Climate Change Impacts on Farmland Values in the Southeast United States
Abstract
:1. Introduction
2. Literature Review
3. Analytical Framework
4. Data
5. Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nelson, G.C.; Rosegrant, M.W.; Koo, J.; Robertson, R.; Sulser, T.; Zhu, T.; Magalhaes, M. Climate Change: Impact on Agriculture and Costs of Adaptation; International Food Policy Research Institute: Washington, DC, USA, 2009; Volume 21. [Google Scholar]
- Zhao, D.; Li, Y.-R. Climate Change and Sugarcane Production: Potential Impact and Mitigation Strategies. Int. J. Agron. 2015, 2, 1–10. [Google Scholar] [CrossRef]
- Howden, S.M.; Soussana, J.-F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19691–19696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USDA. Cotton Outlook. In USDA’s 94th Annual Agricultural Outlook Forum; Crystal Gateway Marriot Hotel: Arlington, VA, USA, 2018. Available online: https://www.usda.gov/oce/forum/2018/commodities/Cotton.pdf (accessed on 25 April 2017).
- Kunkel, K.E.; Stevens, L.E.; Stevens, S.E.; Sun, L.; Janssen, E.; Wuebbles, D.; Konrad, C.E.; Fuhrman, C.M.; Keim, B.D.; Kruk, M.C.; et al. Regional Climate Trends and Scenarios for the U.S. National Climate Assessment: Part 2. Climate of the Southeast U.S.; NOAA Technical Report 142-2; National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service: Washington, DC, USA, 2013; p. 103.
- Bartels, W.L.; Furman, C.A.; Diehl, D.C.; Royce, F.S.; Dourte, D.R.; Ortiz, B.V.; Jones, J.W. Warming up to climate change: A participatory approach to engaging with agricultural stakeholders in the Southeast US. Reg. Environ. Chang. 2013, 13, 45–55. [Google Scholar] [CrossRef]
- Smith, J.B. A Synthesis of the Potential Impacts of Climate Change on the United States; Pew Center on Global Climate Change: Arlington, VA, USA, 2004. [Google Scholar]
- Karl, T.R.; Melillo, J.M.; Peterson, T.C. (Eds.) Global Climate Change Impacts in the United States; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- National Climate Assessment. Available online: http://nca2014.globalchange.gov/report/our-changing-climate/recent-us-temperature-trends (accessed on 10 August 2018).
- Robinson, W.A.; Reudy, R.; Hansen, J.E. General circulation model simulations of recent cooling in the east-central United States. J. Geophys. Res. 2002, 107, 4748. [Google Scholar] [CrossRef]
- Dell, M.; Jones, B.F.; Olken, B.A. What Do We Learn from the Weather? The New Climate–Economy Literature. J. Econ. Lit. 2014, 52, 740–798. [Google Scholar] [CrossRef]
- Burke, M.; Emerick, K. Adaptation to climate change: Evidence from US agriculture. Am. Econ. J. Econ. Policy 2016, 8, 106–140. [Google Scholar] [CrossRef]
- Adams, R.; Rosenzweig, C.R.; Peart, M.; Ritchie, J.T.; McCarl, B.A.; Glyer, J.D.; Curry, R.B.; Jones, J.W.; Boote, K.J.; Allen, L.H. Global Climate Change and U.S. Agriculture. Nature 1990, 345, 219–224. [Google Scholar] [CrossRef]
- Easterling, W.; McKenney, M.; Rosenberg, N.; Lemon, K. Processes for Identifying Regional Influences of and Responses to Increasing Atmospheric CO2 and Cimate Change-The MINK Project-Report IIB; DOE/RL/01830T-H8; Department of Energy: Washington, DC, USA, 1991.
- Rosenzweig, C.; Parry, M.L. Potential impact of climate change on world food supply. Nature 1994, 367, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Mearns, L.O.; Easterling, W.; Hays, C. Comparison of agricultural impacts of climate change calculated from high and low resolution climate model scenarios. Part I: The uncertainty due to spatial scale. Clim. Chang. 2001, 51, 131–172. [Google Scholar] [CrossRef]
- Stöckle, C.O.; Donatelli, M.; Nelson, R. CropSyst, a cropping systems simulation Model. Eur. J. Agron. 2003, 18, 289–307. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Estimating the Impact of Climate Change on Crop Yields: The Importance of Nonlinear Temperature Effects; NBER Working Paper 13799; NBER: Washington, DC, USA, 2008. [Google Scholar]
- Mourtzinis, S.; Ortiz, B.V.; Damianidis, D. Climate Change and ENSO Effects on Southeastern US Climate Patterns and Maize Yield. Sci. Rep. 2016, 6, 29777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendelsohn, R.; Nordhaus, W.D.; Shaw, D. The Impact of Global Warming on Agriculture: A Ricardian Analysis. Am. Econ. Rev. 1994, 84, 753–771. [Google Scholar]
- Schlenker, W.; Hanemann, M.; Fisher, A. Will US Agriculture Really Benefit From Global Warming? Accounting for Irrigation in the Hedonic Approach. Am. Econ. Rev. 2005, 95, 395–406. [Google Scholar] [CrossRef]
- Schlenker, W.; Hanemann, W.M.; Fisher, A.C. The impact of global warming on U.S. agriculture: An econometric analysis of optimal growing conditions. Rev. Econ. Stat. 2006, 88, 113–125. [Google Scholar]
- Timmins, C. Endogenous Land use and the Ricardian Valuation of Climate Change. Environ. Resour. Econ. 2003, 33, 119–142. [Google Scholar] [CrossRef]
- Kabubo-Mariara, J.; Karanja, F.K. The economic impact of climate change on Kenyan crop agriculture: A Ricardian approach. Glob. Planet. Chang. 2007, 57, 319–330. [Google Scholar] [CrossRef]
- Deschenes, O.; Greenstone, M. The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather. Am. Econ. Rev. 2007, 97, 354–385. [Google Scholar] [CrossRef]
- Seo, N.; Mendelsohn, R. A Ricardian Analysis of the Impact of Climate Change on South American Farms. Chil. J. Agric. Res. 2008, 68, 69–79. [Google Scholar] [Green Version]
- Sinclair, T.R.; Noam, S. Criteria for publishing papers on crop modeling. Field Crops Res. 2000, 68, 165–172. [Google Scholar] [CrossRef]
- Long, S.P.; Ainsworth, E.A.; Leakey, A.D.B.; Morgan, P.B. Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-airconditions suggests recent models may have overestimated future yields. Philos. Trans. R. Soc. B 2005, 360, 2011–2020. [Google Scholar] [CrossRef] [PubMed]
- Quiggin, J.; Horowitz, J. The impact of global warming on agriculture: A Ricardian analysis: Comment. Am. Econ. Rev. 1999, 89, 1044–1045. [Google Scholar] [CrossRef]
- Adams, R.M.; Fleming, R.A.; Ching-Chang, C.; McCarl, B.A.; Rosenzweig, C. A Reassessment of the Economic Effects of Global Climate Change on U.S. Agriculture. Clim. Chang. 1995, 30, 147–167. [Google Scholar] [CrossRef]
- Kaiser, H.M.; Riha, S.J.; Wilks, D.S.; Rossier, D.G.; Sampath, R. A farm-level analysis of economic and agronomic impacts of gradual warming. Am. J. Agric. Econ. 1993, 75, 387–398. [Google Scholar] [CrossRef]
- Kelly, D.L.; Kolstad, C.D.; Mitchell, G.T. Adjustment Costs from Environmental Change. J. Environ. Econ. Manag. 2005, 50, 468–495. [Google Scholar] [CrossRef]
- Massetti, E.; Mendelsohn, R. The impact of climate change on US agriculture: A repeated cross-sectional Ricardian analysis. In Handbook on Climate Change and Agriculture; Dinar, A., Mendelsohn, R., Eds.; Edward Elgar: Cheltenham, UK; Northampton, MA, USA, 2011. [Google Scholar]
- Kaufmann, R.K. The Impact of Climate Change on US Agriculture: A Response to Mendelsohn et al. (1994). Ecol. Econ. 1997, 26, 113–119. [Google Scholar] [CrossRef]
- Cline, W.R. The Impact of Global Warming on Agriculture: Comment. Am. Econ. Rev. 1996, 86, 1309–1311. [Google Scholar]
- Mendelsohn, R.; Dinar, A. Climate, Water and Agriculture. Land Econ. 2003, 79, 328–341. [Google Scholar] [CrossRef]
- Bartels, W.; Furman, C.A.; Royce, F. Agricultural Adaptation to Climate Variability and Change among African American Growers in the Southeast USA; Southeast Climate Consortium Technical Report Series: 12-003:00-00; Southeast Climate Consortium: Gainesville, FL, USA, 2012. [Google Scholar]
- Cammarano, D.; Payero, J.; Basso, B.; Grace, P.; Stefanova, L. Adapting wheat sowing dates to projected climate change in Australia sub-tropic: Analysis of crop water use and yield. Crop Pasture Sci. 2012, 63, 974–986. [Google Scholar] [CrossRef]
- Royce, F.; Bartels, W.; Furman, C.A.; Ortiz, B.; Zierden, D.; Fraisse, C. Developing a Learning Community: Lessons from a Climate Working Group for Agriculture in the Southeast USA; Southeast Climate Consortium Technical Report Series: SECC Technical Report 12-001:1-56; Southeast Climate Consortium: Gainesville, FL, USA, 2012. [Google Scholar]
- Cabrera, V.E.; Solis, D.; Baigorria, G.A.; Letson, D. Managing Climate Variability in Agricultural Analysis. In Ocean Circulation and El Nino: New Research; NOVA: Hauppauge, NY, USA, 2009; pp. 163–179. [Google Scholar]
- Van Passel, S.; Massetti, E.; Mendelsohn, R. A Ricardian Analysis of the Impact of Climate Change on European Agriculture. Environ. Resour. Econ. 2016, 1–36. [Google Scholar] [CrossRef]
- Mourtzinis, S.; Specht, J.E. Climate-induced reduction in US-wide soybean yields underpinned by region- and in-season specific responses. Nat. Plants 2015, 1, 14026. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Bobea, A. The Economic Impacts of Climate Change on Agriculture: Accounting for Time-Invariant Unobservables in the Hedonic Approach; Working Paper; Cornell University: Ithaca, NY, USA, 2016; Available online: http://ageconsearch.umn.edu/bitstream/250035/2/Cornell-Dyson-wp1615.pdf (accessed on 12 May 2017).
- Fisher, A.C.; Hanemann, W.M.; Roberts, M.J.; Schlenker, W. The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Comment. Am. Econ. Rev. 2012, 102, 3749–3760. [Google Scholar] [CrossRef]
Variable | Description | Unit of Measurement | Source | A Priori Sign |
---|---|---|---|---|
Farmland Value | Estimated market value of farmland | Dollar/acre | ARMS | |
Acres Operated | Total Size of land under operation | Acre/acre | ARMS | |
Land Owned | Acres of farmland owned | Acre/acre | ARMS | |
Land Rented | Acres free rented + acres share rented + acres cash rented | Acre/acre | ARMS | |
Average County Specific Climate Variables | ||||
Winter Temp | Winter mean air temperature, 1981–2010 | °F | GHCND | +/− |
Spring Temp | Spring mean air temperature, 1981–2010 | °F | GHCND | +/− |
Summer Temp | Summer mean air temperature, 1981–2010 | °F | GHCND | +/− |
Fall Temp | Fall mean air temperature, 1981–2010 | °F | GHCND | +/− |
Winter Precip | Winter mean cumulative precipitation, 1981–2010 | cm/month | GHCND | +/− |
Spring Precip | Spring mean cumulative precipitation, 1981–2010 | cm/month | GHCND | +/− |
Summer Precip | Summer mean cumulative precipitation, 1981–2010 | cm/month | GHCND | +/− |
Fall Precip | Fall mean cumulative precipitation, 1981–2010 | cm/month | GHCND | +/− |
Average County Specific Soil Characteristics | ||||
Total Sand | Mineral particles 0.05–2.0 mm in equivalent diameter as a weight percentage of the less than 2 mm fraction | % Weight | SSURGO | − |
Total Silt | Mineral particles 0.002–0.05 mm in equivalent diameter as a weight percentage of the less than 2 mm fraction | % Weight | SSURGO | − |
Total Clay | Mineral particles <0.002 mm in equivalent diameter as a weight percentage of the less than 2 mm fraction | % Weight | SSURGO | − |
Organic Matter | Weight of decomposed plant and animal residue expressed as a weight percentage of the less than 2 mm soil material | % Weight | SSURGO | + |
Ph | Soil pH level | - | SSURGO | +/− |
Salinity | Soil Electrical Conductivity | - | SSURGO | − |
Soil Erodibility | Susceptibility of soil particles to detachment by water (KW factor) | - | SSURGO | − |
Average County Specific Geographic Variables | ||||
Slope Gradient | Difference in elevation between two points, expressed as a percentage of the distance between those points | % | SSURGO | +/− |
Miles to town | Number of Miles from farm to the nearest town with a population of 10,000+ | Miles | ARMS | − |
Per Capita Income | Average County Per Capita Income | US Dollars | US Census Bureau | + |
Mean Elevation | Mean elevation above sea level | km | GHCND | − |
Latitude | Decimated degrees with northern hemisphere values > 0 and southern hemisphere values < 0 | Degrees | GHCND | +/− |
Longitude | Decimated degrees with western hemisphere values < 0 and eastern hemisphere values > 0 | Degrees | GHCND | +/− |
Variable | Mean | Std. Dev. | Minimum | Maximum |
---|---|---|---|---|
County Level Farm variables | ||||
Land Value (mil $) | 258,805 | 3,499,199 | 6322 | 43,700,000 |
Land Value/acre ($/ac) | 3791 | 6104 | 500 | 105,888. |
Acres Operated (,000) | 68,262 | 95,600 | 200 | 1,372,887. |
Acres Owned (,000) | 36,791 | 73,833 | 0 | 1,346,770 |
Acres Rented (,000) | 32,962 | 44,011 | 0 | 481,492 |
Average County Specific Climate Variables | ||||
Winter Temp (°F) | 45.64 | 7.84 | 29.78 | 69.76 |
Spring Temp (°F) | 61.68 | 5.35 | 44.24 | 76.33 |
Summer Temp (°F) | 78.06 | 3.05 | 64.51 | 93.77 |
Fall Temp (°F) | 63.39 | 5.71 | 42.98 | 79.13 |
Winter Precip (10 mm) | 27.46 | 7.23 | 10.65 | 64.80 |
Spring Precip (10 mm) | 30.11 | 5.82 | 0 | 51.47 |
Summer Precip (10 mm) | 36.68 | 9.92 | 14.13 | 84.90 |
Fall Precip (10 mm) | 27.23 | 3.94 | 5.79 | 44.21 |
Average County Specific Soil Characteristics | ||||
Total Sand (% wgt) | 55.30 | 20.99 | 4.60 | 90.67 |
Total Silt (% wgt) | 28.98 | 17.65 | 0.81 | 76.97 |
Total Clay (% wgt) | 13.88 | 6.16 | 1.63 | 37.88 |
Organic Matter (% wgt) | 3.55 | 3.40 | 0.68 | 29.14 |
Ph | 5.35 | 0.38 | 4.68 | 7.57 |
Salinity | 0.16 | 0.80 | 0.00 | 18.41 |
Soil Erodibility | 0.23 | 0.09 | 0.02 | 0.47 |
Average County Specific Geographic Variables | ||||
Slope Gradient (%) | 8.71 | 7.04 | 0.61 | 42.88 |
Miles to town (mi) | 10.56 | 8.11 | 0 | 120.00 |
Income Per Capita ($) | 22,813 | 4983.15 | 10,925.00 | 490,001.00 |
Mean Elevation (m) | 106.50 | 112.34 | 1.22 | 670.21 |
Latitude (°) | 33.91 | 2.98 | 25.00 | 39.14 |
Longitude (°) | −82.77 | 3.58 | −91.36 | −75.7230 |
lnLandValue | All Variables | Without State Dummies | Only Climate Variables |
---|---|---|---|
wintertemp | 0.3695 *** | 0.3600 *** | 0.2139 *** |
(0.0290) | (0.0275) | (0.0349) | |
wintertempsq | −0.0044 *** | −0.0044 *** | −0.0014 *** |
(0.0003) | (0.0003) | (0.0004) | |
springtemp | −0.5627 *** | −0.5018 *** | −0.2631 *** |
(0.0726) | (0.0708) | (0.0933) | |
springtempsq | 0.0048 *** | 0.0043 *** | 0.0026 *** |
(0.0006) | (0.0006) | (0.0008) | |
summertemp | 1.4213 *** | 1.6966 *** | 1.0734 *** |
(0.1044) | (0.1050) | (0.1315) | |
summertempsq | −0.0097 *** | −0.0115 *** | −0.0084 *** |
(0.0007) | (0.0007) | (0.0009) | |
falltemp | −0.0861 * | −0.1436 * | 0.0824 |
(0.0744) | (0.0760) | (0.1024) | |
falltempsq | 0.0008 * | 0.0014 *** | −0.0009 |
(0.0006) | (0.0006) | (0.0008) | |
winterpreci | −0.1352 *** | −0.0732 *** | −0.0336 *** |
(0.0056) | (0.0047) | (0.0061) | |
winterprecisq | 0.0021 *** | 0.0010 *** | 0.0000 |
(0.0001) | (0.0001) | (0.0001) | |
springpreci | 0.0148 * | 0.0117 | 0.0532 *** |
(0.0077) | (0.0076) | (0.0102) | |
springprecisq | −0.0003 ** | −0.0003 ** | −0.0010 *** |
(0.0001) | (0.0001) | (0.0002) | |
summerpreci | −0.0630 *** | −0.0695 *** | −0.1481 *** |
(0.0040) | (0.0038) | (0.0043) | |
summerprecisq | 0.0008 *** | 0.0009 *** | 0.0017 *** |
(0.0000) | (0.0000) | (0.0001) | |
fallpreci | −0.0342 *** | 0.0035 | −0.0931 *** |
(0.0075) | (0.0076) | (0.0101) | |
fallprecisq | 0.0008 *** | 0.0001 | 0.0022 *** |
(0.0001) | (0.0001) | (0.0002) | |
percapitaincome | 0.0489 *** | 0.0494 *** | |
(0.0007) | (0.0007) | ||
elevationmean | 0.0024 *** | 0.0028 *** | |
(0.0001) | (0.0001) | ||
latitudemean | −0.0387 | −0.0800 | |
(0.0090) | (0.0080) | ||
longitudemean | 0.0199 | 0.0270 ** | |
(0.0038) | (0.0030) | ||
slopegradient | −0.0074 | −0.0074 * | |
(0.0010) | (0.0010) | ||
soilerodibilityfactor_kw | −1.7767 *** | −1.8599 *** | |
(0.1157) | (0.1154) | ||
organicmatter | 0.0114 *** | 0.0088 *** | |
(0.0018) | (0.0018) | ||
totalsand | −0.0318 *** | −0.0328 *** | |
(0.0015) | (0.0016) | ||
totalsilt | −0.0211 *** | −0.0230 *** | |
(0.0016) | (0.0017) | ||
totalclay | −0.0220 *** | −0.0300 *** | |
(0.0019) | (0.0019) | ||
ph | −0.0946 *** | −0.0270 * | |
(0.0156) | (0.0151) | ||
salinity | 0.0411 *** | 0.0225 *** | |
(0.0038) | (0.0039) | ||
milesfromtown | −0.0058 *** | −0.0088 *** | |
(0.0004) | (0.0004) | ||
acresowned_acre | 1.1494 *** | 1.1615 *** | |
(0.0530) | (0.0548) | ||
acresrented_acre | 1.3014 *** | 1.2690 *** | |
(0.0553) | (0.0572) | ||
Florida | 0.7221 *** | ||
(0.0223) | |||
Georgia | 0.4214 *** | ||
(0.0170) | |||
Kentucky | −0.0801 *** | ||
(0.0286) | |||
Mississippi | −0.0262 | ||
(0.0177) | |||
North Carolina | 0.2915 *** | ||
(0.0231) | |||
South Carolina | 0.2236 *** | ||
(0.0231) | |||
Tennessee | −0.1082 *** | ||
(0.0193) | |||
Virginia | −0.0014 | ||
(0.0293) | |||
Constant | −34.2736 *** | −42.8321 *** | −29.2004 *** |
(2.1465) | (2.1509) | (2.4618) | |
Observations | 647 | 647 | 647 |
R-squared | 0.7878 | 0.7686 | 0.5491 |
Adj. R-squared | 0.7873 | 0.7682 | 0.5487 |
F test | 154.0.0 | 172.3.0 | 127.5.0 |
Prob (F-statistic) | 0.000 | 0.000 | 0.000 |
Temperature | ΔV/acre, % | dV/dT |
Annual | −8.05 | −305 * |
Winter | −3.21 | −121.70 *** |
Spring | 2.94 | 111.53 *** |
Summer | −9.31 | −352.90 *** |
Fall | 1.53 | 58.07 * |
Precipitation | ΔV/acre, % | dV/dP |
Annual | −1.81 | −68.61 ** |
Winter | −1.99 | −75.41 *** |
Spring | −0.33 | −12.39 * |
Summer | −0.43 | −16.32 *** |
Fall | 0.94 | 35.51 *** |
lnLandValue | Rainfed Only | Irrigated Only | Crops Only | Livestock Only |
---|---|---|---|---|
wintertemp | 0.5846 *** | 0.1182 *** | −0.0643 | 0.3982 *** |
(0.1177) | (0.0329) | (0.0516) | (0.0476) | |
wintertempsq | −0.0068 *** | −0.0011 *** | 0.0008 | −0.0046 *** |
(0.0014) | (0.0004) | (0.0006) | (0.0006) | |
springtemp | −1.8903 *** | −0.6550 *** | −0.1084 | −0.9082 *** |
(0.2963) | (0.0840) | (0.1294) | (0.1184) | |
springtempsq | 0.0154 *** | 0.0057 *** | 0.0007 | 0.0078 *** |
(0.0025) | (0.0007) | (0.0011) | (0.0010) | |
summertemp | 3.2890 *** | 1.0266 *** | 0.9169 *** | 1.3095 *** |
(0.4539) | (0.1189) | (0.1800) | (0.1771) | |
summertempsq | −0.0209 *** | −0.0071 *** | −0.0063 *** | −0.0089 *** |
(0.0029) | (0.0008) | (0.0012) | (0.0011) | |
falltemp | −1.0979 *** | 0.5851 *** | 0.4762 *** | −0.1169 |
(0.3095) | (0.0844) | (0.1354) | (0.1203) | |
falltempsq | 0.0090 *** | −0.0046 *** | −0.0031 *** | 0.0012 |
(0.0026) | (0.0007) | (0.0011) | (0.0010) | |
winterpreci | −0.0732 *** | −0.0906 *** | −0.0473 *** | −0.0990 *** |
(0.0247) | (0.0064) | (0.0109) | (0.0089) | |
winterprecisq | 0.0014 *** | 0.0013 *** | 0.0009 *** | 0.0015 *** |
(0.0004) | (0.0001) | (0.0002) | (0.0001) | |
springpreci | 0.0681 * | 0.0609 *** | 0.0359 ** | 0.0020 |
(0.0352) | (0.0088) | (0.0146) | (0.0119) | |
springprecisq | −0.0010 ** | −0.0009 *** | −0.0005 ** | −0.0001 |
(0.0005) | (0.0001) | (0.0002) | (0.0002) | |
summerpreci | −0.0356 * | −0.0910 *** | −0.0865 *** | −0.0555 *** |
(0.0183) | (0.0045) | (0.0075) | (0.0061) | |
summerprecisq | 0.0005 ** | 0.0012 *** | 0.0011 *** | 0.0008 *** |
(0.0002) | (0.0001) | (0.0001) | (0.0001) | |
fallpreci | −0.1605 *** | −0.0448 *** | −0.0715 *** | −0.0257 ** |
(0.0374) | (0.0082) | (0.0137) | (0.0120) | |
fallprecisq | 0.0027 *** | 0.0010 *** | 0.0012 *** | 0.0006 *** |
(0.0007) | (0.0001) | (0.0002) | (0.0002) | |
percapitaincome | 0.0409 *** | 0.0565 *** | 0.0655 *** | 0.0478 *** |
(0.0030) | (0.0008) | (0.0012) | (0.0011) | |
elevationmean | 0.0022 *** | 0.0025 *** | 0.0027 *** | 0.0017 *** |
(0.0004) | (0.0001) | (0.0002) | (0.0001) | |
latitudemean | −0.0134 | −0.0046 | −0.0380 ** | 0.0127 |
(0.0380) | (0.0104) | (0.0170) | (0.0139) | |
longitudemean | −0.0010 | 0.0380 *** | 0.0202 *** | 0.0352 *** |
(0.0160) | (0.0044) | (0.0074) | (0.0060) | |
slopegradient | −0.0192 *** | −0.0083 *** | −0.0121 *** | −0.0039 *** |
(0.0044) | (0.0011) | (0.0019) | (0.0014) | |
soilerodibilityfactor_kw | −0.7971 | −2.1331 *** | −3.1507 *** | −0.5767 *** |
(0.5249) | (0.1326) | (0.2067) | (0.1896) | |
organicmatter | 0.0006 | 0.0202 *** | 0.0234 *** | −0.0092 ** |
(0.0085) | (0.0020) | (0.0028) | (0.0036) | |
totalsand | −0.0200 *** | −0.0344 *** | −0.0439 *** | −0.0078 *** |
(0.0071) | (0.0018) | (0.0025) | (0.0029) | |
totalsilt | −0.0082 | −0.0186 *** | −0.0233 *** | 0.0011 |
(0.0074) | (0.0019) | (0.0027) | (0.0030) | |
totalclay | −0.0012 | −0.0226 *** | −0.0289 *** | 0.0018 |
(0.0085) | (0.0022) | (0.0031) | (0.0035) | |
ph | 0.1224 * | −0.0751 *** | −0.0216 | −0.0358 |
(0.0642) | (0.0179) | (0.0273) | (0.0254) | |
salinity | −0.0549 | 0.0468 *** | −0.0286 *** | 0.0627 *** |
(0.0449) | (0.0043) | (0.0065) | (0.0065) | |
milesfromtown | −0.0043 *** | −0.0065 *** | −0.0024 *** | −0.0073 *** |
(0.0010) | (0.0005) | (0.0006) | (0.0005) | |
acresowned_acre | 0.6594 *** | 1.2764 *** | 0.3532 *** | 1.1860 *** |
(0.0457) | (0.0604) | (0.0220) | (0.0493) | |
acresrented_acre | 0.6479 *** | 1.3006 *** | 0.3553 *** | 1.3903 *** |
(0.0660) | (0.0625) | (0.0328) | (0.0562) | |
Florida | 0.3549 *** | 0.6215 *** | 0.7417 *** | 0.6034 *** |
(0.0998) | (0.0253) | (0.0446) | (0.0343) | |
Georgia | 0.4080 *** | 0.3648 *** | 0.3644 *** | 0.4050 *** |
(0.0690) | (0.0196) | (0.0363) | (0.0253) | |
Kentucky | −0.1192 | −0.1340 *** | −0.0413 | −0.2281 *** |
(0.1134) | (0.0327) | (0.0551) | (0.0435) | |
Mississippi | −0.1446 ** | 0.0760 *** | 0.0352 | 0.0306 |
(0.0689) | (0.0204) | (0.0363) | (0.0271) | |
North Carolina | 0.8592 *** | 0.2348 *** | 0.6085 *** | 0.1566 *** |
(0.0953) | (0.0267) | (0.0454) | (0.0356) | |
South Carolina | 0.5411 *** | 0.2296 *** | 0.3509 *** | 0.1466 *** |
(0.0906) | (0.0268) | (0.0442) | (0.0363) | |
Tennessee | 0.1084 | 0.0229 | −0.0410 | −0.0210 |
(0.0755) | (0.0223) | (0.0401) | (0.0290) | |
Virginia | 0.5024 *** | −0.1791 *** | 0.2446 *** | −0.3379 *** |
(0.1204) | (0.0336) | (0.0559) | (0.0455) | |
Constant | −47.4769 *** | −31.5340 *** | −35.9820 *** | −22.2063 *** |
(9.4040) | (2.4507) | (3.6432) | (3.7301) | |
Observations | 647 | 647 | 647 | 647 |
R-squared | 0.5344 | 0.7545 | 0.7941 | 0.6045 |
Adj. R-squared | 0.5264 | 0.7539 | 0.7930 | 0.6029 |
F test | 66.31 | 1164 | 738.4 | 363.7 |
Prob (F-statistic) | 0.000 | 0.000 | 0.000 | 0.000 |
State | Annual Temp | Annual Preci | Winter Temp | Spring Temp | Summer Temp | Fall Temp | Winter Preci | Spring Preci | Summer Preci | Fall Preci |
---|---|---|---|---|---|---|---|---|---|---|
Alabama | 2.34% | 0.19% | −3.80% | 4.12% | −11.66% | 6.83% | 1.85% | −0.69% | −0.98% | 1.11% |
Florida | −1.28% | −0.04% | −14.4% | 10.65% | −15.81% | 8.75% | −4.03% | −0.02% | 2.19% | 1.30% |
Georgia | 2.27% | −0.31% | −4.90% | 4.59% | −11.24% | 6.91% | −0.67% | −0.24% | −0.96% | 1.36% |
Kentucky | 3.35% | −0.32% | 5.11% | −2.37% | −4.18% | 5.21% | −1.90% | −0.60% | −1.59% | 1.33% |
Mississippi | −2.29% | 0.41% | −3.88% | 4.74% | −12.71% | 6.87% | 3.10% | −0.81% | −0.96% | 0.92% |
North Carolina | 2.95% | −0.33% | 0.22% | −0.24% | −5.41% | 5.81% | −2.61% | −0.26% | −0.75% | 1.17% |
South Carolina | 2.42% | −0.48% | −3.42% | 3.45% | −11.29% | 6.62% | −2.37% | −0.09% | −0.68% | 1.43% |
Tennessee | 3.10% | 0.02% | 2.48% | −0.74% | −5.24% | 5.56% | 0.44% | −0.76% | −1.56% | 1.08% |
Virginia | 3.47% | −0.68% | 4.55% | −3.77% | −0.75% | 5.01% | −4.15% | −0.23% | −1.64% | 1.32% |
Present | Hadley CM3 (by 2100) | ECHO-G (by 2100) | NCAR PCM (by 2100) | |||||
---|---|---|---|---|---|---|---|---|
Land Value/acre | Total Operated Acres, 000s | Impact/acre, $ | Total Impact (mil $) | Impact/acre, $ | Total Impact (mil $) | Impact/acre, $ | Total Impact (mil $) | |
AL | $2003 | 5863 | −113.29 | −664.15 | −111.52 | −653.82 | −68.10 | −399.21 |
FL | $8698 | 6205 | −3656.08 | −22,685.77 | −3551.5 | −22,036.7 | −2118.8 | −13,146.9 |
GA | $3125 | 7103 | −265.21 | −1883.75 | −248.84 | −1767.48 | −139.15 | −988.35 |
KY | $2080 | 11,069 | 583.17 | 6455.12 | 574.48 | 6358.93 | 351.20 | 3887.44 |
MS | $1467 | 7335 | −104.75 | −768.34 | −105.24 | −771.89 | −66.47 | −487.56 |
NC | $3247 | 7184 | 469.63 | 3373.96 | 467.80 | 3360.83 | 291.39 | 2093.44 |
SC | $2422 | 3356 | −89.48 | −300.33 | −76.76 | −257.64 | −35.02 | −117.55 |
TN | $2459 | 9082 | 494.63 | 4492.30 | 483.22 | 4388.63 | 291.18 | 2644.55 |
VA | $3261 | 6994 | 1041.24 | 7282.31 | 1032.82 | 7223.45 | 638.82 | 4467.85 |
SeUS | $3791 | 64,191 | −182.24 | −11,697.98 | −170.61 | −10,951.9 | −94.99 | −6097.37 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quaye, F.; Nadolnyak, D.; Hartarska, V. Climate Change Impacts on Farmland Values in the Southeast United States. Sustainability 2018, 10, 3426. https://doi.org/10.3390/su10103426
Quaye F, Nadolnyak D, Hartarska V. Climate Change Impacts on Farmland Values in the Southeast United States. Sustainability. 2018; 10(10):3426. https://doi.org/10.3390/su10103426
Chicago/Turabian StyleQuaye, Frederick, Denis Nadolnyak, and Valentina Hartarska. 2018. "Climate Change Impacts on Farmland Values in the Southeast United States" Sustainability 10, no. 10: 3426. https://doi.org/10.3390/su10103426
APA StyleQuaye, F., Nadolnyak, D., & Hartarska, V. (2018). Climate Change Impacts on Farmland Values in the Southeast United States. Sustainability, 10(10), 3426. https://doi.org/10.3390/su10103426