Apple Cubes Drying and Rehydration. Multiobjective Optimization of the Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Drying Process
2.3. Rehydration Process
2.4. Mass and Volume Measurements
2.5. Color Determination
2.6. Quality Parameters
- Water absorption capacity index (WAC) calculated from the formula [45]:
- The volume ratio (VR) is formulated as
- Color difference (CD) between the fresh and rehydrated samples determined as [46]
2.7. Quality Parameters Modeling Using ANN
2.8. Multiobjective Optimization (MOO) Problem
3. Results and Discussion
3.1. ANN
3.2. Mathematical Formulations
3.3. MOO
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dincer, I.; Dost, S. A modelling study for moisture diffusivities and moisture transfer coefficients in drying of solid objects. Int. J. Energy Res. 1996, 20, 531–539. [Google Scholar] [CrossRef]
- Raponi, F.; Moscetti, R.; Monarca, D.; Colantoni, A.; Massantini, R. Monitoring and optimization of the process of drying fruits and vegetables using computer vision: A Review. Sustainability 2017, 9, 2009. [Google Scholar] [CrossRef]
- Koszela, K.; Otrzasek, J.; Zaborowicz, M.; Boniecki, P.; Mueller, W.; Raba, B.; Lewicki, A.; Przybyl, K. Quality assessment of microwave-vacuum dried material with the use of computer image analysis and neural model. In Proc. SPIE 9159, Sixth International Conference on Digital Image Processing (ICDIP 2014), Athens, Greece, April 5-6, 2014; Falco, C.M., Chang, C.-C., Jiang, X., Eds.; SPIE: Bellingham, WA, USA, 2014; Volume 915913, pp. 1–9. [Google Scholar]
- Nindo, C.I.; Sun, T.; Wang, S.W.; Tang, J.; Powers, J.R. Evaluation of drying technologies for retention of physical quality and antioxidants in asparagus (Asparagus officinalis, L.). LWT—Food Sci. Technol. 2003, 36, 507–516. [Google Scholar] [CrossRef]
- Sacilik, K.; Elicin, A.K. The thin layer drying characteristics of organic apple slices. J. Food Eng. 2006, 73, 281–289. [Google Scholar] [CrossRef]
- Deng, Y.; Luo, Y.; Wang, Y.; Yue, J.; Liu, Z.; Zhong, Y.; Zhao, Y.; Yang, H. Drying-induced protein and microstructure damages of squid fillets affected moisture distribution and rehydration ability during rehydration. J. Food Eng. 2014, 123, 23–31. [Google Scholar] [CrossRef]
- Maldonado, S.; Arnau, E.; Bertuzzi, M.A. Effect of temperature and pretreatment on water diffusion during rehydration of dehydrated mangoes. J. Food Eng. 2010, 96, 333–341. [Google Scholar] [CrossRef]
- Giraldo, G.; Vázquez, R.; Martín-Esparza, M.E.; Chiralt, A. Rehydration kinetics and soluble solids lixiviation of candied mango fruit as affected by sucrose concentration. J. Food Eng. 2006, 77, 825–834. [Google Scholar] [CrossRef]
- Marabi, A.; Livings, S.; Jacobson, M.; Saguy, I.S. Normalized Weibull distribution for modeling rehydration of food particulates. Eur. Food Res. Technol. 2003, 217, 311–318. [Google Scholar] [CrossRef]
- Nayak, C.A.; Suguna, K.; Rastogi, N.K. Combined effect of gamma-irradiation and osmotic treatment on mass transfer during rehydration of carrots. J. Food Eng. 2006, 74, 134–142. [Google Scholar] [CrossRef]
- Wangler, J.; Kohlus, R. Development and validation of methods to characterize rehydration behavior of food hydrocolloids. Food Hydrocoll. 2018, 82, 500–509. [Google Scholar] [CrossRef]
- Rojas, M.L.; Augusto, P.E.D. Microstructure elements affect the mass transfer in foods: The case of convective drying and rehydration of pumpkin. LWT—Food Sci. Technol. 2018, 93, 102–108. [Google Scholar] [CrossRef]
- Ricce, C.; Rojas, M.L.; Miano, A.C.; Siche, R.; Augusto, P.E.D. Ultrasound pre-treatment enhances the carrot drying and rehydration. Food Res. Int. 2016, 89, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.L.; Augusto, P.E.D. Ethanol pre-treatment improves vegetable drying and rehydration: Kinetics, mechanisms and impact on viscoelastic properties. J. Food Eng. 2018, 233, 17–27. [Google Scholar] [CrossRef]
- Benseddik, A.; Azzi, A.; Zidoune, M.N.; Khanniche, R.; Besombes, C. Empirical and diffusion models of rehydration process of differently dried pumpkin slices. J. Saudi Soc. Agric. Sci. 2018. [Google Scholar] [CrossRef]
- Link, J.V.; Tribuzi, G.; Laurindo, J.B. Improving quality of dried fruits: A comparison between conductive multi-flash and traditional drying methods. LWT—Food Sci. Technol. 2017, 84, 717–725. [Google Scholar] [CrossRef]
- Doymaz, İ.; Sahin, M. Effect of temperature and pre-treatment on drying and rehydration characteristics of broccoli slices. J. Food Meas. Charact. 2016, 10, 364–373. [Google Scholar] [CrossRef]
- Giri, S.K.; Prasad, S. Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. J. Food Eng. 2007, 78, 512–521. [Google Scholar] [CrossRef]
- Atarés, L.; Chiralt, A.; González-Martínez, C. Effect of solute on osmotic dehydration and rehydration of vacuum impregnated apple cylinders (cv. Granny Smith). J. Food Eng. 2008, 89, 49–56. [Google Scholar] [CrossRef]
- Saguy, I.S.; Marabi, A.; Wallach, R. Liquid imbibition during rehydration of dry porous foods. Innov. Food Sci. Emerg. Technol. 2005, 6, 37–43. [Google Scholar] [CrossRef]
- Aral, S.; Beşe, A.V. Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chem. 2016, 210, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Markowski, M.; Zielińska, M. Kinetics of water absorption and soluble-solid loss of hot-air-dried carrots during rehydration: Rehydration kinetics and soluble-solid loss of carrots. Int. J. Food Sci. Technol. 2011, 46, 1122–1128. [Google Scholar] [CrossRef]
- Ergün, K.; Çalışkan, G.; Dirim, S.N. Determination of the drying and rehydration kinetics of freeze dried kiwi (Actinidia deliciosa) slices. Heat Mass Transf. 2016, 52, 2697–2705. [Google Scholar] [CrossRef]
- Cagnoni, S.; Lutton, R.; Olague, G. Genetic and Evolutionary Computation for Image Processing and Analysis; EURASIP Book Series on Signal Processing and Communications; Hindawi Publishing Corporation: New York, NY, USA, 2007; ISBN 978-977-454-001-1. [Google Scholar]
- Morimoto, T.; De Baerdemaeker, J.; Hashimoto, Y. An intelligent approach for optimal control of fruit-storage process using neural networks and genetic algorithms. Comput. Electron. Agric. 1997, 18, 205–224. [Google Scholar] [CrossRef]
- Abakarov, A.; Sushkov, Y.; Almonacid, S.; Simpson, R. Multiobjective optimization approach: Thermal food processing. J. Food Sci. 2009, 74, E471–E487. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Yin, H.; Wei, L.; Tian, G.; Gao, H. Design and optimization of IPM motor considering flux weakening capability and vibration for electric vehicle applications. Sustainability 2018, 10, 1533. [Google Scholar] [CrossRef]
- Yin, L.; Li, X.; Lu, C.; Gao, L. Energy-efficient scheduling problem using an effective hybrid multi-objective evolutionary algorithm. Sustainability 2016, 8, 1268. [Google Scholar] [CrossRef]
- Han, Y.; Yu, H.; Sun, C. Simulation-based multiobjective optimization of timber-glass residential buildings in severe cold regions. Sustainability 2017, 9, 2353. [Google Scholar] [CrossRef]
- Sleesongsom, S.; Bureerat, S. Vibration suppression of a single-cylinder engine by means of multi-objective evolutionary optimisation. Sustainability 2018, 10, 2067. [Google Scholar] [CrossRef]
- Shahraki, M.H.; Ziaiifar, A.M.; Kashaninejad, S.M.; Ghorbani, M. Optimization of pre-fry microwave drying of french fries using response surface methodology and genetic algorithms. J. Food Process. Preserv. 2014, 38, 535–550. [Google Scholar] [CrossRef]
- Winiczenko, R.; Górnicki, K.; Kaleta, A.; Martynenko, A.; Janaszek-Mańkowska, M.; Trajer, J. Multi-objective optimization of convective drying of apple cubes. Comput. Electron. Agric. 2018, 145, 341–348. [Google Scholar] [CrossRef]
- Sendín, J.O.H.; Alonso, A.A.; Banga, J.R. Efficient and robust multi-objective optimization of food processing: A novel approach with application to thermal sterilization. J. Food Eng. 2010, 98, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Thakur, M.; Wang, L.; Hurburgh, C.R. A multi-objective optimization approach to balancing cost and traceability in bulk grain handling. J. Food Eng. 2010, 101, 193–200. [Google Scholar] [CrossRef]
- Hadiyanto, H.; Boom, R.M.; Van Straten, G.; Van Boxtel, A.J.B.; Esveld, D.C. Multi-objective optimization to improve the product range of baking systems. J. Food Process. Eng. 2009, 32, 709–729. [Google Scholar] [CrossRef]
- Goñi, S.M.; Salvadori, V.O. Model-based multi-objective optimization of beef roasting. J. Food Eng. 2012, 111, 92–101. [Google Scholar] [CrossRef]
- Białobrzewski, I.; Danowska-Oziewicz, M.; Karpińska-Tymoszczyk, M.; Nalepa, B.; Markowski, M.; Myhan, R. Turkey breast roasting—Process optimization. J. Food Eng. 2010, 96, 394–400. [Google Scholar] [CrossRef]
- Górnicki, K.; Kaleta, A. Drying curve modelling of blanched carrot cubes under natural convection condition. J. Food Eng. 2007, 82, 160–170. [Google Scholar] [CrossRef]
- Kaleta, A.; Górnicki, K. Evaluation of drying models of apple (var. McIntosh) dried in a convective dryer. Int. J. Food Sci. Technol. 2010, 45, 891–898. [Google Scholar] [CrossRef]
- Kaleta, A.; Górnicki, K.; Winiczenko, R.; Chojnacka, A. Evaluation of drying models of apple (var. Ligol) dried in a fluidized bed dryer. Energy Convers. Manag. 2013, 67, 179–185. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of the Association of Official’s Analytical Chemists; Association of Official Analytical Chemists (AOAC): Arlington, VA, USA, 2003. [Google Scholar]
- Mazza, G. Dehydration of carrots. Effects of pre-drying treatments on moisture transport and product quality. Int. J. Food Sci. Technol. 1983, 18, 113–123. [Google Scholar] [CrossRef]
- Colorimetry, 3rd ed.; International Commission on Illumination; Technical Report CIE15:2004; CIE Central Bureau: Vienna, Austria, 2004. Available online: https://archive.org/details/gov.law.cie.15.2004 (accessed on 2 June 2017).
- Schanda, J. CIE Colorimetry. In Colorimetry: Understanding the CIE System; Schanda, J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 25–78. ISBN 978-0-470-17563-7. [Google Scholar]
- Lewicki, P.P. Some remarks on rehydration of dried foods. J. Food Eng. 1998, 36, 81–87. [Google Scholar] [CrossRef]
- Witt, K. CIE Color Difference Metrics. In Colorimetry: Understanding the CIE System; Schanda, J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 79–100. ISBN 978-0-470-17563-7. [Google Scholar]
- Okuyucu, H.; Kurt, A.; Arcaklioglu, E. Artificial neural network application to the friction stir welding of aluminum plates. Mater. Des. 2007, 28, 78–84. [Google Scholar] [CrossRef]
- Shojaeefard, M.H.; Behnagh, R.A.; Akbari, M.; Givi, M.K.B.; Farhani, F. Modelling and Pareto optimization of mechanical properties of friction stir welded AA7075/AA5083 butt joints using neural network and particle swarm algorithm. Mater. Des. 2013, 44, 190–198. [Google Scholar] [CrossRef]
- Rutkowski, L. Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 978-3-540-76287-4. [Google Scholar]
- Winiczenko, R.; Górnicki, K.; Kaleta, A.; Janaszek-Mańkowska, M. Optimisation of ANN topology for predicting the rehydrated apple cubes colour change using RSM and GA. Neural Comput. Appl. 2018, 30, 1795–1809. [Google Scholar] [CrossRef] [PubMed]
- Gevrey, M.; Dimopoulos, I.; Lek, S. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Model. 2003, 160, 249–264. [Google Scholar] [CrossRef]
- Winiczenko, R.; Górnicki, K.; Kaleta, A.; Janaszek-Mańkowska, M.; Trajer, J. Multi-objective optimization of the apple drying and rehydration processes parameters. Emir. J. Food Agric. 2018, 30, 1–9. [Google Scholar] [CrossRef]
i | D1i | D2i | D3i | D4i | D5i |
---|---|---|---|---|---|
1 | −11.1588 | −7.7592 | −0.6697 | 1.5380 | 18.4940 |
2 | −1.0835 | −0.1818 | −9.6281 | −3.8191 | 10.5589 |
3 | −15.0529 | −4.9146 | 8.6942 | −2.8797 | 17.9134 |
4 | −8.7055 | −0.6294 | 4.3391 | −14.9923 | 17.1001 |
5 | −11.8990 | −18.2054 | −1.8929 | 2.3569 | 9.2392 |
6 | −3.6760 | 1.6062 | −17.8052 | −5.5386 | 11.8517 |
Pareto ID | WAC (−) | VR (−) | CD (−) | Td (°C) | v (m/s) | pH (−) | Tr (°C) |
---|---|---|---|---|---|---|---|
1 * | 0.4610 | 0.4406 | 4.9339 | 50.0726 | 4.0269 | 2.1231 | 20.0787 |
2 | 0.2496 | 0.5829 | 26.3198 | 59.1482 | 0.3961 | 2.1268 | 84.6113 |
3 | 0.3505 | 0.5290 | 14.8788 | 56.8466 | 1.4085 | 2.5738 | 67.7296 |
4 | 0.2987 | 0.6130 | 24.6705 | 60.4821 | 2.1437 | 2.3132 | 91.4555 |
5 | 0.3560 | 0.5128 | 13.2246 | 56.9539 | 1.3443 | 2.4292 | 63.7404 |
6 | 0.3490 | 0.5876 | 21.8093 | 57.4686 | 1.5863 | 2.9835 | 81.2848 |
7 | 0.4427 | 0.2771 | 20.9616 | 53.2569 | 0.1899 | 4.6265 | 72.0360 |
8 | 0.4767 | 0.3696 | 12.1261 | 52.1816 | 0.7663 | 4.9951 | 75.2174 |
9 | 0.3854 | 0.4775 | 8.8345 | 53.1772 | 3.4738 | 2.8495 | 33.9584 |
10 | 0.4395 | 0.3129 | 19.4062 | 53.5391 | 0.2951 | 4.4393 | 71.1104 |
11 | 0.4607 | 0.2376 | 20.2743 | 50.6788 | 0.1718 | 5.4014 | 66.2427 |
12 | 0.4494 | 0.1935 | 23.0974 | 50.0522 | 0.0151 | 5.3859 | 66.7517 |
13 | 0.4884 | 0.3929 | 7.2222 | 61.1844 | 1.9569 | 5.4500 | 59.5787 |
14 | 0.4310 | 0.2173 | 23.7054 | 52.1683 | 0.0145 | 4.7001 | 71.9461 |
15* | 0.4459 | 0.4501 | 5.7222 | 51.7956 | 3.3349 | 2.2060 | 31.0002 |
16 | 0.4519 | 0.3629 | 16.3099 | 55.2706 | 0.4085 | 4.4603 | 72.3659 |
17 | 0.3722 | 0.4924 | 10.4412 | 55.9213 | 1.7468 | 2.3832 | 57.1886 |
18 | 0.3659 | 0.4950 | 10.9728 | 56.3231 | 1.6107 | 2.4896 | 58.2014 |
19 | 0.4725 | 0.4049 | 8.1156 | 55.7922 | 1.1456 | 4.8176 | 57.8621 |
20 | 0.4665 | 0.3310 | 14.7560 | 53.9473 | 0.4089 | 4.8891 | 69.1178 |
21 | 0.3001 | 0.6125 | 24.6999 | 60.7488 | 2.4932 | 2.3504 | 92.8243 |
22 | 0.2810 | 0.5220 | 26.1803 | 57.1793 | 0.2308 | 2.8994 | 81.7101 |
23 | 0.2053 | 0.5559 | 26.8543 | 60.0454 | 0.0122 | 2.1271 | 91.4352 |
24 | 0.4432 | 0.3274 | 18.2983 | 53.5391 | 0.3576 | 4.4393 | 71.1104 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winiczenko, R.; Górnicki, K.; Kaleta, A.; Janaszek-Mańkowska, M.; Choińska, A.; Trajer, J. Apple Cubes Drying and Rehydration. Multiobjective Optimization of the Processes. Sustainability 2018, 10, 4126. https://doi.org/10.3390/su10114126
Winiczenko R, Górnicki K, Kaleta A, Janaszek-Mańkowska M, Choińska A, Trajer J. Apple Cubes Drying and Rehydration. Multiobjective Optimization of the Processes. Sustainability. 2018; 10(11):4126. https://doi.org/10.3390/su10114126
Chicago/Turabian StyleWiniczenko, Radosław, Krzysztof Górnicki, Agnieszka Kaleta, Monika Janaszek-Mańkowska, Aneta Choińska, and Jędrzej Trajer. 2018. "Apple Cubes Drying and Rehydration. Multiobjective Optimization of the Processes" Sustainability 10, no. 11: 4126. https://doi.org/10.3390/su10114126
APA StyleWiniczenko, R., Górnicki, K., Kaleta, A., Janaszek-Mańkowska, M., Choińska, A., & Trajer, J. (2018). Apple Cubes Drying and Rehydration. Multiobjective Optimization of the Processes. Sustainability, 10(11), 4126. https://doi.org/10.3390/su10114126