The In Vivo Antioxidant Effect of Vitamin C on Hemogram in Paraquat Treated Male Rats (Rattus norvegicus)
Introduction
Materials and Methods
Exposure conditions
Analyses
Statistical analysis
Results and Discussion
References
- Segner, H. Response of fed and starved roach, Rutilus rutilus, to sublethal copper contamination. J Fish Biol 1987, 30, 423–437. [Google Scholar] [CrossRef]
- De Boeck, G.; Van der Ven, K.; Hattink, J.; Blust, R. Swimming performance and ener- gy metabolism of rainbow trout, common carp and gibel carp respond differently to sublethal copper exposure. Aquat Toxicol 2006, 80, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Rajotte, J.W.; Couture, P. Effects of environ- mental metal contamination on the condi- tion, swimming performance, and tissue metabolic capacities of wild yellow perch (Perca flavescens). Can J Fish Aquat Sci 2002, 59, 1296–1304. [Google Scholar] [CrossRef]
- Ereci ska, M.; Wilson, D.F. Regulation of cel- lular energy metabolism. J Membrane Biol 1987, 70, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Chovanec, A.; Hofer, R.; Schiemer, F. Chapter 18: Fish as bioindicators. In Trace Metals and Other Contaminants in the Environment. Vol. 6: Bioindicators & Biomonitors - Principles, Concepts and Applications; Markert, B.A., Breure, A.M., Zechmeister, H.G., Eds.; Elsevier: Dordrecht, 2003. [Google Scholar]
- Brusqué, J.; Quignard, J.P. Biologie des pois- sons d’eau douce européens; Edition TEC&DOC: Paris, 2001. [Google Scholar]
- Sébert, P.; Barthélémy, L.; Caroff, J.; Hourmant, A. Effects of hydrostatic pressure per se (101 ATA) on energetic processes in fish. Comp. Biochem Phys A 1987, 86, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Cann-Moisan, C.; Sébert, P.; Caroff, J.; Barthélémy, L. Effects of hydrostatic pres- sure (HP = 101 ATA) on nucleotides and pyridine dinucleotides tissue contents in trout. Exp Biol 1988, 47, 239–242. [Google Scholar] [PubMed]
- De Coen, W.M.; Janssen, C.R. The use of bio- markers in Daphnia magna toxicity test- ing. IV. Cellular Energy Allocation: a new methodology to assess the energy budget of toxicant-stressed Daphnia populations. J Aquat Ecosyst Stress Recovery 1997, 6, 43–55. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of rela- tive gene expression data using real-time quantitative PCR and the 2–CT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Verslycke, T.; Roast, S.D.; Widdows, J.; Jones, M.B.; Janssen, C.R. Cellular energy alloca- tion and scope for growth in the estuarine mysid Neomysis integer (Crustacea: Mysidacea) following chlorpyrifos expo- sure: a method comparison. J Exp Mar Biol Ecol 2004, 306, 1–16. [Google Scholar] [CrossRef]
- Pierron, F.; Bourret, V.; St-Cyr, J.; Campbell, P.G.C.; Bernatchez, L.; Couture, P. Transcrip- tional responses to environmental metal exposure in wild yellow perch (Perca flavescens) collected in lakes with differing environmental metal concentrations (Cd, Cu, Ni). Ecotoxicology 2009, 18, 620–631. [Google Scholar] [CrossRef] [PubMed]
- Couture, P.; Kumar, P.R. Impairment of meta- bolic capacities in copper and cadmium contaminated wild yellow perch (Perca flavescens). Aquat Toxicol 2003, 64, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, D.E.; Walton, G.M. ATP conserva- tion in metabolic regulation. J Biol Chem 1967, 242, 3239–3241. [Google Scholar] [CrossRef] [PubMed]
- Heath, A.G. Changes in adenylates and water content of bluegill, Lepomis macrochirus, exposed to copper. J Fish Biol 1984, 24, 299–309. [Google Scholar] [CrossRef]
- De Boeck, G.; Van der Ven, K.; Meeus, W.; Blust, R. Sublethal copper exposure induces respiratory stress in common and gibel carp but not in rainbow trout. Comp Biochem Phys C 2007, 144, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Sola, F.; Isaia, J.; Masoni, A. Effects of copper on gill structure and transport function in the rainbow trout, Oncorhynchus mykiss. J Appl Toxicol 1995, 15, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Jorgea, M.B.; Lorob, V.L.; Bianchinia, A.; Wood, C.M.; Gillis, P.L. Mortality, bioaccumulation and physiological responses in juvenile freshwater mussels (Lampsilis siliquoidea) chronically exposed to copper. Aquat Toxicol 2013, 126, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Lauer, M.M.; De Oliveira, C.B.; Yano, N.L.I.; Bianchini, A. Copper effects on key meta- bolic enzymes and mitochondrial mem- brane potential in gills of the estuarine crab Neohelice granulata at different salinities. Comp Biochem Phys C 2012, 156, 140–147. [Google Scholar]
- Sanchez, W.; Palluel, O.; Meunier, L.; Coquery, M.; Porcher, J.M.; Aït-Aïssa, S. Copper- induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Environ Toxicol Phar 2005, 19, 177–183. [Google Scholar] [CrossRef] [PubMed]
© Copyright V. Maes et al., 2013 Licensee PAGEPress, Italy. This work is licensed under a Creative Commons Attribution NonCommercial 3.0 License (CC BYNC 3.0). (CC BY-NC 3.0).
Share and Cite
Okolonkwo, B.N.; Okeke, C.U.; Ibharokhonre, V. The In Vivo Antioxidant Effect of Vitamin C on Hemogram in Paraquat Treated Male Rats (Rattus norvegicus). J. Xenobiot. 2013, 3, e7. https://doi.org/10.4081/xeno.2013.e7
Okolonkwo BN, Okeke CU, Ibharokhonre V. The In Vivo Antioxidant Effect of Vitamin C on Hemogram in Paraquat Treated Male Rats (Rattus norvegicus). Journal of Xenobiotics. 2013; 3(1):e7. https://doi.org/10.4081/xeno.2013.e7
Chicago/Turabian StyleOkolonkwo, Benjamin Nnamdi, Chukwubuike Udoka Okeke, and Victor Ibharokhonre. 2013. "The In Vivo Antioxidant Effect of Vitamin C on Hemogram in Paraquat Treated Male Rats (Rattus norvegicus)" Journal of Xenobiotics 3, no. 1: e7. https://doi.org/10.4081/xeno.2013.e7
APA StyleOkolonkwo, B. N., Okeke, C. U., & Ibharokhonre, V. (2013). The In Vivo Antioxidant Effect of Vitamin C on Hemogram in Paraquat Treated Male Rats (Rattus norvegicus). Journal of Xenobiotics, 3(1), e7. https://doi.org/10.4081/xeno.2013.e7