anim. Sci. 2014, 28, 1–13. [Google Scholar] [CrossRef] [Green Version]
- INRA INRA-CIRAD-AFZ Feed Tables. Available online: https://feedtables.com/fr (accessed on 26 October 2018).
- Giuntoli, J.; Boulamanti, A.K.; Corrado, S.; Motegh, M.; Agostini, A.; Baxter, D. Environmental impacts of future bioenergy pathways: The case of electricity from wheat straw bales and pellets. GCB Bioenergy 2013, 5, 497–512. [Google Scholar] [CrossRef]
- Börjesson, P.; Berglund, M. Environmental systems analysis of biogas systems—Part I: Fuel-cycle emissions. Biomass Bioenergy 2006, 30, 469–485. [Google Scholar] [CrossRef]
- Ademe, I Care & Consult, Blézat Consulting, CERFrance, Céréopa. Agriculture et énergies Renouvelables: état de l’art et Opportunités pour les Exploitations Agricoles; Agence de l’Environnement et de la Maîtrise de l’Energie: Angers, France, 2017; p. 70. [Google Scholar]
- CGDD; Environnement & Agriculture. Chiffres Clés des énergies Renouvelables, 2018th ed.; Commissariat Général au Développement Durable: La Défense, France, 2018. [Google Scholar]
- Meyer, A.K.P.; Ehimen, E.A.; Holm-Nielsen, J.B. Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass Bioenergy 2018, 111, 154–164. [Google Scholar] [CrossRef]
- Toutain, J.-C. Le produit de l’agriculture Française de 1700 à 1958; Cahiers de l’Institut de Science Economique Appliquee: Paris, France, 1958. [Google Scholar]
- Einarsson, R.; Persson, U.M. Analyzing key constraints to biogas production from crop residues and manure in the EU—A spatially explicit model. PLoS ONE 2017, 12, e0171001. [Google Scholar] [CrossRef] [PubMed]
- Degueurce, A.; Capdeville, J.; Perrot, C.; Bioteau, T.; Martinez, J.; Peu, P. Cattle manure as a resource for biogas conversion in France? Sci. Eaux Territ. 2016, 24, 1–9. [Google Scholar]
- Scheftelowitz, M.; Thrän, D. Unlocking the Energy Potential of Manure—An Assessment of the Biogas Production Potential at the Farm Level in Germany. Agriculture 2016, 6, 20. [Google Scholar] [CrossRef]
- Le Noë, J.; Billen, G.; Garnier, J. How the structure of agro-food systems shapes nitrogen, phosphorus, and carbon fluxes: The generalized representation of agro-food system applied at the regional scale in France. Sci. Total Environ. 2017, 586, 42–55. [Google Scholar] [CrossRef] [PubMed]
- European Union Proposal of a Directive Of the European Parliament and the Council on the Promotion of the Use of Energy from Renewable Sources (recast)EUR-Lex-52016PC0767R(01)-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52016PC0767R%2801%29 (accessed on 17 September 2018).
- Agreste. L’Alimentation Animale, Principale Destination des Productions Végétales; Collection Agreste Primeur; Agreste—La Statistique Agricole: Montreuil-sous-Bois, France, 2013. [Google Scholar]
- SOES. Le bilan du gaz Naturel en France en 2015; Service de l’observation et des statistiques; Commissariat Général au Développement Durable: La Défense, France, 2017. [Google Scholar]
- Guzmán, G.I.; González de Molina, M.; Soto Fernández, D.; Infante-Amate, J.; Aguilera, E. Spanish agriculture from 1900 to 2008: A long-term perspective on agroecosystem energy from an agroecological approach. Reg. Environ. Change 2018, 18, 995–1008. [Google Scholar] [CrossRef]
- Thornton, P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef]
- SOES. Bilan énergétique de la France 2014; Service de l’observation et des statistiques; Commissariat Général au Développement Durable: La Défense, France, 2015. [Google Scholar]
- Chen, C.; Ling, H.; Zhai, Z.; Li, Y.; Yang, F.; Han, F.; Wei, S. Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses. Appl. Energy 2018, 216, 602–612. [Google Scholar] [CrossRef] [Green Version]
- Ozgener, O. Use of solar assisted geothermal heat pump and small wind turbine systems for heating agricultural and residential buildings. Energy 2010, 35, 262–268. [Google Scholar] [CrossRef]
- Hartung, H.; Pluschke, L. The Benefits and Risks of Solar Powered Irrigation—A Global Overview; FAO: Rome, Italy, 2018. [Google Scholar]
- Pimentel, D.; Whitecraft, M.; Scott, Z.R.; Zhao, L.; Satkiewicz, P.; Scott, T.J.; Phillips, J.; Szimak, D.; Singh, G.; Gonzalez, D.O.; et al. Will Limited Land, Water, and Energy Control Human Population Numbers in the Future? Hum. Ecol. 2010, 38, 599–611. [Google Scholar] [CrossRef]
- Moreda, G.P.; Muñoz-García, M.A.; Barreiro, P. High voltage electrification of tractor and agricultural machinery—A review. Energy Convers. Manag. 2016, 115, 117–131. [Google Scholar] [CrossRef]
- Hamilton, A.; Balogh, S.; Maxwell, A.; Hall, C. Efficiency of Edible Agriculture in Canada and the U.S. Over the Past Three and Four Decades. Energies 2013, 6, 1764–1793. [Google Scholar] [CrossRef] [Green Version]
- Solagro. Le scénario Afterres2050 Version 2016; Solagro: Toulouse, France, 2016. [Google Scholar]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; van Groenigen, K.J.; Lee, J.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crops Res. 2015, 183, 156–168. [Google Scholar] [CrossRef] [Green Version]
- MEDDE. France National Low-Carbon Strategy; Ministère de L’écologie, du Développement Durable et de L’énergie: La Défense, Franc, 2015. [Google Scholar]
- Joint FAO/WHO/UNU Expert Consultation on Protein and Amino Acid Requirements in Human Nutrition (2002: Geneva, Switzerland); Food and Agriculture Organization of the United Nations; World Health Organization; United Nations University. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint FAO/WHO/UNU Expert Consultation; WHO Technical Report Series; World Health Organization: Geneva, Switzerland, 2007; Volume 935. [Google Scholar]
Use | Current Fossil Fuel (%) | Final Energy PJ | Energy Type | Conversion Efficiency η (%) | Primary Biomass Equivalent PJ |
---|---|---|---|---|---|
Fertilizers | 100 | 142 | 0.5 gas/0.5 heat | 45 | 316 |
Machines fuel | 100 | 103 | mechanical | 30 | 343 |
Greenhouses | 81 | 17 | 0.5 mechanical/0.5 heat | 45 | 38 |
LV facilities | 35 | 29 | 0.5 mechanical/0.5 heat | 45 | 64 |
Other | 75 | 15 | mechanical | 30 | 50 |
Total | 91 | 306 | 38 | 811 |
Scenarios | S1a | S1b | S2a | S2b | |
---|---|---|---|---|---|
Drivers | Energy recovery rate (Rc) from crop residues % | 30 | 30 | 70 | 70 |
Grain feed & annual fodder | current | suppression | current | suppression | |
Variables depending on livestock feed | |||||
Energy conversion efficiency (ECEi) % | S1a, S2a (current feed) | S1b, S2b (feed suppression) | |||
Milk | 16.5 | 8 | |||
Beef | 2.5 | 2 | |||
Pork | 17.7 | NA | |||
Chicken & Eggs | 19.3 | NA | |||
Sheep & Goat | 2 | 1.8 | |||
Aggregate ECE | 8.5 | 4.6 | |||
Aggregate time spent in confinement % | 48.7 | 40 | |||
Livestock production (LV) | |||||
Energy consumption in livestock facilities | |||||
Energy recovery from manure | |||||
Energy costs for agricultural residues recovery | |||||
Crop residues | |||||
Manure |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harchaoui, S.; Chatzimpiros, P. Can Agriculture Balance Its Energy Consumption and Continue to Produce Food? A Framework for Assessing Energy Neutrality Applied to French Agriculture. Sustainability 2018, 10, 4624. https://doi.org/10.3390/su10124624
Harchaoui S, Chatzimpiros P. Can Agriculture Balance Its Energy Consumption and Continue to Produce Food? A Framework for Assessing Energy Neutrality Applied to French Agriculture. Sustainability. 2018; 10(12):4624. https://doi.org/10.3390/su10124624
Chicago/Turabian StyleHarchaoui, Souhil, and Petros Chatzimpiros. 2018. "Can Agriculture Balance Its Energy Consumption and Continue to Produce Food? A Framework for Assessing Energy Neutrality Applied to French Agriculture" Sustainability 10, no. 12: 4624. https://doi.org/10.3390/su10124624
APA StyleHarchaoui, S., & Chatzimpiros, P. (2018). Can Agriculture Balance Its Energy Consumption and Continue to Produce Food? A Framework for Assessing Energy Neutrality Applied to French Agriculture. Sustainability, 10(12), 4624. https://doi.org/10.3390/su10124624