Dominance and Growth Factors of Pseudanabaena sp. in Drinking Water Source Reservoirs, Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Sites
2.2. Organism and Culture Conditions
2.3. Experimental Design
2.4. Analytical Methods
2.5. Statistical Analysis
3. Results and Discussion
3.1. Variations of the Environmental Factors
3.2. Distribution and Dominance of Pseudanabaena sp.
3.3. The Relationship between Pseudanabaena sp. and Environmental Factors
3.3.1. The Relationship between Pseudanabaena sp. and Temperature
3.3.2. The Relationship between Pseudanabaena sp. and Light Intensity
3.3.3. The Relationship between Pseudanabaena sp. and Nutrients
3.3.4. The Relationship between Pseudanabaena sp. and pH and COD
3.3.5. The Relationship between Pseudanabaena sp. and Disturbance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Shen, Q.; Zhu, J.; Cheng, L.; Zhang, J.; Zhang, Z.; Xu, X. Enhanced algae removal by drinking water treatment of chlorination coupled with coagulation. Desalination 2011, 271, 236–240. [Google Scholar] [CrossRef]
- Kim, T.; Moon, B.; Kim, T.; Kim, M.; Zoh, K. Degradation mechanisms of geosmin and 2-MIB during UV photolysis and UV/chlorine reactions. Chemosphere 2016, 162, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Tao, M.; Loiselle, S.A.; Zhao, W.; Cao, Z.; Ma, R.; Tang, X. MODIS observations of cyanobacterial risks in a eutrophic lake: Implications for long-term safety evaluation in drinking-water source. Water Res. 2017, 122, 455–470. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Tian, C.; Pei, H.; Hu, W.; Xie, J. Environmental factors influencing cyanobacteria community structure in Dongping Lake, China. J. Environ. Sci. (China) 2013, 25, 2196–2206. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y.; Wang, Z.; Xiao, P.; Yu, G.; Wang, G.; Li, R. Dominance and succession of Microcystis genotypes and morphotypes in Lake Taihu, a large and shallow freshwater lake in China. Environ. Pollut. 2016, 219, 399–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, P.; Zhou, Y.; Zhang, X.; Zhang, Y.; Dai, R. Cyanobacterium removal and control of algal organic matter (AOM) release by UV/H2O2 pre-oxidation enhanced Fe(II) coagulation. Water Res. 2018, 131, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Yu, G.; Zhang, K.; Chen, Y.; Li, Q.; Yang, Y.; Xie, J.; Wang, Y.; Li, R. Geosmin production and polyphasic characterization of Oscillatoria limosa Agardh ex Gomont isolated from the open canal of a large drinking water system in Tianjin City, China. Harmful Algae 2017, 69, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Izydorczyk, K.; Carpentier, C.; Mrówczyński, J.; Wagenvoort, A.; Jurczak, T.; Tarczyńska, M. Establishment of an Alert Level Framework for cyanobacteria in drinking water resources by using the Algae Online Analyser for monitoring cyanobacterial chlorophyll a. Water Res. 2009, 43, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Chaffin, J.D.; Davis, T.W.; Smith, D.J.; Baer, M.M.; Dick, G.J. Interactions between nitrogen form, loading rate, and light intensity on Microcystis and Planktothrix growth and microcystin production. Harmful Algae 2018, 73, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Nalewajko, C.; Murphy, T.P. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa. Limnology 2001, 2, 45–48. [Google Scholar] [CrossRef]
- Pełechata, A.; Pełechaty, M.; Pukacz, A. Factors influencing cyanobacteria community structure in Chara-lakes. Ecol. Indic. 2016, 71, 477–490. [Google Scholar] [CrossRef]
- Acinas, S.G.; Haverkamp, T.H.; Huisman, J.; Stal, L.J. Phenotypic and genetic diversification of Pseudanabaena spp. (Cyanobacteria). ISME J. 2009, 3, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Teneva, I.; Mladenov, R.; Dzhambazov, B. Toxic effects of extracts from pseudoanabaena galeata (cyanoprokaryota) in mice and cell cultures in vitro. Nat. Sci. Hum. 2009, 12, 237–243. [Google Scholar]
- Izaguirre, G.; Taylor, W.D. A pseudanabaena species from Castaic Lake, California, that produces 2-methylisoborneol. Water Res. 1998, 32, 1673–1677. [Google Scholar] [CrossRef]
- Vasconcelos, V.M.; Pereira, E. Rapid communication cyanobacteria diversity and toxicity in a wastewater treatment plant (portugal). Water Res. 2001, 35, 1354–1357. [Google Scholar] [CrossRef]
- Stal, L.J.; Albertano, P.; Bergman, B.; Bröckel, K.V.; Gallon, J.R.; Hayes, P.K.; Sivonen, K.; Walsby, A.E. BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea—Responses to a changing environment. Cont. Shelf Res. 2003, 23, 1695–1714. [Google Scholar] [CrossRef]
- Olvera-Ramírez, R.; Centeno-Ramos, C.; Martínez-Jerónimo, F. Efectos tóxicos de Pseudanabaena tenuis (Cyanobacteria) en los cladóceros Daphnia magna y Ceriodaphnia dubia. Hidrobiológica 2010, 20, 203–212. [Google Scholar]
- Wang, Z.; Li, R. Effects of light and temperature on the odor production of 2-methylisoborneol-producing Pseudanabaena sp. And geosmin-producing Anabaenaucrainica (cyanobacteria). Biochem. Syst. Ecol. 2015, 219–226. [Google Scholar] [CrossRef]
- Tian, C.; Peil, H.; Hu, W.; Xie, J. Variation of cyanobacteria with different environmental conditions in Nansi Lake, China. J. Environ. Sci. (China) 2012, 24, 1394–1402. [Google Scholar] [CrossRef]
- Molica, R.J.R.; Oliveira, E.J.A.; Carvalho, P.V.V.C.; Costa, A.N.S.F.; Cunha, M.C.C.; Melo, G.L.; Azevedo, S.M.F.O. Occurrence of saxitoxins and an anatoxin-a(s)-like anticholinesterase in a Brazilian drinking water supply. Harmful Algae 2005, 4, 743–753. [Google Scholar] [CrossRef]
- Marsálek, B.; Blaha, L.; Babica, P. Analyses of microcystins in the biomass of Pseudanabaena linmnetica collected in Znojmo reservoir. Czech Phycol. Olomouc 2003, 3, 195–197. [Google Scholar]
- Watson, S.B.; Monis, P.; Baker, P.; Giglio, S. Biochemistry and genetics of taste- and odor-producing cyanobacteria. Harmful Algae 2016, 54, 112–127. [Google Scholar] [CrossRef] [PubMed]
- Drobac, D.; Tokodi, N.; Lujić, J.; Marinović, Z.; Subakov-Simić, G.; Dulić, T.; Važić, T.; Nybom, S.; Meriluoto, J.; Codd, G.A.; et al. Cyanobacteria and cyanotoxins in fishponds and their effects on fish tissue. Harmful Algae 2016, 55, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wang, Y.; Yang, L.; Yuan, L.; Peng, D. Relationship between phytoplankton and environmental factors in landscape water supplemented with reclaimed water. Ecol. Indic. 2015, 58, 113–121. [Google Scholar] [CrossRef]
- Zhang, T.; Zheng, L.; Li, L.; Song, L. 2-Methylisoborneol production characteristics of Pseudanabaena sp. FACHB 1277 isolated from Xionghe Reservoir, China. J. Appl. Phycol. 2016, 28, 3353–3362. [Google Scholar] [CrossRef]
- Mischke, U. Cyanobacteria associations in shallow polytrophic lakes: Influence of environmental factors. Acta Oecol. 2003, 24, S11–S23. [Google Scholar] [CrossRef]
- Huang, J.; Xi, B.; Xu, Q.; Wang, X.; Li, W.; He, L.; Liu, H. Experiment study of the effects of hydrodynamic disturbance on the interaction between the cyanobacterial growth and the nutrients. J. Hydrodyn. Ser. B 2016, 28, 411–422. [Google Scholar] [CrossRef]
- Hu, H.J.; Li, Y.Y.; Wei, Y.X.; Zhu, H.Z.; Chen, J.Y.; Shi, Z.X. Freshwater Algae in China; Science Technology Press: Beijing, China, 1980. [Google Scholar]
- Zhou, F.X.; Chen, J.H. Freshwater Microbiological Atlas; Chemical Industry Press: Beijing, China, 2010. [Google Scholar]
- Jiang, Y.; He, W.; Liu, W.; Qin, N.; Ouyang, H.; Wang, Q.; Kong, X.; He, Q.; Yang, C.; Yang, B.; et al. The seasonal and spatial variations of phytoplankton community and their correlation with environmental factors in a large eutrophic Chinese lake (Lake Chaohu). Ecol. Indic. 2014, 40, 58–67. [Google Scholar] [CrossRef]
- Chiu, Y.; Yen, H.; Lin, T. An alternative method to quantify 2-MIB producing cyanobacteria in drinking water reservoirs: Method development and field applications. Environ. Res. 2016, 151, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Duirk, S.E. Quantitative analysis of earthy and musty odors in drinking water sources impacted by wastewater and algal derived contaminants. Chemosphere 2013, 91, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- El Herry, S.; Bouaïcha, N.; Jenhani-Ben, R.N.; Ms, R. First observation of microcystins in tunisian inland waters: A threat to river mouths and lagoon ecosystems. Transit. Waters Bull. 2007, 1, 73–82. [Google Scholar]
- Xiao, M.; Adams, M.P.; Willis, A.; Burford, M.A.; O Brien, K.R. Variation within and between cyanobacterial species and strains affects competition: Implications for phytoplankton modelling. Harmful Algae 2017, 69, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Ji, B.; Wong, R.N.S.; Wong, M.H. Statistical study on the effects of environmental factors on the growth and microcystins production of bloom-forming cyanobacterium—Microcystis aeruginosa. Harmful Algae 2008, 7, 127–136. [Google Scholar] [CrossRef]
- Havens, K.E.; Phlips, E.J.; Cichra, M.F.; Li, B. Light availability as a possible regulator of cyanobacteria species composition in a shallow subtropical lake. Freshw. Biol. 1998, 39, 547–556. [Google Scholar] [CrossRef]
- Liu, J.; Vyverman, W. Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp.; Klebsormidium sp. And Pseudanabaena sp. Under varying N/P conditions. Bioresour. Technol. 2015, 179, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.F.; Borum, J. Nutrient control of estuarine macroalgae:growth strategy and the balance between nitrogen requirements and uptake. Mar. Ecol. Prog. Ser. 1997, 161, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Gao, H.; Glibert, P.M.; Wang, Y.; Tong, M. Rates of nitrogen uptake by cyanobacterially-dominated assemblages in Lake Taihu, China, during late summer. Harmful Algae 2017, 65, 71–84. [Google Scholar] [CrossRef] [PubMed]
- McGlathery, K.J. Changes in intracellular nitrogen pools and feedback controls on nitrogen uptake in chaetomorpha linum (chlorophyta) l. J. Phycol. 2010, 32, 393–401. [Google Scholar] [CrossRef]
- Kawabe, M.; Kawabe, M. Factors determining chemical oxygen demand in tokyo bay. J. Oceanogr. 1997, 53, 443–453. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Y.; He, G.; Han, J.; Wang, T. Multivariate analysis of interactions between phytoplankton biomass and environmental variables in taihu lake, china. Environ. Monit. Assess. 2007, 133, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Qin, B.; Sarvala, J.; Salmaso, N.; Zhu, G.; Ventelä, A.; Zhang, Y.; Gao, G.; Nurminen, L.; Kirkkala, T.; et al. Phytoplankton assemblages respond differently to climate warming and eutrophication: A case study from Pyhäjärvi and Taihu. J. Great Lakes Res. 2016, 42, 386–396. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, F.; Liu, Y.; Wang, Z.; Wang, J.; Wang, G.; Li, R. Genetic diversity of Microcystis populations in a bloom and its relationship to the environmental factors in Qinhuai River, China. Microbiol. Res. 2011, 167, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Yang, Y.; Li, F.; Ge, F.; Kuang, Y. Importance of controlling pH-depended dissolved inorganic carbon to prevent algal bloom outbreaks. Bioresour. Technol. 2016, 220, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J. Blue-green dominance in lakes: The role and management significance of pH and CO2. Int. Rev. Hydrobiol. 1984, 69, 765–780. [Google Scholar] [CrossRef]
- Westhuizen, A.; Eloff, J. Effect of culture age and pH of culture medium on the growth and toxicity of the blue-green alga microcystis aeruginosa. Z. Für Pflanzenphysiol. 1983, 110, 157–163. [Google Scholar] [CrossRef]
Xili (Sites #1, #2, #3) | Tiegang (Sites #4, #5, #6) | Shiyan (Sites #7, #8, #9) | |||||||
---|---|---|---|---|---|---|---|---|---|
Parameters | Min | Max | Ave | Min | Max | Ave | Min | Max | Ave |
SD (m) | 0.40 | 1.80 | 0.83 | 0.50 | 1.60 | 0.83 | 0.50 | 1.30 | 0.68 |
T (°C) | 13.7 | 31.5 | 21.9 | 14.2 | 31.6 | 24.1 | 13.3 | 32.7 | 24.3 |
Illumination (μmol photons m−2s−1) | 0.00 | 709.00 | 152.29 | 0.03 | 601.30 | 153.29 | 0.03 | 405.80 | 123.01 |
pH | 6.62 | 8.98 | 7.04 | 6.27 | 10.17 | 7.55 | 6.26 | 10.77 | 7.95 |
Turbidity (NTU) | 2.40 | 52.70 | 12.27 | 1.10 | 47.40 | 9.32 | 3.00 | 86.20 | 12.16 |
DO (mg/L) | 0.87 | 12.56 | 7.80 | 0.57 | 17.13 | 8.29 | 1.11 | 18.06 | 8.07 |
CODMn (mg/L) | 0.89 | 3.48 | 1.48 | 1.27 | 2.84 | 1.87 | 1.45 | 3.48 | 2.21 |
NH3-N (mg/L) | 0.03 | 0.39 | 0.08 | 0.03 | 0.30 | 0.09 | 0.02 | 0.73 | 0.18 |
NO3-N (mg/L) | 1.08 | 1.88 | 1.40 | 0.57 | 1.65 | 1.15 | 0.08 | 2.29 | 1.15 |
TN (mg/L) | 1.28 | 2.54 | 1.72 | 1.12 | 1.92 | 1.50 | 1.42 | 3.06 | 1.99 |
TP (mg/L) | 0.01 | 0.08 | 0.02 | 0.01 | 0.08 | 0.03 | 0.01 | 0.07 | 0.04 |
N:P | 13:1 | 254:1 | 86:1 | 14:1 | 192:1 | 50:1 | 20:1 | 306:1 | 50:1 |
Velocity (m/s) | 0.000 | 0.081 | 0.010 | 0.000 | 0.086 | 0.008 | 0.000 | 0.027 | 0.007 |
Total phytoplankton (×105 cells/L) | 8.18 | 622 | 85.6 | 56.3 | 793 | 288 | 30.1 | 923 | 284 |
Pseudanabaena sp. (×105 cells/L) | 0.00 | 242 | 18.8 | 0.00 | 170 | 47.5 | 0.00 | 356 | 61.8 |
Tcells | Pcells | T | pH | Turbidity | DO | CODMn | NH3-N | NO3-N | TN | TP | |
---|---|---|---|---|---|---|---|---|---|---|---|
Spatial | 0.000 | 0.000 | 0.005 | 0.000 | 0.015 | 0.578 | 0.000 | 0.000 | 0.010 | 0.000 | 0.000 |
Seasonal | 0.000 | 0.002 | 0.000 | 0.014 | 0.893 | 0.000 | 0.000 | 0.503 | 0.001 | 0.000 | 0.001 |
Sampling Sites | #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 |
---|---|---|---|---|---|---|---|---|---|
Dominance value | 0.0524 | 0.0563 | 0.1075 | 0.1491 | 0.1569 | 0.1722 | 0.2632 | 0.2266 | 0.2353 |
Secchi Depth | Illumination | T | pH | DO | |
---|---|---|---|---|---|
Pseudanabaena (cells/L) | −0.114 | −0.042 | 0.262 ** | 0.157 ** | 0.052 |
COD | NH3-N | NO3-N | TN | TP | |
Pseudanabaena (cells/L) | 0.368 ** | 0.140 * | −0.187 ** | −0.055 | 0.018 |
T (°C) | 15 | 20 | 25 | 30 | 35 | 40 | |||
µ (d−1) on 16th day | 0.13 ± 0.00 | 0.17 ± 0.00 | 0.19 ± 0.00 | 0.16 ± 0.00 | 0.13 ± 0.00 | −0.02 ± 0.01 | |||
Illumination (μmol photons m−2s−1) | 0.00 | 9.00 | 18.00 | 27.00 | 36.00 | 45.00 | 71.28 | 142.56 | 216.00 |
µ (d−1) on 16th day | −0.13 ± 0.00 | 0.18 ± 0.00 | 0.21 ± 0.00 | 0.23 ± 0.00 | 0.22 ± 0.00 | 0.22 ± 0.00 | 0.22 ± 0.00 | 0.21 ± 0.00 | 0.21 ± 0.00 |
TN (mg/L) | 0 | 2.4 | 4.8 | 9.6 | 19.2 | 38.4 | 76.8 | 153.6 | 230.4 |
µ (d−1) on 16th day | −0.11 ± 0.01 | −0.01 ± 0.01 | 0.04 ± 0.01 | 0.09 ± 0.01 | 0.17 ± 0.00 | 0.19 ± 0.00 | 0.20 ± 0.00 | 0.21 ± 0.00 | 0.22 ± 0.00 |
TP (mg/L) | 0 | 0.04 | 0.16 | 0.32 | 0.64 | 1.28 | 5.12 | 10.24 | 102.4 |
µ (d−1) on 16th day | 0.06 ± 0.00 | 0.22 ± 0.00 | 0.25 ± 0.00 | 0.27 ± 0.00 | 0.28 ± 0.00 | 0.28 ± 0.00 | 0.24 ± 0.00 | 0.23 ± 0.00 | 0.05 ± 0.00 |
pH without adjustment | 3 | 5 | 7 | 8 | 9 | 11 | |||
µ (d−1) on 16th day | 0.00 ± 0.00 | 0.21 ± 0.00 | 0.24 ± 0.00 | 0.23 ± 0.00 | 0.24 ± 0.00 | 0.22 ± 0.00 | |||
pH adjusted to the initial value everyday | 3 | 5 | 7 | 8 | 9 | 11 | |||
µ (d−1) on 16th day | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.21 ± 0.00 | 0.25 ± 0.00 | 0.25 ± 0.00 | 0.22 ± 0.00 | |||
Disturbance (r/min) | 0 | 100 | 200 | 250 | 300 | 400 | 500 | ||
µ (d−1) on 16th day | 0.20 ± 0.00 | 0.20 ± 0.00 | 0.21 ± 0.00 | 0.20 ± 0.00 | 0.21 ± 0.00 | 0.21 ± 0.00 | 0.21 ± 0.00 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Zhu, J.; Wang, M.; Dong, W. Dominance and Growth Factors of Pseudanabaena sp. in Drinking Water Source Reservoirs, Southern China. Sustainability 2018, 10, 3936. https://doi.org/10.3390/su10113936
Gao J, Zhu J, Wang M, Dong W. Dominance and Growth Factors of Pseudanabaena sp. in Drinking Water Source Reservoirs, Southern China. Sustainability. 2018; 10(11):3936. https://doi.org/10.3390/su10113936
Chicago/Turabian StyleGao, Jingsi, Jia Zhu, Maowei Wang, and Wenyi Dong. 2018. "Dominance and Growth Factors of Pseudanabaena sp. in Drinking Water Source Reservoirs, Southern China" Sustainability 10, no. 11: 3936. https://doi.org/10.3390/su10113936
APA StyleGao, J., Zhu, J., Wang, M., & Dong, W. (2018). Dominance and Growth Factors of Pseudanabaena sp. in Drinking Water Source Reservoirs, Southern China. Sustainability, 10(11), 3936. https://doi.org/10.3390/su10113936