Equitable Allocation of Blue and Green Water Footprints Based on Land-Use Types: A Case Study of the Yangtze River Economic Belt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Region under Investigation
2.2. Data Collection
2.3. Models
2.3.1. A Water Footprint Accounting Model
2.3.2. A Water-Footprint-Land Density Formula
3. Modeling Scenarios
4. Results
4.1. The Allocation Scheme of Agricultural and Non-Agricultural Water Footprints
4.2. The Impact of Land Area on Water Resources Allocation
5. Discussions
5.1. An Analysis of the Proposed Lexicographic Minimax Optimal Allocation Scheme
5.2. Analysis of Different Agricultural Land Uses’ Contribution to Water Footprints
5.3. An Analysis of Non-Agricultural Land’s Contribution to Water Footprints
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Lexicographic Algorithm
- (1)
- Assumptions: Due to the difference between production resources (e.g., capital and human resources) and natural resources (e.g., land and water resources), traditional industrial production lexicographic minimax problems typically employ cumulative variables while this paper uses piecewise continuous variables.
- (2)
- Decision variables: In the traditional algorithm, decision variables are production quantities, which consume limited resources in the production process and are suitable for enterprise production planning. On the other hand, decision variables in this paper are water footprints, which are appropriate for allocating provincial water resources under government regulation and market mechanisms.
- (3)
- Solution procedure: The original solution procedure mainly uses constraints to internalize multiple resources and aims to solve the lexicographic minimax problem with multiple subjects and multiple periods. Given that our decision variables are water footprints, the algorithm in this paper is designed for lexicographic minimax problems for a single limited resource with multiple subjects.
Appendix B. Raw Data for Water Footprint Accounting
Chongqing | Sichuan | Yunnan | Guizhou | Hubei | Hunan | Jiangxi | Anhui | Jiangsu | Zhejiang | Shanghai | |
---|---|---|---|---|---|---|---|---|---|---|---|
Wheat | 3.92 | 48.45 | 7.59 | 5.77 | 52.10 | 1.39 | 0.34 | 187.81 | 214.76 | 3.53 | 0.00 |
Barley | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2.42 | 0.50 | 0.00 |
Broad bean | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.88 | 1.24 | 0.00 |
Paddy | 58.36 | 181.29 | 53.46 | 36.85 | 231.38 | 330.44 | 284.57 | 70.84 | 80.73 | 96.89 | 0.00 |
Maize | 16.78 | 45.74 | 53.53 | 19.97 | 19.49 | 13.14 | 0.91 | 34.93 | 17.75 | 2.41 | 0.00 |
Sorghum | 0.14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Potato | 7.70 | 9.11 | 7.53 | 7.64 | 3.44 | 5.32 | 0.00 | 1.42 | 1.40 | 1.78 | 0.00 |
Soybean | 7.55 | 10.13 | 3.87 | 1.34 | 3.76 | 0.00 | 6.45 | 24.62 | 13.17 | 4.94 | 29.45 |
Cotton | 0.00 | 1.37 | 0.00 | 0.00 | 54.34 | 23.13 | 15.47 | 30.23 | 24.32 | 3.39 | 0.49 |
Peanut | 2.38 | 13.34 | 2.08 | 2.00 | 10.83 | 5.52 | 11.25 | 23.49 | 9.42 | 1.63 | 0.00 |
Rapeseed | 7.38 | 43.69 | 12.06 | 13.74 | 26.05 | 29.58 | 14.36 | 27.57 | 26.62 | 7.44 | 0.36 |
Sesame | 0.00 | 6.11 | 0.00 | 0.00 | 15.65 | 1.78 | 4.40 | 8.07 | 0.04 | 0.02 | 0.00 |
Sugarcane | 0.00 | 5.98 | 204.32 | 17.04 | 3.48 | 12.01 | 8.15 | 0.00 | 0.83 | 0.00 | 0.00 |
Mint | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Vegetables | 21.24 | 225.26 | 42.26 | 27.01 | 49.74 | 49.37 | 25.65 | 0.00 | 256.65 | 32.04 | 7.17 |
Tobacco leaf | 0.00 | 0.95 | 9.76 | 0.79 | 0.79 | 1.24 | 0.25 | 0.21 | 0.00 | 0.02 | 0.00 |
Melon and fruit | 9.66 | 26.59 | 38.71 | 8.72 | 6.67 | 9.22 | 11.39 | 15.10 | 89.04 | 17.20 | 2.00 |
Tea leaf | 0.00 | 0.92 | 46.04 | 0.54 | 0.00 | 0.00 | 0.00 | 0.64 | 0.00 | 0.00 | 0.00 |
Sum (cultivated crops) | 135.09 | 618.93 | 481.21 | 141.41 | 477.71 | 482.13 | 383.19 | 424.94 | 739.01 | 173.04 | 39.47 |
Livestock products | |||||||||||
Pork | 40.16 | 181.14 | 166.58 | 59.76 | 168.11 | 156.46 | 88.29 | 114.80 | 125.27 | 78.09 | 11.12 |
Beef | 10.74 | 58.32 | 68.17 | 21.00 | 40.66 | 11.82 | 26.42 | 36.56 | 8.37 | 10.58 | 0.75 |
Lamb | 0.00 | 23.44 | 13.18 | 2.96 | 15.36 | 0.66 | 1.50 | 29.41 | 17.27 | 11.48 | 0.72 |
Poultry | 16.50 | 82.29 | 0.00 | 10.60 | 60.29 | 0.00 | 55.17 | 96.37 | 187.47 | 121.44 | 13.54 |
Honey | 0.53 | 0.95 | 0.11 | 0.05 | 0.55 | 0.00 | 0.36 | 0.49 | 0.13 | 2.41 | 0.00 |
Egg | 21.78 | 72.30 | 21.81 | 6.50 | 146.36 | 0.00 | 50.95 | 124.91 | 212.87 | 53.41 | 6.83 |
Milk | 1.46 | 19.82 | 18.15 | 1.31 | 6.47 | 0.00 | 4.45 | 41.18 | 22.04 | 7.43 | 50.57 |
Cocoon | 0.38 | 3.32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.94 | 0.00 |
Sum (Livestock products) | 91.55 | 441.57 | 288.00 | 102.17 | 437.81 | 168.94 | 227.14 | 443.72 | 573.43 | 286.78 | 83.53 |
Sum (Agricultural WF) | 226.65 | 1060.50 | 769.21 | 243.58 | 915.52 | 651.07 | 610.33 | 868.66 | 1312.44 | 459.83 | 123.00 |
Chongqing | Sichuan | Yunnan | Guizhou | Hubei | Hunan | Jiangxi | Anhui | Jiangsu | Zhejiang | Shanghai | |
---|---|---|---|---|---|---|---|---|---|---|---|
Industrial output value (100 million RMB) | 5249.65 | 11,471.57 | 3767.58 | 2686.52 | 10,531.37 | 9996.6814 | 6437.9865 | 8928 | 25,612.23 | 16,368.43 | 7236.69 |
Industrial water consumption (100 million m3) | 36.7 | 44.7 | 24.6 | 27.7 | 90.2 | 87.7 | 61.3 | 91.2 | 238 | 55.7 | 67.2 |
Product WF (100 million m3) | 36.7 | 44.7 | 24.6 | 27.7 | 90.2 | 87.7 | 61.3 | 92.7 | 238 | 55.7 | 66.2 |
Import virtual water | 42.06 | 30.5 | 24.16 | 26.18 | 46.12 | 37.19 | 49.15 | 39.18 | 46.18 | 40.19 | 34.19 |
Export virtual water | 37.16 | 29.46 | 19.46 | 24.75 | 42.18 | 38.32 | 46.15 | 51.63 | 76.19 | 64.53 | 59.15 |
Trade water footprint (100 million m3) | 4.9 | 1.04 | 4.7 | 1.43 | 3.94 | −1.13 | 3 | −12.45 | −30.01 | −24.34 | −24.96 |
Sum (Industrial WF) | 41.6 | 45.74 | 29.3 | 29.13 | 94.14 | 86.57 | 64.3 | 78.75 | 207.99 | 31.36 | 42.24 |
Domestic water consumption | 19.1 | 42.5 | 19.5 | 16.6 | 40.7 | 41.8 | 27.4 | 30.9 | 52.8 | 43.8 | 24.4 |
Urban greening coverage | 0.9 | 4.2 | 2 | 0.7 | 0.6 | 2.7 | 2.1 | 4.2 | 2.7 | 5.2 | 0.8 |
Sum (Non-agricultural WF) | 61.6 | 92.44 | 50.8 | 46.43 | 135.44 | 131.07 | 93.8 | 113.85 | 263.49 | 80.36 | 67.44 |
Appendix C. Raw Data for Land Use Types
Province | Total Land | Agricultural Land | Non-Agricultural Land | Unused Land | ||||
---|---|---|---|---|---|---|---|---|
Arable | Forestry | Grassland | Garden Plot | Other Land | ||||
Chongqing | 82,300 | 22,627 | 32,731 | 2379 | 2589 | 9596 | 6226 | 6152 |
Sichuan | 481,400 | 59,480 | 197,894 | 137,602 | 8119 | 22,836 | 16,509 | 38,960 |
Yunnan | 383,300 | 60,487 | 226,960 | 7739 | 9453 | 19,056 | 8312 | 51,293 |
Guizhou | 176,000 | 44,380 | 80,590 | 15,913 | 1307 | 11,400 | 6000 | 16,410 |
Hubei | 185,900 | 46,580 | 81,042 | 488 | 4456 | 15,549 | 14,330 | 23,455 |
Hunan | 211,800 | 37,873 | 119,667 | 1038 | 4974 | 15,556 | 14,037 | 18,655 |
Jiangxi | 167,000 | 28,253 | 104,025 | 36 | 3157 | 7767 | 9618 | 14,143 |
Anhui | 139,700 | 57,180 | 36,675 | 338 | 3391 | 13,996 | 16,900 | 11,220 |
Jiangsu | 102,600 | 47,620 | 4133 | 20 | 3150 | 13,025 | 19,192 | 15,460 |
Zhejiang | 102,000 | 2580 | 56,348 | 3 | 14,082 | 13,693 | 10,234 | 5061 |
Shanghai | 6300 | 1936 | 111 | 0 | 65 | 462 | 1732 | 1994 |
References
- UNESCO. The United Nations World Water Development Report 2017; UNESCO: Paris, France, 2017. [Google Scholar]
- Jerson, K.; Rafael, K. Water allocation for economic production in a semi-arid region. Int. J. Water Resour. Dev. 2002, 18, 391–407. [Google Scholar]
- Eleftheriadou, E.; Mylopoulos, Y. Game theoretical approach to conflict resolution in transboundary water resources management. J. Water Resour. Plan. Manag. 2008, 134, 466–473. [Google Scholar] [CrossRef]
- Liehr, S.; Röhrig, J.; Mehring, M.; Kluge, T. How the social-ecological systems concept can guide transdisciplinary research and implementation: Addressing water challenges in Central Northern Namibia. Sustainability 2017, 9, 1109. [Google Scholar] [CrossRef]
- Hoestra, A.Y. Virtual water trade: Proceedings of the international expert meeting on virtual water trade. In Value of Water Research Report Series No. 12; UNESCO-IHE Institute for Water Education: Delft, The Netherlands, 2003. [Google Scholar]
- Kampman, D.A.; Hoekstra, A.Y.; Krol, M.S. The Water Footprint of India; Value of Water Research Report Series (No. 32); UNESCO-IHE Institute for Water Education: Delft, The Netherlands, 2008. [Google Scholar]
- Van Oel, P.R.; Mekonnen, M.M.; Hoekstra, A.Y. The external water footprint of the Netherlands: Geographically—Explicit quantification and impact assessment. Ecol. Econ. 2009, 69, 82–92. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Orr, S. UK Water Footprint: The Impact of the UK’s Food and Fibre Consumption on Global Water Resources; Godalming WWF-UK: Surrey, UK, 2008. [Google Scholar]
- Ma, D.; Xian, C.; Zhang, J.; Zhang, R.; Ouyang, Z. The evaluation of water footprints and sustainable water utilization in Beijing. Sustainability 2015, 7, 13206–13221. [Google Scholar] [CrossRef]
- Casolani, N.; Pattara, C.; Liberatore, L. Water and Carbon footprint perspective in Italian durum wheat production. Land Use Policy 2016, 58, 394–402. [Google Scholar] [CrossRef]
- Cartone, A.; Casolani, N.; Liberatore, L. Spatial analysis of grey water in Italian cereal crops production. Land Use Policy 2017, 97–106. [Google Scholar] [CrossRef]
- Salmoral, G.; Willaarts, B.; Garrido, A.; Guse, B. Fostering integrated land and water management approaches: Evaluating the water footprint of a Mediterranean basin under different agricultural land use scenarios. Land Use Policy 2017, 61, 24–39. [Google Scholar] [CrossRef]
- Sun, H.H.; Cheng, X.F.; Dai, M.Q.; Wang, X.; Kang, H.D. Study on the influence factors and evaluation indes system of regional flood disaster resilience based on DEMATEL method-taking ChaoHu Basin as a case. Resour. Environ. Yangtze Basin 2015, 24, 1577–1583. [Google Scholar]
- Dong, L.; Sun, C.Z.; Zou, W.; Xi, X. Assessment and spatial-temporal evolution of water consumption fairness from a water footprint perspective in China. Resour. Sci. 2014, 36, 1799–1809. [Google Scholar]
- UNESCAP. Principles and Practices of Water Allocation Among Water-Use Sectors; UNESCAP: Bangkok, Thailand, 2000. [Google Scholar]
- Mimi, Z.A.; Sawalhi, B.I. A decision tool for allocating the waters of the Jordan River basin between all riparian parties. Water Resour. Manag. 2003, 17, 447–461. [Google Scholar] [CrossRef]
- Luss, H. On equitable resource allocation problems: A lexicographic minimax approach. Oper. Res. Lett. 1999, 47, 361–376. [Google Scholar] [CrossRef]
- Ogryczak, W.; Śliwiński, T.; Wierzbicki, A. Fair resource allocation schemes and network dimensioning problems. J. Telecommun. Inform. Technol. 2003, 3, 34–42. [Google Scholar]
- Young, H.P. Equity: In Theory and Practice; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Yager, R.R. On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 1988, 18, 183–190. [Google Scholar] [CrossRef]
- Luss, H.; Smith, D.R. Resource allocation among competing activities: A lexicographic minimax approach. Oper. Res. Lett. 1986, 5, 227–231. [Google Scholar] [CrossRef]
- Wang, L. Cooperative Water Resources Allocation Among Competing Users. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2005. [Google Scholar]
- Buzna, Ľ.; Koháni, M.; Janáček, J. An approximative lexicographic min-max approach to the discrete facility location problem. Oper. Res. Proc. 2016, 71–76. [Google Scholar]
- Qian, Z. Strategic research on sustainable development of water resource in China. J. Chin. People’s Political Consult. Conf. 2008, 1–17. [Google Scholar]
- Falkenmark, M.; Widstrand, C. Population and water resources: A delicate balance. Popul. Bull. 1992, 3, 1–36. [Google Scholar]
- Perveen, S.; James, L.A. Scale invariance of water stress and scarcity indicators: Facilitating cross-scale comparisons of water resources vulnerability. Appl. Geogr. 2011, 1, 321–328. [Google Scholar] [CrossRef]
- Zhi, Y.; Yang, Z.; Yin, X.; Hamilton, P.B.; Zhang, L. Using gray water footprint to verify economic sectors’ consumption of assimilative capacity in a river basin: Model and a case study in the Haihe River Basin, China. J. Clean. Prod. 2015, 92, 267–273. [Google Scholar] [CrossRef]
- Wu, P.; Wang, Y.; Zhao, X.; Sun, S.; Jin, J. Spatiotemporal variation in water footprint of grain production in China. Front. Agric. Sci. Eng. 2015, 2, 186–193. [Google Scholar] [CrossRef]
- Kang, J.; Lin, J.; Zhao, X.; Zhao, S.; Kou, L. Decomposition of the Urban Water Footprint of Food Consumption: A Case Study of Xiamen City. Sustainability 2017, 9, 135. [Google Scholar] [CrossRef]
- Zhuo, L.; Mekonnen, M.M.; Hoekstra, A.Y. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978–2008). Water Res. 2016, 94, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Chapagain, A.K.; Hoekstra, A.Y. Water footprints of nations [A]. In Value of Water Research Report Series No. 16; UNESCO-IHE Institute for Water Education: Delft, The Netherlands, 2004. [Google Scholar]
- Hoekstra, A.Y.; Hung, P.Q. A quantification of virtual water flows between nations in relation to international crop trade. Water Res. 2002, 49, 203–209. [Google Scholar]
- Pi, J.C. Leaders, followers and collective actions in communal cooperation: An extension based on the fairness-compatible constraint. China Econ. Q. 2007, 6, 597–606. [Google Scholar]
- The State Forestry Administration of the People’s Republic of China. The Status of Rock Desertification Bulletin in China; The State Forestry Administration of the People’s Republic of China: Beijing, China, 2012.
- State Flood Control and Drought Relief Headquarters; The Ministry of Water Resources of the People’s Republic of China. China Water and Drought Disaster Bulletin (2013–2016); The Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2016.
- National Bureau of Statistics of China. China Statistical Yearbook on Environment (2013–2016); National Bureau of Statistics of China: Beijing, China, 2016.
- Shanghai Economic and Information Committee. Report on the Operation of Shanghai Industrial Economy in 2013 [EB/OL]. Available online: http://www.sheitc.gov.cn/shgyjjyxbg/665698.htm (accessed on 4 October 2018).
- PUB Singapore. Our Water, Our Future; Singapore National Water Agency: Singapore, 2016.
- State Oceanic Administration of China. National Seawater Utilization Report 2016; State Oceanic Administration of China: Beijing, China, 2016.
- Shanghai Water Bureau. The Water Price of the Municipal Water Supply Enterprise and the Sewage Treatment Fee [EB/OL]. Available online: http://sw.shanghaiwater.gov.cn/web/bmxx/sjbz.jsp (accessed on 4 October 2018).
- The State Council of China. Made in China 2025 [EB/OL]. Available online: http://www.gov.cn/zhengce/content/2015-05/19/content_9784.htm (accessed on 4 October 2018).
- Pietrucha-Urbanik, K. Assessing the costs of losses incurred as a result of failure. In Advances in Intelligent Systems and Computing; Springer: New York, NY, USA, 2016; Volume 470, pp. 355–362. [Google Scholar]
- Liu, G.; Wang, H.; Qiu, L. Lexicographic quota model research on lake basin industry point source initial discharge permits. In Proceedings of the 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Seoul, Korea, 14–17 October 2012; pp. 3075–3080. [Google Scholar]
- Stephen, T.; Tuncel, L.; Luss, H. On Equitable Resource Allocation Problems: A Lexicographic Minimax Approach. Oper. Res. 1999, 47, 361–376. [Google Scholar]
Province | Land Area (km2) | Population (10,000) | GDP (million RMB) | Available Water Resources (billion m3) | Total Water Consumption (billion m3) | Water Scarcity Index [25,26] (m3/person/yr) |
---|---|---|---|---|---|---|
Chongqing | 82,300 | 2970 | 12,656.69 | 47.43 | 8.39 | 1596.97 |
Sichuan | 481,400 | 8107 | 26,260.77 | 247.03 | 24.25 | 3047.12 |
Yunnan | 383,300 | 4686.6 | 11,720.91 | 170.67 | 14.97 | 3641.66 |
Guizhou | 176,000 | 3502 | 8006.79 | 75.94 | 9.2 | 2168.48 |
Hubei | 185,900 | 5799 | 24,668.49 | 79.01 | 29.18 | 1362.48 |
Hunan | 211,800 | 6690.6 | 24,501.67 | 158.2 | 33.25 | 2364.51 |
Jiangxi | 167,000 | 4522.2 | 14,338.5 | 142.4 | 26.48 | 3148.91 |
Anhui | 139,700 | 6029.8 | 19,038.9 | 58.56 | 29.6 | 971.18 |
Jiangsu | 102,600 | 7939.49 | 59,161.75 | 28.35 | 57.67 | 357.08 |
Zhejiang | 102,000 | 5498 | 37,568.49 | 93.13 | 19.83 | 1693.89 |
Shanghai | 6300 | 2415.15 | 21,602.12 | 2.8 | 12.32 | 115.93 |
Iteration Process | a (billion m3) | T (billion m3) | R (billion m3) | k | avg (1000 m3/km2) | |
---|---|---|---|---|---|---|
1 | 400 | −72.75 | 324.08 | 15,104.244 | 0.02146 | 233.42 |
2 | 440 | −33.49 | 284.08 | 15,104.244 | 0.01881 | 256.76 |
3 | 480 | −4.13 | 244.08 | 15,104.244 | 0.01616 | 280.10 |
4 | 490 | 3.21 | 234.08 | 15,104.244 | 0.01550 | 285.93 |
Optimal value | 485.63 | 0 | 238.45 | 15,104.244 | 0.01579 | 283.38 |
Iteration Process | a (billion m3) | T (billion m3) | R (billion m3) | k | avg (million m3/km2) | |
---|---|---|---|---|---|---|
1 | 40 | −18.06 | 73.67 | 1391.21 | 0.05296 | 322.72 |
2 | 60 | −12.31 | 53.67 | 1391.21 | 0.03858 | 484.07 |
3 | 80 | −2.96 | 33.67 | 1391.21 | 0.02420 | 645.43 |
4 | 90 | 2.38 | 23.67 | 1391.21 | 0.01702 | 726.11 |
Optimal value | 83.73 | 0 | 29.94 | 1391.21 | 0.02152 | 675.53 |
Province | The Total Original WF | Original Agricultural WF | Original Non-Agricultural WF | Optimized Agricultural WF | Optimized Non-Agricultural WF | The Total Optimized WF |
---|---|---|---|---|---|---|
Chongqing | 28.83 | 22.67 | 6.16 | 19.81 | 4.21 | 24.02 |
Sichuan | 115.29 | 106.05 | 9.244 | 99.31 | 7.75 | 107.06 |
Yunnan | 82.00 | 76.92 | 5.08 | 70.49 | 3.45 | 73.94 |
Guizhou | 29.00 | 24.36 | 4.643 | 20.07 | 4.05 | 24.12 |
Hubei | 105.10 | 91.55 | 13.544 | 62.58 | 11.02 | 73.61 |
Hunan | 78.21 | 65.11 | 13.107 | 55.27 | 10.62 | 65.89 |
Jiangxi | 70.41 | 61.03 | 9.38 | 49.51 | 6.78 | 56.28 |
Anhui | 98.25 | 86.87 | 11.385 | 47.15 | 9.59 | 56.73 |
Jiangsu | 157.59 | 131.24 | 26.349 | 28.71 | 17.60 | 46.31 |
Zhejiang | 54.02 | 45.98 | 8.036 | 31.64 | 6.91 | 38.55 |
Shanghai | 19.04 | 12.30 | 6.744 | 1.09 | 1.75 | 2.84 |
Average (upstream) | 63.78 | 57.50 | 6.28 | 52.42 | 4.86 | 70.39 |
Average (midstream) | 84.57 | 72.56 | 12.01 | 55.79 | 9.47 | 83.86 |
Average (downstream) | 82.23 | 69.10 | 13.13 | 27.15 | 8.96 | 42.89 |
Average (YREB) | 76.16 | 65.83 | 10.33 | 44.15 | 7.61 | 64.06 |
Province | Water Allocation Under Spatial Equity (billion m3) | Water-Footprint-Land Density (before) (million m3/km2) | Water-Footprint-Land Density (after) (million m3/km2) |
---|---|---|---|
Chongqing | 6.99 | 0.35 | 0.29 |
Sichuan | 22.52 | 0.24 | 0.22 |
Yunnan | 13.50 | 0.21 | 0.19 |
Guizhou | 7.65 | 0.16 | 0.14 |
Hubei | 20.44 | 0.57 | 0.40 |
Hunan | 28.01 | 0.37 | 0.31 |
Jiangxi | 21.17 | 0.42 | 0.34 |
Anhui | 17.09 | 0.70 | 0.41 |
Jiangsu | 16.95 | 1.54 | 0.45 |
Zhejiang | 14.15 | 0.53 | 0.38 |
Shanghai | 1.84 | 3.02 | 0.45 |
Average (upstream) | 12.67 | 0.24 | 0.21 |
Average (midstream) | 23.20 | 0.45 | 0.35 |
Average (downstream) | 12.51 | 1.45 | 0.42 |
Average (YREB) | 15.48 | 0.74 | 0.32 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Shi, L.; Li, K.W. Equitable Allocation of Blue and Green Water Footprints Based on Land-Use Types: A Case Study of the Yangtze River Economic Belt. Sustainability 2018, 10, 3556. https://doi.org/10.3390/su10103556
Liu G, Shi L, Li KW. Equitable Allocation of Blue and Green Water Footprints Based on Land-Use Types: A Case Study of the Yangtze River Economic Belt. Sustainability. 2018; 10(10):3556. https://doi.org/10.3390/su10103556
Chicago/Turabian StyleLiu, Gang, Lu Shi, and Kevin W. Li. 2018. "Equitable Allocation of Blue and Green Water Footprints Based on Land-Use Types: A Case Study of the Yangtze River Economic Belt" Sustainability 10, no. 10: 3556. https://doi.org/10.3390/su10103556
APA StyleLiu, G., Shi, L., & Li, K. W. (2018). Equitable Allocation of Blue and Green Water Footprints Based on Land-Use Types: A Case Study of the Yangtze River Economic Belt. Sustainability, 10(10), 3556. https://doi.org/10.3390/su10103556