Comprehensive Biomarker Assessment of Pesticide Exposure and Telomere Attrition in Mexican Children from Agricultural Communities
Abstract
1. Introduction
2. Methodology
2.1. Study Population
2.2. Proximity of School to Agricultural Fields
2.3. Pesticide Exposure Assessment
2.4. DNA Extraction
2.5. Telomere Length
2.6. Acetylcholinesterase Activity
2.7. Butyrylcholinesterase Activity
2.8. β-Glucuronidase Activity
2.9. Dialkylphosphates (DAP)
2.10. Pesticide Exposure Index (PEI)
2.11. Statistical Analysis
3. Results
3.1. Study Population Description
3.2. Organophosphates Metabolites (DAP)
3.3. Telomere Length and Enzymatic Activities
3.4. Correlation Between Telomere Length and Age Among the Study Population
3.5. Telomere Length and BMI Categories
3.6. PEI in the Study Population
3.7. Effect of Pesticide Exposure, Assessed by Community of Residence and PEI, on Telomere Length Reduction
4. Discussion
4.1. Pesticide Exposure Biomarkers
4.2. Pesticide Effects on Telomere Length
4.3. Enzymatic Activities of Cholinesterases and β-Glucuronidase Associated with Pesticide Exposure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panis, C.; Kawassaki, A.C.B.; Crestani, A.P.J.; Pascotto, C.R.; Bortoloti, D.S.; Vicentini, G.E.; Lucio, L.C.; Ferreira, M.O.; Prates, R.T.C.; Vieira, V.K.; et al. Evidence on Human Exposure to Pesticides and the Occurrence of Health Hazards in the Brazilian Population: A Systematic Review. Front. Public Health 2022, 9, 787438. [Google Scholar] [CrossRef] [PubMed]
- González-Alzaga, B.; Hernández, A.F.; Rodríguez-Barranco, M.; Gómez, I.; Aguilar-Garduño, C.; López-Flores, I.; Parrón, T.; Lacasaña, M. Pre- and Postnatal Exposures to Pesticides and Neurodevelopmental Effects in Children Living in Agricultural Communities from South-Eastern Spain. Environ. Int. 2015, 85, 229–237. [Google Scholar] [CrossRef]
- Hyland, C.; Laribi, O. Review of Take-Home Pesticide Exposure Pathway in Children Living in Agricultural Areas. Environ. Res. 2017, 156, 559–570. [Google Scholar] [CrossRef]
- Van Horne, Y.O.; Farzan, S.F.; Razafy, M.; Johnston, J.E. Respiratory and Allergic Health Effects in Children Living near Agriculture: A Review. Sci. Total Environ. 2022, 832, 155009. [Google Scholar] [CrossRef]
- Arcury, T.A.; Chen, H.; Quandt, S.A.; Talton, J.W.; Anderson, K.A.; Scott, R.P.; Jensen, A.; Laurienti, P.J. Pesticide Exposure among Latinx Children: Comparison of Children in Rural, Farmworker and Urban, Non-Farmworker Communities. Sci. Total Environ. 2021, 763, 144233. [Google Scholar] [CrossRef] [PubMed]
- Vida, P.; Moretto, A. Pesticide Exposure Pathways among Children of Agricultural Workers. J. Public Health 2007, 15, 289–299. [Google Scholar] [CrossRef]
- Wongta, A.; Sawang, N.; Tongjai, P.; Jatiket, M.; Hongsibsong, S. The Assessment of Organophosphate Pesticide Exposure among School Children in Four Regions of Thailand: Analysis of Dialkyl Phosphate Metabolites in Students’ Urine and Organophosphate Pesticide Residues in Vegetables for School Lunch. Toxics 2022, 10, 434. [Google Scholar] [CrossRef]
- García, J.; Ventura, M.I.; Requena, M.; Hernández, A.F.; Parrón, T.; Alarcón, R. Association of Reproductive Disorders and Male Congenital Anomalies with Environmental Exposure to Endocrine Active Pesticides. Reprod. Toxicol. 2017, 71, 95–100. [Google Scholar] [CrossRef]
- Van Maele-Fabry, G.; Gamet-Payrastre, L.; Lison, D. Household Exposure to Pesticides and Risk of Leukemia in Children and Adolescents: Updated Systematic Review and Meta-Analysis. Int. J. Hyg. Environ. Health 2019, 222, 49–67. [Google Scholar] [CrossRef]
- Chetty-Mhlanga, S.; Fuhrimann, S.; Basera, W.; Eeftens, M.; Röösli, M.; Dalvie, M.A. Association of Activities Related to Pesticide Exposure on Headache Severity and Neurodevelopment of School-Children in the Rural Agricultural Farmlands of the Western Cape of South Africa. Environ. Int. 2021, 146, 106237. [Google Scholar] [CrossRef] [PubMed]
- Mostafalou, S.; Abdollahi, M. The Susceptibility of Humans to Neurodegenerative and Neurodevelopmental Toxicities Caused by Organophosphorus Pesticides. Arch. Toxicol. 2023, 97, 3037–3060. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.H.; Lim, Y.W.; Yang, J.Y.; Shin, D.C.; Ham, H.S.; Choi, B.S.; Lee, J.Y. Health risk assessment of exposure to chlorpyrifos and dichlorvos in children at childcare facilities. Sci. Total Environ. 2013, 444, 441–450. [Google Scholar] [CrossRef]
- Ruiz-Arias, M.A.; Bernal-Hernández, Y.Y.; Medina-Díaz, I.M.; Mora, A.M.; Herrera-Moreno, J.F.; Barrón-Vivanco, B.S.; González-Arias, C.A.; Verdín-Betancourt, F.A.; Aguilar-Bañuelos, J.A.; Agraz-Cibrián, J.M.; et al. Environmental Pesticide Exposure and Its Association with Hematological Parameters and Inflammation Indices among School-Aged Children in Mexico. Toxicol. Lett. 2025, 407, 83–94. [Google Scholar] [CrossRef]
- Nascimento, F.A.; Silva, D.M.; Pedroso, T.M.A.; Ramos, J.S.A.; Parise, M.R. Farmers Exposed to Pesticides Have Almost Five Times More DNA Damage: A Meta-Analysis Study. Environ. Sci. Pollut. Res. 2022, 29, 805–816. [Google Scholar] [CrossRef]
- Sule, R.O.; Condon, L.; Gomes, A.V. A Common Feature of Pesticides: Oxidative Stress—The Role of Oxidative Stress in Pesticide-Induced Toxicity. Oxid. Med. Cell. Longev. 2022, 2022, 5563759. [Google Scholar] [CrossRef]
- Hou, L.; Zhang, X.; Gawron, A.J.; Liu, J. Surrogate Tissue Telomere Length and Cancer Risk: Shorter or Longer? Cancer Lett. 2012, 319, 130–135. [Google Scholar] [CrossRef]
- Zizza, A.; Panico, A.; Grassi, T.; Recchia, V.; Grima, P.; De Giglio, O.; Bagordo, F. Is Telomere Length in Buccal or Salivary Cells a Useful Biomarker of Exposure to Air Pollution? A Review. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2022, 883–884, 503561. [Google Scholar] [CrossRef]
- Huffman, K.E.; Levene, S.D.; Tesmer, V.M.; Shay, J.W.; Wright, W.E. Telomere Shortening Is Proportional to the Size of the G-Rich Telomeric 3′-Overhang. J. Biol. Chem. 2000, 275, 19719–19722. [Google Scholar] [CrossRef]
- Buxton, J.L.; Walters, R.G.; Visvikis-Siest, S.; Meyre, D.; Froguel, P.; Blakemore, A.I.F. Childhood Obesity Is Associated with Shorter Leukocyte Telomere Length. J. Clin. Endocrinol. Metab. 2011, 96, 1500–1505. [Google Scholar] [CrossRef] [PubMed]
- James, S.; McLanahan, S.; Brooks-Gunn, J.; Mitchell, C.; Schneper, L.; Wagner, B.; Notterman, D.A. Sleep Duration and Telomere Length in Children. J. Pediatr. 2017, 187, 247–252.e1. [Google Scholar] [CrossRef] [PubMed]
- Moslem, A.; Rad, A.; de Prado Bert, P.; Alahabadi, A.; Ebrahimi Aval, H.; Miri, M.; Gholizadeh, A.; Ehrampoush, M.H.; Sunyer, J.; Nawrot, T.S.; et al. Association of Exposure to Air Pollution and Telomere Length in Preschool Children. Sci. Total Environ. 2020, 722, 137933. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, Z.; Wang, M.; Liu, H.; Li, Y.; Xu, S. Association Between Prenatal Exposure to Organochlorine Pesticides and Telomere Length in Neonatal Cord Blood. Toxics 2024, 12, 769. [Google Scholar] [CrossRef]
- Ruiz-Arias, M.A.; Rojas-García, A.E.; Medina-Díaz, I.M.; Bernal-Hernández, Y.Y.; Barrón-Vivanco, B.S.; González-Arias, C.A.; Ponce-Vélez, G.; Romero-Bañuelos, C.A.; Verdín-Betancourt, F.A. Impacto ambiental de plaguicidas de mayor venta y uso en una región del noroeste de México. Rev. Int. Contam. Ambient. 2025, 41, 563–580. [Google Scholar] [CrossRef]
- Serafín-Fabian, J.I.; Moreno-Godínez, M.E.; Flores-Alfaro, E.; Parra-Rojas, I.; Rojas-García, A.E.; Campos-Viguri, G.E.; Cahua-Pablo, J.Á.; Ramírez-Vargas, M.A. β-Glucuronidase as a Biomarker for Assessing the Exposure to Anticholinergic Pesticides: A Meta-Analysis. Environ. Toxicol. Pharmacol. 2023, 103, 104279. [Google Scholar] [CrossRef]
- EPA. Defining Pesticide Biomarkers. Available online: https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/defining-pesticide-biomarkers (accessed on 15 April 2025).
- Nigg, H.N.; Knaak, J.B. Blood Cholinesterases as Human Biomarkers of Organophosphorus Pesticide Exposure. In Reviews of Environmental Contamination and Toxicology, 1st ed.; Ware, G.W., Ed.; Springer: New York, NY, USA, 2000; Volume 163, pp. 29–111. [Google Scholar] [CrossRef]
- Caro-Gamboa, L.J.; Forero-Castro, M.; Dallos-Báez, A.E.; Caro-Gamboa, L.J.; Forero-Castro, M.; Dallos-Báez, A.E. Cholinesterase Inhibition as a Biomarker for the Surveillance of the Occupationally Exposed Population to Organophosphate Pesticides. Cienc. Tecnol. Agropecu. 2020, 21, 1–23. [Google Scholar] [CrossRef]
- Lionetto, M.G.; Caricato, R.; Calisi, A.; Giordano, M.E.; Schettino, T. Acetylcholinesterase as a Biomarker in Environmental and Occupational Medicine: New Insights and Future Perspectives. Biomed. Res. Int. 2013, 1, 321213. [Google Scholar] [CrossRef]
- Sridhar, G.R.; Gumpeny, L. Emerging Significance of Butyrylcholinesterase. World J. Exp. Med. 2024, 14, 87202. [Google Scholar] [CrossRef] [PubMed]
- Strelitz, J.; Engel, L.S.; Keifer, M.C. Blood acetylcholinesterase and butyrylcholinesterase as biomarkers of cholinesterase depression among pesticide handlers. Occup. Environ. Med. 2014, 71, 842–847. [Google Scholar] [CrossRef]
- Krenz, J.E.; Hofmann, J.N.; Smith, T.R.; Cunningham, R.N.; Fenske, R.A.; Simpson, C.D. Determinants of Butyrylcholinesterase Inhibition Among Agricultural Pesticide Handlers in Washington State: An Update. Ann. Occup. Hyg. 2015, 59, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Medina, A.; Ramírez-Vargas, M.A. Cholinesterase as a Biomarker to Identify Cases of Pesticide Poisoning. Mex. J. Med. Res. ICSA 2021, 9, 47–55. [Google Scholar] [CrossRef]
- Manfo, F.P.T.; Suh, C.F.; Nantia, E.A.; Moundipa, P.F.; Cho-Ngwa, F. Occupational use of agrochemicals results in inhibited cholinesterase activity and altered reproductive hormone levels in male farmers from Buea, Cameroon. Toxicol. Res. 2021, 10, 232–248. [Google Scholar] [CrossRef]
- Dhotre, S.N.; Katkam, R.V.; Joshi, N.G.; Deshpande, K.H. Study of acetyl cholinesterase, butyryl cholinestrase and β-Glucuronidase in organophosphorus poisoning. Indian. Med. Gazette 2014, 148, 51–57. [Google Scholar]
- Beltagy, D.M.; Sadek, K.M.; Hafez, A.S. Serum β-Glucuronidase Activity as a Biomarker for Acute Cholinesterase Inhibitor Pesticide Poisoning. Toxicol. Ind. Health 2018, 34, 891–897. [Google Scholar] [CrossRef]
- Sinha, S.N.; Reddy, B.V.; Vasudev, K.; Rao, M.V.V.; Ahmed, M.N.; Ashu, S.; Kumari, A.; Bhatnagar, V. Analysis of dialkyl urine metabolites of organophosphate pesticides by a liquid chromatography mass spectrometry technique. Anal. Methods 2014, 6, 1825–1834. [Google Scholar] [CrossRef]
- Đuc, N.K.; Khanh, T.N.; Thang, P.N.T.; Hung, T.V.; Thu, P.D.; Chi, L.T.B.; Khuyen, V.T.K.; Tuan, N.D. Ultra-High Performance Liquid Chromatography–Tandem Mass Spectrometry Method Development and Validation to Quantify Simultaneously Six Urinary DIALKYL Phosphate Metabolites of Organophosphorus Pesticides. J. Mass. Spectrom. 2025, 60, e5128. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Park, S.-Y.; Lee, K.; Oh, S.-S.; Ko, S.B. Pesticide Metabolite and Oxidative Stress in Male Farmers Exposed to Pesticide. Ann. Occup. Environ. Med. 2017, 29, 5. [Google Scholar] [CrossRef]
- Dosemeci, M.; Alavanja, M.C.R.; Rowland, A.S.; Mage, D.; Zahm, S.H.; Rothman, N.; Lubin, J.H.; Hoppin, J.A.; Sandler, D.P.; Blair, A.A. Quantitative Approach for Estimating Exposure to Pesticides in the Agricultural Health Study. Ann. Occup. Hyg. 2002, 46, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Karlsen, R.L.; Sterri, S.; Lyngaas, S.; Fonnum, F. Reference Values for Erythrocyte Acetylcholinesterase and Plasma Cholinesterase Activities in Children, Implications for Organophosphate Intoxication. Scand. J. Clin. Lab. Investig. 1981, 41, 301–302. [Google Scholar] [CrossRef]
- Gamlin, J.; Romo, P.D.; Hesketh, T. Exposure of Young Children Working on Mexican Tobacco Plantations to Organophosphorous and Carbamic Pesticides, Indicated by Cholinesterase Depression. Child. Care Health Dev. 2007, 33, 246–248. [Google Scholar] [CrossRef]
- El-Naggar, A.E.-R.; Abdalla, M.S.; El-Sebaey, A.S.; Badawy, S.M. Clinical Findings and Cholinesterase Levels in Children of Organophosphates and Carbamates Poisoning. Eur. J. Pediatr. 2009, 168, 951–956. [Google Scholar] [CrossRef]
- Kapka-Skrzypczak, L.; Sawicki, K.; Czajka, M.; Turski, W.A.; Kruszewski, M. Cholinesterase Activity in Blood and Pesticide Presence in Sweat as Biomarkers of Children`s Environmental Exposure to Crop Protection Chemicals. Ann. Agric. Environ. Med. 2015, 22, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Lopez, J.R.; Gould, C.F.; Vashishtha, D.; Bradman, A.; Suarez-Torres, J.; Lopez-Paredes, D.; Martinez, D.; Moore, R.M. Change in Acetylcholinesterase Activity from Childhood to Young Adulthood. medRxiv 2024. [Google Scholar] [CrossRef]
- Fishman, W.H. β-Glucuronidase. In Methods of Enzymatic Analysis, 2nd ed.; Bergmeyer, H.U., Ed.; Academic Press: Cambridge, MA, USA, 1974; pp. 929–943. [Google Scholar] [CrossRef]
- Kunert-Keil, C.; Ritter, C.A.; Kroemer, H.K.; Sperker, B. Deconjugating Enzymes; Sulphatases and Glucuronidases. In Enzyme Systems that Metabolise Drugs and Other Xenobiotics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001; pp. 521–554. [Google Scholar] [CrossRef]
- Barr, D.B.; Bravo, R.; Weerasekera, G.; Caltabiano, L.M.; Whitehead, R.D.; Olsson, A.O.; Caudill, S.P.; Schober, S.E.; Pirkle, J.L.; Sampson, E.J.; et al. Concentrations of Dialkyl Phosphate Metabolites of Organophosphorus Pesticides in the U.S. Population. Environ. Health Perspect. 2004, 112, 186–200. [Google Scholar] [CrossRef]
- Bouchard, M.F.; Chevrier, J.; Harley, K.G.; Kogut, K.; Vedar, M.; Calderon, N.; Trujillo, C.; Johnson, C.; Bradman, A.; Barr, D.B.; et al. Prenatal Exposure to Organophosphate Pesticides and IQ in 7-Year-Old Children. Environ. Health Perspect. 2011, 119, 1189–1195. [Google Scholar] [CrossRef]
- Muñoz-Quezada, M.T.; Iglesias, V.; Lucero, B.; Steenland, K.; Barr, D.B.; Levy, K.; Ryan, P.B.; Alvarado, S.; Concha, C. Predictors of Exposure to Organophosphate Pesticides in Schoolchildren in the Province of Talca, Chile. Environ. Int. 2012, 47, 28–36. [Google Scholar] [CrossRef]
- Ramírez-Jiménez, R.; Mejía-Saucedo, R.; Calderón-Hernández, J.; Montero-Montoya, R.; Yáñez-Estrada, L. Concentraciones urinarias de metabolitos de plaguicidas organofosforados en niños y adolescentes de una zona agrícola de México. Rev. Iberoam. Cienc. 2014, 1, 87–94. [Google Scholar]
- DGSIAP. Anuario Estadístico de la Producción Agrícola. Available online: https://nube.agricultura.gob.mx/cierre_agricola/ (accessed on 15 August 2025).
- Ruiz-Arias, M.A.; Medina-Díaz, I.M.; Bernal-Hernández, Y.Y.; Barrón-Vivanco, B.S.; González-Arias, C.A.; Romero-Bañuelos, C.A.; Verdín-Betancourt, F.A.; Herrera- Moreno, J.F.; Ponce-Vélez, G.; Gaspar-Ramírez, O.; et al. The situation of chlorpyrifos in Mexico: A case study in environmental samples and aquatic organisms. Environ. Geochem. Health 2023, 45, 6323–6351. [Google Scholar] [CrossRef] [PubMed]
- INEGI. Censos Económicos. Available online: https://inegi.org.mx/app/saic/default.html (accessed on 26 October 2023).
- Ruiz-Arias, M.A.; Bernal-Hernández, Y.Y.; Medina-Díaz, I.M.; Barrón-Vivanco, B.S.; González-Arias, C.A.; Verdin-Betancourt, F.A.; Romero-Bañuelos, C.; Gascón-Cervantes, A.; Rivera Flores, K.; Haro-Mota, R.; et al. Social Vulnerability to Pesticide Exposure in Children from an Agricultural Community in Mexico. Child. Indic. Res. 2023, 16, 2489–2510. [Google Scholar] [CrossRef]
- van Wendel de Joode, B.; Barraza, D.; Ruepert, C.; Mora, A.M.; Córdoba, L.; Öberg, M.; Wesseling, C.; Mergler, D.; Lindh, C.H. Indigenous Children Living Nearby Plantations with Chlorpyrifos-Treated Bags Have Elevated 3,5,6-Trichloro-2-Pyridinol (TCPy) Urinary Concentrations. Environ. Res. 2012, 117, 17–26. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Stahl, P.D.; Fishman, W.H. β-D-Glucuronidase. In Methods of Enzymatic Analysis, 3rd ed.; Bergmeyer, H.U., Ed.; Verlag Chemie GmbH: Weinheim, Germany, 1983; Volume 4, pp. 246–256. [Google Scholar]
- Hernández, A.F.; Gómez, M.A.; Pena, G.; Gil, F.; Rodrigo, L.; Villanueva, E.; Pla, A. Effect of Long-Term Exposure to Pesticides on Plasma Esterases from Plastic Greenhouse Workers. J. Toxicol. Environ. Health A 2004, 67, 1095–1108. [Google Scholar] [CrossRef]
- Ruíz-Arias, M.A.; Herrera-Moreno, J.F.; Medina-Díaz, I.M.; Bernal-Hernández, Y.Y.; González-Arias, C.A.; Rojas-García, A.E. β-Glucuronidase and Its Relationship With Clinical Parameters and Biomarkers of Pesticide Exposure. J. Occup. Environ. Med. 2018, 60, e602. [Google Scholar] [CrossRef]
- Valcke, M.; Samuel, O.; Bouchard, M.; Dumas, P.; Belleville, D.; Tremblay, C. Biological Monitoring of Exposure to Organophosphate Pesticides in Children Living in Peri-Urban Areas of the Province of Quebec, Canada. Int. Arch. Occup. Environ. Health 2006, 79, 568–577. [Google Scholar] [CrossRef]
- Aguilar-Bañuelos, J.A.; Bernal-Hernández, Y.Y.; Medina-Díaz, I.M.; Ruiz-Arias, M.A.; Herrera-Moreno, J.F.; Barrón-Vivanco, B.S.; González-Arias, C.A.; Agraz-Cibrián, J.M.; Zambrano-Zaragoza, J.F.; Verdín-Betancourt, F.A.; et al. Environmental Exposure to Pesticides Is Associated with Oxidative Stress, Oxidative DNA Damage, and Elevated Interleukin-8 in a Child Population. Environ. Toxicol. Pharmacol. 2025, 114, 104656. [Google Scholar] [CrossRef]
- CDC. Child and Teen BMI Categories. BMI. Available online: https://www.cdc.gov/bmi/child-teen-calculator/bmi-categories.html (accessed on 29 January 2025).
- de Anda, J.; Shear, H.; Lugo-Melchor, O.Y.; Padilla-Tovar, L.E.; Bravo, S.D.; Olvera-Vargas, L.A. Use of the Pesticide Toxicity Index to Determine Potential Ecological Risk in the Santiago-Guadalajara River Basin, Mexico. Water 2024, 16, 3008. [Google Scholar] [CrossRef]
- Díaz-Romo, P.; Salinas-Álvarez, S. Plaguicidas, Tabaco y Salud: El Caso de los Jornaleros Huicholes, Jornaleros Mestizos y Ejidatarios en Nayarit, México, 1st ed.; Carteles Editores-P.G.O.: Oaxaca, Mexico, 2002; 363p. [Google Scholar]
- González-Arias, C.A.; Robledo-Marenco, M.L.; Medina-Díaz, I.M.; Velázquez-Fernández, J.B.; Girón-Pérez, M.I.; Quintanilla-Vega, B.; Ostrosky-Wegman, P. Patrón de uso y venta de plaguicidas en Nayarit, México. Rev. Int. Contam. Ambie 2010, 26, 221–228. [Google Scholar]
- Pascale, A.; Laborde, A. Impact of Pesticide Exposure in Childhood. Rev. Environ. Health 2020, 35, 221–227. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Feary McKenzie, J.; ’t Mannetje, A.; Cheng, S.; He, C.; Leathem, J.; Pearce, N.; Sunyer, J.; Eskenazi, B.; et al. Pesticide Exposure in New Zealand School-Aged Children: Urinary Concentrations of Biomarkers and Assessment of Determinants. Environ. Int. 2022, 163, 107206. [Google Scholar] [CrossRef]
- Hoffman, K.; Webster, T.F.; Sjödin, A.; Stapleton, H.M. Toddler’s Behavior and Its Impacts on Exposure to Polybrominated Diphenyl Ethers. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 193–197. [Google Scholar] [CrossRef]
- Stapleton, H.M.; Eagle, S.; Sjödin, A.; Webster, T.F. Serum PBDEs in a North Carolina Toddler Cohort: Associations with Handwipes, House Dust, and Socioeconomic Variables. Environ. Health Perspect. 2012, 120, 1049–1054. [Google Scholar] [CrossRef]
- Bravo, R.; Driskell, W.J.; Whitehead, R.D., Jr.; Needham, L.L.; Barr, D.B. Quantitation of Dialkyl Phosphate Metabolites of Organophosphate Pesticides in Human Urine Using GC-MS-MS with Isotopic Internal Standards. J. Anal. Toxicol. 2002, 26, 245–252. [Google Scholar] [CrossRef]
- Muñoz-Quezada, M.T.; Lucero, B.A.; Iglesias, V.P.; Muñoz, M.P.; Cornejo, C.A.; Achu, E.; Baumert, B.; Hanchey, A.; Concha, C.; Brito, A.M.; et al. Chronic exposure to organophosphate (OP) pesticides and neuropsychological functioning in farm workers: A review. Int. J. Occup. Environ. Health 2016, 22, 68–79. [Google Scholar] [CrossRef]
- Muñoz-Quezada, M.T.; Lucero, B.; Bradman, A.; Steenland, K.; Zúñiga, L.; Calafat, A.M.; Ospina, M.; Iglesias, V.; Muñoz, M.P.; Buralli, R.J.; et al. An Educational Intervention on the Risk Perception of Pesticides Exposure and Organophosphate Metabolites Urinary Concentrations in Rural School Children in Maule Region, Chile. Environ. Res. 2019, 176, 108554. [Google Scholar] [CrossRef]
- Suwannakul, B.; Thammachai, A.; Sangkarit, N.; Hongsibsong, S.; Sapbamrer, R. Distribution of Dialkylphosphate Metabolites and 1- Hydroxypyrene in Parent-Toddler Pairs from Agricultural Communities and Their Impacts on Toddler’s Developmental Performance. Ecotoxicol. Environ. Saf. 2025, 299, 118348. [Google Scholar] [CrossRef]
- Bouchard, M.F.; Bellinger, D.C.; Wright, R.O.; Weisskopf, M.G. Attention deficit/hyperactivity disorder and urinary metabolites of organophosphate pesticides in U.S. children 8–15 years. Pediatrics 2010, 125, e1270–e1277. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Z.; Nian, B.; Yu, C.; Maimaiti, D.; Chai, M.; Yang, X.; Zang, X.; Xu, D. Mechanisms of Neurotoxicity of Organophosphate Pesticides and Their Relation to Neurological Disorders. Neuropsychiatr. Dis. Treat. 2024, 20, 2237–2254. [Google Scholar] [CrossRef]
- González-Alzaga, B.; Romero-Molina, D.; López-Flores, I.; Giménez-Asensio, M.J.; Hernández, A.F.; Lacasaña, M. Urinary Levels of Organophosphate Pesticides and Predictors of Exposure in Pre-School and School Children Living in Agricultural and Urban Communities from South Spain. Environ. Res. 2020, 186, 109459. [Google Scholar] [CrossRef]
- Marks, A.R.; Harley, K.; Bradman, A.; Kogut, K.; Barr, D.B.; Johnson, C.; Calderon, N.; Eskenazi, B. Organophosphate pesticide exposure and attention in young Mexican-American children: The CHAMACOS study. Environ. Health Perspect. 2010, 118, 1768–1774. [Google Scholar] [CrossRef]
- Yáñez-Estrada, L.; Ramírez-Jiménez, M.R.; Rodríguez-Agudelo, Y.; Calderón-Hernández, J.; Ramos-Ruíz, E. Evaluación de las alteraciones en el desempeño cognitivo de niños mexicanos expuestos a plaguicidas organofosforados. Rev. Int. Contam. Ambient. 2018, 34, 9–23. [Google Scholar] [CrossRef]
- Kongtip, P.; Nankongnab, N.; Kallayanatham, N.; Chungcharoen, J.; Bumrungchai, C.; Pengpumkiat, S.; Woskie, S. Urinary Organophosphate Metabolites and Metabolic Biomarkers of Conventional and Organic Farmers in Thailand. Toxics 2021, 9, 335. [Google Scholar] [CrossRef]
- Vaiserman, A.; Krasnienkov, D. Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives. Front. Genet. 2021, 11, 630186. [Google Scholar] [CrossRef]
- Rehkopf, D.H.; Needham, B.L.; Lin, J.; Blackburn, E.H.; Zota, A.R.; Wojcicki, J.M.; Epel, E.S. Leukocyte Telomere Length in Relation to 17 Biomarkers of Cardiovascular Disease Risk: A Cross-Sectional Study of US Adults. PLoS Med. 2016, 13, e1002188. [Google Scholar] [CrossRef]
- Nwanaji-Enwerem, J.C.; Van Der Laan, L.; Kogut, K.; Eskenazi, B.; Holland, N.; Deardorff, J.; Cardenas, A. Maternal Adverse Childhood Experiences before Pregnancy Are Associated with Epigenetic Aging Changes in Their Children. Aging 2021, 13, 25653–25669. [Google Scholar] [CrossRef]
- Passos, J.D.C.; Felisbino, K.; Laureano, H.A.; Guiloski, I.C. Occupational Exposure to Pesticides and Its Association with Telomere Length—A Systematic Review and Meta-Analysis. Sci. Total Environ. 2022, 849, 157715. [Google Scholar] [CrossRef]
- Ali, J.H.; Abdeen, Z.; Azmi, K.; Berman, T.; Jager, K.; Barnett-Itzhaki, Z.; Walter, M. Influence of Exposure to Pesticides on Telomere Length and Pregnancy Outcome: Diethylphosphates but Not Dimethylphosphates Are Associated with Accelerated Telomere Attrition in a Palestinian Cohort. Ecotoxicol. Environ. Saf. 2023, 256, 114801. [Google Scholar] [CrossRef]
- Paul, K.C.; Chuang, Y.-H.; Cockburn, M.; Bronstein, J.M.; Horvath, S.; Ritz, B. Organophosphate Pesticide Exposure and Differential Genome-Wide DNA Methylation. Sci. Total Environ. 2018, 645, 1135–1143. [Google Scholar] [CrossRef]
- Rudzi, S.K.; Ho, Y.B.; Sing Tan, E.S.; Jalaludin, J.; Ismail, P. Pesticides Exposure and Biomarkers of DNA damage: A Review. Malays. J. Med. Health Sci. 2022, 18, 106–119. [Google Scholar]
- Zepeda-Arce, R.; Rojas-García, A.E.; Benitez-Trinidad, A.B.; Herrera-Moreno, J.F.; Medina-Díaz, I.M.; Barrón-Vivanco, B.S.; Villegas, G.P.; Hernández-Ochoa, I.; de Jesús Sólis Heredia, M.; Bernal-Hernández, Y.Y. Oxidative Stress and Genetic Damage among Workers Exposed Primarily to Organophosphate and Pyrethroid Pesticides. Environ. Toxicol. 2017, 32, 1754–1764. [Google Scholar] [CrossRef]
- Sánchez-Alarcón, J.; Milić, M.; Kašuba, V.; Tenorio-Arvide, M.G.; Montiel-González, J.M.R.; Bonassi, S.; Valencia-Quintana, R. A Systematic Review of Studies on Genotoxicity and Related Biomarkers in Populations Exposed to Pesticides in Mexico. Toxics 2021, 9, 272. [Google Scholar] [CrossRef]
- Lopes-Ferreira, M.; Farinha, L.R.L.; Costa, Y.S.O.; Pinto, F.J.; Disner, G.R.; da Rosa, J.G.d.S.; Lima, C. Pesticide-Induced Inflammation at a Glance. Toxics 2023, 11, 896. [Google Scholar] [CrossRef]
- Ruíz-Arias, M.A.; Medina-Díaz, I.M.; Bernal-Hernández, Y.Y.; Agraz-Cibrián, J.M.; González-Arias, C.A.; Barrón-Vivanco, B.S.; Herrera-Moreno, J.F.; Verdín-Betancourt, F.A.; Zambrano-Zaragoza, J.F.; Rojas-García, A.E. Hematological Indices as Indicators of Inflammation Induced by Exposure to Pesticides. Environ. Sci. Pollut. Res. 2023, 30, 19466–19476. [Google Scholar] [CrossRef]
- Wang, T.; Ma, M.; Chen, C.; Yang, X.; Qian, Y. Three Widely Used Pesticides and Their Mixtures Induced Cytotoxicity and Apoptosis through the ROS-Related Caspase Pathway in HepG2 Cells. Food Chem. Toxicol. 2021, 152, 112162. [Google Scholar] [CrossRef]
- Armstrong, E.; Boonekamp, J. Does Oxidative Stress Shorten Telomeres in Vivo? A Meta-Analysis. Ageing Res. Rev. 2023, 85, 101854. [Google Scholar] [CrossRef]
- Herrera-Moreno, J.F.; Medina-Díaz, I.M.; Bernal-Hernández, Y.Y.; Ramos, K.S.; Alvarado-Cruz, I.; Quintanilla-Vega, B.; Gonzalez-Arias, C.A.; Barrón-Vivanco, B.S.; Rojas-García, A.E. Modified CDKN2B (P15) and CDKN2A (P16) DNA Methylation Profiles in Urban Pesticide Applicators. Environ. Sci. Pollut. Res. Int. 2019, 26, 15124–15135. [Google Scholar] [CrossRef]
- Kahl, V.F.S.; da Silva, J. Telomere Length and Its Relation to Human Health. In Telomere—A Complex End of a Chromosome; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef]
- Kahl, V.F.S.; Simon, D.; Salvador, M.; dos Santos Branco, C.; Dias, J.F.; da Silva, F.R.; de Souza, C.T.; da Silva, J. Telomere Measurement in Individuals Occupationally Exposed to Pesticide Mixtures in Tobacco Fields. Environ. Mol. Mutagen. 2016, 57, 74–84. [Google Scholar] [CrossRef]
- dos Santos, I.C.; da Silva, J.T.; Rohr, P.; van Helvoort Lengert, A.; de Lima, M.A.; Kahl, V.F.S.; da Silva, J.; Reis, R.M.; Silveira, H.C.S. Genomic Instability Evaluation by BMCyt and Telomere Length in Brazilian Family Farmers Exposed to Pesticides. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2022, 878, 503479. [Google Scholar] [CrossRef]
- Molina-Pintor, I.B.; Rojas-García, A.E.; Bernal-Hernández, Y.Y.; Medina-Díaz, I.M.; González-Arias, C.A.; Barrón-Vivanco, B.S. Relationship between Butyrylcholinesterase Activity and Lipid Parameters in Workers Occupationally Exposed to Pesticides. Environ. Sci. Pollut. Res. 2020, 27, 39365–39374. [Google Scholar] [CrossRef]
- Lifshitz, M.; Sofer, S.; Shahak, E.; Rotenberg, M.; Almog, S.; Tamiri, T. Carbamate Poisoning and Oxime Treatment in Children: A Clinical and Laboratory Study. Pediatrics 1994, 93, 652–655. [Google Scholar] [CrossRef]
- Abdel Rasoul, G.M.; Abou Salem, M.E.; Mechael, A.A.; Hendy, O.M.; Rohlman, D.S.; Ismail, A.A. Effects of Occupational Pesticide Exposure on Children Applying Pesticides. NeuroToxicology 2008, 29, 833–838. [Google Scholar] [CrossRef]
- Suarez-Lopez, J.R.; Jacobs, D.R.; Himes, J.H.; Alexander, B.H.; Lazovich, D.; Gunnar, M. Lower Acetylcholinesterase Activity among Children Living with Flower Plantation Workers. Environ. Res. 2012, 114, 53–59. [Google Scholar] [CrossRef]
- Medithi, S.; Kasa, Y.; Jee, B.; Kodali, V.; Jonnalagadda, P. Organophosphate Pesticide Exposure among Farm Women and Children: Status of Micronutrients, Acetylcholinesterase Activity, and Oxidative Stress. Arch. Environ. Occup. Health 2020, 77, 109–124. [Google Scholar] [CrossRef]
- Skomal, A.E.; Zhang, J.; Yang, K.; Yen, J.; Tu, X.; Suarez-Torres, J.; Lopez-Paredes, D.; Calafat, A.M.; Ospina, M.; Martinez, D.; et al. Concurrent Urinary Organophosphate Metabolites and Acetylcholinesterase Activity in Ecuadorian Adolescents. Environ. Res. 2022, 207, 112163. [Google Scholar] [CrossRef]
- Phillips, S.; Suarez-Torres, J.; Checkoway, H.; Lopez-Paredes, D.; Gahagan, S.; Suarez-Lopez, J.R. Acetylcholinesterase Activity and Thyroid Hormone Levels in Ecuadorian Adolescents Living in Agricultural Settings Where Organophosphate Pesticides Are Used. Int. J. Hyg. Environ. Health 2021, 233, 113691. [Google Scholar] [CrossRef]
- Suárez-López, J.R.; Nazeeh, N.; Kayser, G.; Suarez-Torres, J.; Checkoway, H.; López-Paredes, D.; Jacobs, D.R.; de la Cruz, F. Residential Proximity to Greenhouse Crops and Pesticide Exposure (via Acetylcholinesterase Activity) Assessed from Childhood through Adolescence. Environ. Res. 2020, 188, 109728. [Google Scholar] [CrossRef]
- da Silva, G.R.; Terra, G.D.S.V.; Michel de Oliveira, D.; Fernandes, E.V.; Zechin, E.J.; Soares, A.R.; Pessoa-Filho, D.M.; Neiva, C.M. Effects of Different Physical Training Protocols on Metabolic Syndrome Indicators and the Activity of Butyrylcholinesterase in Adolescents: A Randomized Clinical Trial. Metabolites 2024, 14, 422. [Google Scholar] [CrossRef]
- Ramírez-Jiménez, R.; Martínez-Salazar, M.F.; Almenares-López, D.; Yáñez-Estrada, L.; Monroy-Noyola, A. Relationship Between Paraoxonase-1 and Butyrylcholinesterase Activities and Nutritional Status in Mexican Children. Metab. Syndr. Relat. Disord. 2018, 16, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Inayat-Hussain, S.H.; Lubis, S.H.; Sakian, N.I.M.; Ghazali, A.R.; Ali, N.S.; el Sersi, M.; Toong, L.M.; Zainal, A.M.; Hashim, S.; Ghazali, M.S.; et al. Is Plasma β-Glucuronidase a Novel Human Biomarker for Monitoring Anticholinesterase Pesticides Exposure? A Malaysian Experience. Toxicol. Appl. Pharmacol. 2007, 219, 210–216. [Google Scholar] [CrossRef]
- Ueyama, J.; Satoh, T.; Kondo, T.; Takagi, K.; Shibata, E.; Goto, M.; Kimata, A.; Saito, I.; Hasegawa, T.; Wakusawa, S.; et al. β-Glucuronidase Activity Is a Sensitive Biomarker to Assess Low-Level Organophosphorus Insecticide Exposure. Toxicol. Lett. 2010, 193, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Aziz, M.; Sharara, G.; El-Banna, A.; El-Naggar, S. A Study on Beta-Glucuronidase Enzyme as a Probable Biomarker in Cases of Acute Poisoning by Cholinesterase Enzyme Inhibitor Insecticides. Ain Shams J. Forensic Med. Clin. Toxicol. 2014, 23, 1–11. [Google Scholar] [CrossRef]
- Awolade, P.; Cele, N.; Kerru, N.; Gummidi, L.; Oluwakemi, E.; Singh, P. Therapeutic Significance of β-Glucuronidase Activity and Its Inhibitors: A Review. Eur. J. Med. Chem. 2020, 187, 111921. [Google Scholar] [CrossRef]
- Czajka, M.; Matysiak-Kucharek, M.; Jodłowska-Jędrych, B.; Sawicki, K.; Fal, B.; Drop, B.; Kruszewski, M.; Kapka-Skrzypczak, L. Organophosphorus Pesticides Can Influence the Development of Obesity and Type 2 Diabetes with Concomitant Metabolic Changes. Environ. Res. 2019, 178, 108685. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Dong, Y.; Liu, S.; Hu, F.; Cai, Y. Association between Organophosphorus Pesticides and Obesity among American Adults. Environ. Health 2024, 23, 65. [Google Scholar] [CrossRef] [PubMed]
- Boyle, M.; Buckley, J.P.; Quirós-Alcalá, L. Associations between Urinary Organophosphate Ester Metabolites and Measures of Adiposity among U.S. Children and Adults: NHANES 2013–2014. Environ. Int. 2019, 127, 754–763. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Community A | Community B | Community C | p Value |
---|---|---|---|---|
Total [n (%)] | 183 (38.8) | 153 (32.4) | 135 (28.6) | |
Sex | 0.63 a | |||
Male [n (%)] | 87 (47.5) | 77 (50.3) | 68 (50.3) | |
Female [n (%)] | 96 (52.4) | 76 (49.6) | 67 (49.6) | |
Age [years (95% CI)] | 8.6 (8.4, 8.9) | 8.63 (8.3, 8.9) | 8.73 (8.4, 9.0) | 0.60 b |
BMI [Kg/m2 (95% CI)] | 19.3 (18.6, 20.0) | 19.41 (18.6, 20.1) | 18.27 (17.6, 18.9) | 0.07 b |
Underweight [n (%)] | 7 (4.3) | 2 (1.5) | 5 (4.3) | -- |
Healthy Weight [n (%)] | 75 (46.8) | 68 (51.1) | 71 (61.2) | 0.68 a |
Overweight [n (%)] | 30 (18.7) | 22 (16.5) | 17 (14.6) | 0.56 a |
Obesity [n (%)] | 48 (30.0) | 40 (30.8) | 23 (19.8) | 0.42 a |
Distance school-agricultural field (m) | 431.3 | 388.1 | 2383.3 | --- |
Metabolite (nmol/g Creat) | Community A | Community B | Community C | p Value | Min | Percentiles | Max | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GM | 95% CI | GM | 95% CI | GM | 95% CI | p25 | p50 | p75 | ||||
DEP | 10.2 | 7.2, 14.5 | -- | -- | 43.4 | 26.9, 70.1 | <0.001 | 3.9 | 10.38 | 20.11 | 25.3 | 391.9 |
DETP | 1977.8 | 1878.6, 2082.2 | 2195.8 | 2127.5, 2266.3 | 672.1 | 461.7, 978.3 | <0.001 | 14.2 | 1334.8 | 2060.8 | 2228.1 | 2852.9 |
DEDTP | 183.7 | 174.9, 193.0 | -- | -- | -- | -- | -- | 161.7 | 161.7 | 161.7 | 210.5 | 210.5 |
DMP | 37.3 | 37.3, 37.3 | -- | -- | -- | -- | -- | 37.3 | 37.29 | 37.29 | 37.29 | 37.3 |
DMTP | 370.6 | 364.0, 377.3 | 241.5 | 231.3, 252.2 | 276.3 | 260.4, 293.2 | <0.001 | 187.2 | 226.6 | 280.1 | 368.0 | 438.4 |
DMDTP | 553.9 | 528.8, 580.1 | 450.1 | 434.2, 466.7 | 188.2 | 169.6, 209.0 | <0.001 | 105.0 | 373.6 | 418.5 | 537.4 | 727.0 |
ΣDEP | 2059.5 | 1973.7, 2149.1 | 2195.8 | 2127.5, 2266.3 | 1195.3 | 1067.0, 1338.9 | <0.001 | 406.1 | 1381.1 | 2060.8 | 2239.9 | 2852.9 |
ΣDMP | 940.3 | 920.0, 961.1 | 693.4 | 669.0, 718.7 | 467.2 | 432.7, 504.4 | <0.001 | 323.1 | 595.3 | 684.6 | 961.0 | 1059.1 |
ΣDAP | 3019.8 | 2938.0, 3103.9 | 2892.5 | 2803.6, 2984.2 | 1501.0 | 1311.1, 1718.3 | <0.001 | 406.1 | 2249.8 | 2823.3 | 2958.2 | 3859.2 |
Community | β | 95% CI | PEI | β | 95% CI | |
---|---|---|---|---|---|---|
Unadjusted models | Community A | −117.1 *** | −182.9, −51.3 | Moderate exposure | −83.1 * | −156.3, −9.9 |
Community B | −131.3 *** | −199.1, −63.6 | High exposure | −87.6 ** | −152.0, −23.2 | |
Adjusted models | Community A | −114.7 *** | −180.6, −48.8 | Moderate exposure | −82.8 * | −156.6, −9.1 |
Community B | −129.2 *** | −197.5, −60.9 | High exposure | −85.8 ** | −150.3, −21.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Arias, M.A.; Bernal-Hernández, Y.Y.; Medina-Díaz, I.M.; Herrera-Moreno, J.F.; Barrón-Vivanco, B.S.; Verdín-Betancourt, F.A.; González-Arias, C.A.; Flores-Alfaro, E.; Ramos, K.S.; Ostrosky-Wegman, P.; et al. Comprehensive Biomarker Assessment of Pesticide Exposure and Telomere Attrition in Mexican Children from Agricultural Communities. J. Xenobiot. 2025, 15, 141. https://doi.org/10.3390/jox15050141
Ruiz-Arias MA, Bernal-Hernández YY, Medina-Díaz IM, Herrera-Moreno JF, Barrón-Vivanco BS, Verdín-Betancourt FA, González-Arias CA, Flores-Alfaro E, Ramos KS, Ostrosky-Wegman P, et al. Comprehensive Biomarker Assessment of Pesticide Exposure and Telomere Attrition in Mexican Children from Agricultural Communities. Journal of Xenobiotics. 2025; 15(5):141. https://doi.org/10.3390/jox15050141
Chicago/Turabian StyleRuiz-Arias, Miguel Alfonso, Yael Yvette Bernal-Hernández, Irma Martha Medina-Díaz, José Francisco Herrera-Moreno, Briscia Socorro Barrón-Vivanco, Francisco Alberto Verdín-Betancourt, Cyndia Azucena González-Arias, Eugenia Flores-Alfaro, Kenneth S. Ramos, Patricia Ostrosky-Wegman, and et al. 2025. "Comprehensive Biomarker Assessment of Pesticide Exposure and Telomere Attrition in Mexican Children from Agricultural Communities" Journal of Xenobiotics 15, no. 5: 141. https://doi.org/10.3390/jox15050141
APA StyleRuiz-Arias, M. A., Bernal-Hernández, Y. Y., Medina-Díaz, I. M., Herrera-Moreno, J. F., Barrón-Vivanco, B. S., Verdín-Betancourt, F. A., González-Arias, C. A., Flores-Alfaro, E., Ramos, K. S., Ostrosky-Wegman, P., & Rojas-García, A. E. (2025). Comprehensive Biomarker Assessment of Pesticide Exposure and Telomere Attrition in Mexican Children from Agricultural Communities. Journal of Xenobiotics, 15(5), 141. https://doi.org/10.3390/jox15050141