Developments in Toxicity Testing with Duckweeds
Abstract
:1. Introduction
2. Standardized Duckweed Toxicity Testing
Organisation | Year | Duckweed | Country/area |
---|---|---|---|
ITM: Institute of Applied Environmental Research | 1990 | Lemna minor | Sweden |
ASTM: American Society for Testing and Materials | 1991 | Lemna gibba | USA |
APHA: American Public Health Association | 1995 | Lemna gibba | USA |
SIS: Swedish Standards Institute | 1995 | Lemna minor | Sweden |
AFNOR: Association Française de Normalisation | 1996 | Lemna minor | France |
USEPA: US Environmental Protection Agency | 1996 | Lemna minor/gibba | USA |
EC: Environment Canada | 1999 | Lemna minor | Canada |
ISO: International Organisation for Standardization | 2005 | Lemna minor | International |
OECD: Organisation for Economic Cooperation and Development | 2006 | Lemna minor/gibba | International |
3. Determining Toxicity
3.1. Modifying the Standardized Tests
3.1.1. Downsizing and Timesaving
3.1.2. Ensuring the Quality of the Incubation Medium
3.1.3. Data Imaging and Analysis
3.2. Alternatives to the Standardized Tests
3.2.1. Alternative Test Organisms
3.2.2. Alternative Indicators of Toxicity
4. Describing Toxicity: Biomarkers of Toxic Effect
4.1. Structural and Functional Aberrations
4.2. “Classical” Biomarkers
4.2.1. Physiological, Biochemical and Metabolite Endpoint Biomarkers
4.2.2. The Progression of Toxic Effects in Time
4.3. Modern Methods of Biomarker Analysis
4.3.1. Transcriptomics
4.3.2. Proteomics
4.3.3. Metabolomics
4.3.4. FTIR Spectroscopy
4.4. Genotoxicity
4.5. Transformation
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ziegler, P.; Sree, K.S.; Appenroth, K.-J. Duckweed biomarkers for identifying toxic water contaminants? Environ. Sci. Pollut. Res. 2018, 26, 14797–14822. [Google Scholar] [CrossRef] [PubMed]
- Ceschin, S.; Bellini, A.; Scalici, M. Aquatic plants and ecotoxicological assessment in freshwater ecosystems: A review. Environ. Sci. Pollut. Res. 2021, 28, 4975–4988. [Google Scholar] [CrossRef]
- Lewis, M.A. Use of freshwater plants for phytotoxicity testing: A review. Environ. Pollut. 1995, 87, 319–326. [Google Scholar] [CrossRef]
- Sculthorpe, C.D. The Biology of Aquatic Vascular Plants; Edward Arnold: London, UK, 1967; 610p. [Google Scholar]
- Landolt, E. The Family of Lemnaceae—A Monographic Study, Vol. 1. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae) (Vol. 2); 71. Heft; Veröffentlichungen des Geobotanischen Institutes der Eidgenössischen Technischen Hochschule, Stiftung Rübel: Zürich, Switzerland, 1986. [Google Scholar]
- Bog, M.; Appenroth, K.-J.; Sree, K.S. Key to the determination of taxa of Lemnaceae: An update. Nord. J. Bot. 2020, 38, e02658. [Google Scholar] [CrossRef]
- Wang, W. Literature review on duckweed toxicity testing. Environ. Res. 1990, 52, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Acosta, K.; Appenroth, K.J.; Borisjuk, L.; Edelman, M.; Heinig, U.; Jansen, M.A.K.; Oyama, T.; Pasaribu, B.; Schubert, I.; Sorrels, S.; et al. Return of the Lemnaceae: Duckweed as a model plant system in the genomics and postgenomics era. Plant Cell 2021, 33, 3207–3234. [Google Scholar] [CrossRef]
- Bog, M.; Appenroth, K.-J.; Sree, K.S. Duckweed (Lemnaceae): Its molecular taxonomy. Front. Sustain. Food Syst. 2019, 3, 117. [Google Scholar] [CrossRef]
- Bog, M.; Sree, K.S.; Fuchs, J.; Hoang, P.T.N.; Schubert, I.; Kuever, J.; Rabenstein, A.; Paolacci, S.; Jansen, M.A.K.; Appenroth, K.-J. A taxonomic revision of Lemna sect. Uninerves (Lemnaceae). Taxon 2020, 69, 56–66. [Google Scholar] [CrossRef]
- Braglia, L.; Lauria, M.; Appenroth, K.-J.; Bog, M.; Breviario, D.; Grasso, A.; Gavazzi, F.; Morell, L. Duckweed species genotyping and interspecific hybrid discovery by tubulin-based polymorphism fingerprinting. Front. Plant Sci. 2021, 12, 625670. [Google Scholar] [CrossRef]
- Braglia, L.; Ceschin, S.; Iannelli, M.A.; Bog, M.; Fabriani, M.; Frugis, G.; Gavazzi, F.; Giani, S.; Mariani, F.; Muzzi, M.; et al. Characterization of the cryptic interspecific hybrid Lemna × mediterranea by an integrated approach provides new insights into duckweed diversity. J. Exp. Bot. 2024, 75, 3092–3110. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Jansen, M.A.K.; Lam, E.; Shoham, T.; Sree, K.S. Important terms in duckweed research defined. Duckweed Forum (ISCDRA Newsl.) 2024, 12, 90–94. Available online: http://www.ruduckweed.org/ (accessed on 14 October 2024).
- Romano, L.E.; Braglia, L.; Iannelli, M.A.; Lee, Y.; Morello, L. A survey of duckweed species in southern Italy provided first occurrences of the hybrid Lemna × mediterranea in the wild. bioRxiv preprint 2024. [Google Scholar] [CrossRef]
- Tippery, N.P.; Les, D.H. Tiny plants with enormous potential: Phylogeny and evolution of duckweeds. In The Duckweed Genomes; Cao, X., Fourounjian, P., Wang, W., Eds.; Compendium of Plant Genomes; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Ziegler, P.; Sree, K.S.; Appenroth, K.-J. Duckweeds for water remediation and toxicity testing. Toxicol. Environ. Chem. 2016, 98, 1127–1154. [Google Scholar] [CrossRef]
- Ziegler, P.; Sree, K.S.; Appenroth, K.-J. The uses of duckweed in relation to water remediation. Desalin. Water Treat. 2017, 63, 327–342. [Google Scholar] [CrossRef]
- Ziegler, P.; Adelmann, K.; Zimmer, S.; Schmidt, C.; Appenroth, K.-J. Relative in vitro growth rates of duckweeds (Lemnaceae) ─ The most rapidly growing higher plants. Plant Biol. 2015, 17 (Suppl. 1), 33–41. [Google Scholar] [CrossRef]
- Sree, K.S.; Sudakaran, S.; Appenroth, K.-J. How fast can angiosperms grow? Species and clonal diversity of growth rates in the genus Wollfia (Lemnaceae). Acta Physiol. Plant. 2015, 37, 204. [Google Scholar] [CrossRef]
- Kandeler, R. Überlebensstrategien bei Wasserlinsen. Biol. Rundsch. 1988, 26, 347–354. [Google Scholar]
- Topp, C.; Henke, R.; Keresztes, A.; Fischer, W.; Eberius, M.; Appenroth, K.J. A novel mechanism of abscission in fronds of Lemna minor L. and the effect of silver ions. Plant Biol. 2011, 13, 517–523. [Google Scholar] [CrossRef]
- Kim, I. Structural differentiation of the connective stalk in Spirodela polyrhiza (L.) Schleiden. Appl. Microsc. 2016, 46, 83–88. [Google Scholar] [CrossRef]
- Laird, R.A.; Barks, P.M. Skimming the surface: Duckweed as a model system in ecology and evolution. Am. J. Bot. 2018, 105, 1962–1966. [Google Scholar] [CrossRef]
- OECD (Organisation for Economic Co-operation and Development). Test No. 221: Lemna sp. Growth Inhibition Test. In OECD Guidelines for the Testing of Chemicals; Section 2; OECD Publishing: Paris, France, 2006. [Google Scholar] [CrossRef]
- ISO 20079:2005; Water Quality—Determination of the Toxic Effect of Water Constituents and Wastewater on Duckweed (Lemna minor)—Duckweed Growth Inhibition Test. International Organization for Standardization: Geneva, Switzerland, 2005. Available online: https://www.iso.org/standard/34074.html (accessed on 15 January 2025).
- USEPA (United States Environmental Protection Agency). Aquatic Plant Toxicity Test Using Lemna spp. Ecological Effects Test Guidelines OPPTS 850.4400; USEPA: Washington, DC, USA, 2012. Available online: http://www.regulations.gov/document/EPA-HQ-OPPT-2009-0154-0027 (accessed on 15 January 2025).
- Park, J.; Yoo, E.-J.; Shin, K.; Depuydt, S.; Li, W.; Appenroth, K.-J.; Lillicrap, A.D.; Xie, L.; Lee, H.; Kim, G.; et al. Interlaboratory validation of toxicity testing using the duckweed Lemna minor root-regrowth test. Biology 2022, 11, 37. [Google Scholar] [CrossRef] [PubMed]
- NY/T 3090-2017; Chemical Pesticide-Guideline for Lemma sp. Growth Inhibition Test. Chinese Agriculture Industry Standard B17, Ministry of Agriculture Bulletin No. 2540. Field Test Asia: Singapore, 2017. Available online: https://www.chinesestandard.net/PDF/English.aspx/NYT3090-2017 (accessed on 15 January 2025).
- Li, R.; Luo, C.; Qiu, J.; Li, Y.; Zhang, H.; Tan, H. Metabolomic and transcriptomic investigation of the mechanism involved in enantioselective toxicity of imazamox in Lemna minor. J. Hazard. Mater. 2022, 425, 127818. [Google Scholar] [CrossRef]
- Naumann, B.; Eberius, M.; Appenroth, K.-J. Growth rate based dose-response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St. J. Plant Physiol. 2007, 164, 1656–1664. [Google Scholar] [CrossRef] [PubMed]
- EC Biological Test Method. Test for Measuring the Inhibition of Growth Using the Freshwater Macrophyte, Lemna minor: Report EPS 1/RM/37, 2nd ed.; Method Development and Applications Section, Environmental Technology Centre, Environment Canada: Ottawa, ON, Canada, 2007. Available online: https://publications.gc.ca/collections/collection_2013/ec/En49-7-1-37-eng.pdf (accessed on 15 January 2025).
- Huebert, D.B.; Shay, J.M. Considerations in the assessment of toxicity using duckweeds. Environ. Toxicol. Chem. 1993, 12, 481–483. [Google Scholar] [CrossRef]
- Olah, V.; Hepp, A.; Vaca, N.Y.G.; Tamas, M.; Meszaros, I. Retrospective analyses of archive phytotoxicity test data can help in assessing internal dynamics and stability of growth in laboratory duckweed cultures. Aquat. Toxicol. 2018, 201, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Taraldsen, J.E.; Norberg-King, T.J. New method for determining effluent toxicity using duckweed (Lemna Minor). Environ. Toxicol. Chem. 1990, 9, 761–767. [Google Scholar] [CrossRef]
- Soukupova, I.; Beklova, M. Validation of duckweed microbiological test for assessing hazardous substances. J. Biochem. Technol. 2010, 2, S60–S61. [Google Scholar]
- Kalcikova, G.; Marolt, G.; Kokali, A.J.; Gorvajn, A.Z. The use of multiwell culture plates in the duckweed toxicity test—A case study on Zn nanoparticles. New Biotechnol. 2018, 47, 67–72. [Google Scholar] [CrossRef]
- Drobniewska, A.; Giebultowicz, J.; Wawryniuk, M.; Kierczak, P.; Nalecz-Jawecki, G. Toxicity and bioaccumulation of selected antidepressants in Lemna minor (L.). Ecohydrol. Hydrobiol. 2024, 24, 262–270. [Google Scholar] [CrossRef]
- Michel, A.; Johnson, R.D.; Duke, S.O.; Scheffler, B.E. Dose-response relationships between herbicides with different modes of action and growth of Lemna paucicostata: An improved ecotoxicological method. Environ. Toxicol. Chem. 2004, 23, 1074–1079. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Millner, P.; Slovin, J.; Roig, A. Duckweed (Lemna gibba) growth inhibition bioassay for evaluating the toxicity of olive mill wastes before and during composting. Chemosphere 2007, 68, 1985–1991. [Google Scholar] [CrossRef] [PubMed]
- Rivenbark, K.J.; Nikkhah, H.; Wang, M.; Beykal, B.; Phillips, T.D. Toxicity of representative organophosphate, organochlorine, phenylurea, dinitroaniline, carbamate, and viologen pesticides to the growth and survival of H. vulgaris, L. minor, and C. elegans. Environ. Sci. Pollut. Res. 2024, 31, 21781–21796. [Google Scholar] [CrossRef]
- Shi, J.; Abid, A.D.; Kennedy, I.A.; Htristova, K.R.; Silk, W.K. To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environ. Pollut. 2011, 159, 1277–1282. [Google Scholar] [CrossRef] [PubMed]
- Alkimin, G.D.; Daniel, D.; Frankenbach, S.; Serodio, J.; Soares, A.M.V.M.; Barata, C.; Nunes, B. Evaluation of pharmaceutical toxic effects of non-standard endpoints on the macrophyte species Lemna minor and Lemna gibba. Sci. Total Environ. 2019, 657, 926–937. [Google Scholar] [CrossRef]
- Irfan, M.; Meszaros, I.; Szabo, S.; Olah, V. Comparative phytotoxicity of metallic elements on duckweed Lemna gibba L. using growth- and chlorophyll fluorescence induction-based endpoints. Plants 2024, 13, 215. [Google Scholar] [CrossRef]
- Brain, R.A.; Solomon, K.R. A protocol for conducting 7-day daily renewal tests with Lemna gibba. Nat. Protoc. 2007, 2, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Walbridge, C.T. A Flow-Through Testing Procedure with Duckweed (Lemna minor L.); EPA-600/3-77-108; U.S. Environmental Protection Agency: Duluth, MN, USA, 1977. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9101B3Q9.txt (accessed on 15 January 2025).
- Davis, J.A. Comparison of Static-Replacement and Flow-Through Bioassays Using Duckweed; Lemna gibba G-2. EPA 560/6-81-003; U.S. Environmental Protection Agency, Office of Pesticides and Toxic Substances: Washington, DC, USA, 1981. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9100AP3H.txt (accessed on 15 January 2025).
- Coughlan, N.E.; Walsh, E.; Bolger, P.; Burnell, G.; O’Leary, N.; O’Mahoney, M.; Paolacci, S.; Wall, D.; Jansen, M.A.K. Duckweed bioreactors: Challenges and opportunities for large-scale indoor cultivation of Lemnaceae. J. Clean. Prod. 2022, 336, 130285. [Google Scholar] [CrossRef]
- Wilson, P.C.; Hinz, F.O.; Farrell, I. Impacts of fulvic acid on the toxicity of the herbicide atrazine to Lemna minor. Bull. Environ. Contam. Toxicol. 2024, 112, 77. [Google Scholar] [CrossRef]
- Kurnia, K.; Lin, Y.-T.; Farhan, A.; Malhotra, N.; Luong, C.T.; Hung, C.-H.; Roldan, M.J.M.; Tsao, C.-C.; Cheng, T.-S.; Hsiao, C.-D. Deep learning-based automatic duckweed counting using StarDist and its application on measuring growth inhibition potential of rare earth elements as contaminants of emerging concern. Toxics 2023, 11, 680. [Google Scholar] [CrossRef]
- Okamura, H.; Togosmaa, L.; Sawamoto, T.; Fukushi, K.; Nishida, T.; Beppu, T. Effects of metal pyrithione antifoulants on freshwater macrophyte Lemna gibba G3 determined by image analysis. Ecotoxicology 2012, 21, 1102–1111. [Google Scholar] [CrossRef]
- Cui, R.; Kwak, J.I.; An, Y.-J. Understanding boron toxicity in aquatic plants (Salvinia natans and Lemna minor) in the presence and absence of EDTA. Aquat. Toxicol. 2024, 269, 106886. [Google Scholar] [CrossRef] [PubMed]
- Jansen, M.; Nagel, K. Useful methods (6): LemnaTec Scanalyzer, a useful tool for duckweed research and testing. Duckweed Forum 2016, 4, 282–286. Available online: http://www.ruduckweed.org/ (accessed on 15 January 2025).
- Perera, W.H.; Meepagala, K.M.; Fronczek, F.R.; Cook, D.D.; Wedge, D.E.; Duke, S.O. Bioassay-guided isolation and structure elucidation of fungal and herbicidal compounds from Ambrosia Salsola (Asteraceae). Molecules 2019, 24, 835. [Google Scholar] [CrossRef]
- Cruz, F.V.d.S.; Brant, H.S.C.; Ohlund, L.; Sleno, L.; Juneau, P. Tolerance and phytoremediation capacity of atrazine and S-metaloclor by two duckweeds. Environ. Sci. Pollut. Res. 2024, 31, 59382–59397. [Google Scholar] [CrossRef] [PubMed]
- Adomas, B.; Sikorski, L.; Bes, A.; Warminski, K. Exposure of Lemna minor L. to gentian violet or Congo red is associated with changes in the biosynthesis pathway of biogenic amines. Chemosphere 2020, 254, 126752. [Google Scholar] [CrossRef]
- Cox, K.L.; Manchego, J.; Meyers, B.C.; Czymmek, K.J.; Harkness, A. Automated imaging of duckweed growth and development. Plant Direct 2022, 6, 439. [Google Scholar] [CrossRef]
- Olah, V.; Kosztanko, K.; Irfan, M.; Szabo, S.B.; Jansen, M.A.K.; Szabo, S.; Meszaros, I. Frond-level analyses reveal functional heterogeneity within heavy metal-treated duckweed colonies. Plant Stress 2024, 11, 100405. [Google Scholar] [CrossRef]
- Lai, Y.-J.; Lu, P.-C.; Kung, Y. Duckweed-based optical biosensor for herbicide toxicity assessment. Biosens. Bioelectron. 2025, 267, 116739. [Google Scholar] [CrossRef] [PubMed]
- Mazur, R.; Szoszkiewicz, K.; Lewicki, P.; Bedla, D. The use of computer image analysis in a Lemna minor L. bioassay. Hydrobiologia 2018, 812, 193–201. [Google Scholar] [CrossRef]
- Haffner, O.; Kucera, E.; Drahos, P.; Ciganek, J.; Kozakova, A.; Urminska, B. Lemna minor bioassay evaluation using computer image analysis. Water 2020, 12, 2207. [Google Scholar] [CrossRef]
- Subbaraman, B.; de Lange, O.; Ferguson, S.; Peek, N. The Duckbot: A system for automated imaging and manipulation of duckweed. PLoS ONE 2024, 19, e0296717. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, B.-E.; Bongo, J.P.; Eklund, B. Assessment of duckweed Lemna aequinoctialis as a toxicological bioassay for tropical environments in developing countries. Ambio 1999, 28, 152–155. Available online: https://www.jstor.org/stable/4314867 (accessed on 19 December 2024).
- Trenfield, M.A.; Harford, A.J.; Mooney, T.; Ellis, M.; Humphrey, C.; van Dam, R.A. 2019. Integrating laboratory and field studies to assess impacts of discharge from a uranium mine and validate a water quality guideline value for magnesium. Integ. Environ. Assess. Manag. 2019, 15, 64–76. [Google Scholar] [CrossRef]
- Baudo, R.; Foudoulakis, M.; Arapi, G.; Perdaen, K.; Lanneau, W.; Paxinou, A.-C.M.; Kouvdou, S.; Persoone, G. History and sensitivity comparison of the Spirodela polyrhiza microbiotest and Lemna toxicity tests. Knowl. Manag. Aquat. Ecosyst. 2015, 416, 23. [Google Scholar] [CrossRef]
- Zhao, X.-L.; Li, P.; Qu, C.; Lu, R.; Li, Z.-H. Phytotoxicity of environmental norfloxacin concentrations on the aquatic plant Spirodela polyrrhiza: Evaluation of growth parameters, photosynthetic toxicity and biochemical traits. Compar. Biochem. Physiol. Part C 2022, 258, 109365. [Google Scholar] [CrossRef]
- Lalau, C.M.; Simioni, C.; Vicentini, D.; Ouriques, L.C.; Mohedano, R.A.; Puerari, R.C.; Matias, G. Toxicological effects of AgNPs on duckweed (Landoltia punctata). Sci. Total Environ. 2020, 710, 136318. [Google Scholar] [CrossRef]
- Yang, G.-L.; Huang, M.J.; Tan, A.-J.; Lv, S.-M. 2021. Joint effects of naphthalene and microcystin-LR on physiological responses and toxin bioaccumulation of Landoltia punctata. Aquat. Toxicol. 2021, 231, 105710. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Li, P.; Huang, Q.; Zhang, H. The different response mechanisms of Wolffia globosa: Light-induce silver nanoparticle toxicity. Aquat. Toxicol. 2016, 175, 97–105. [Google Scholar] [CrossRef]
- Antunes, P.M.C.; Kreager, N.J. Lead toxicity to Lemna minor predicted using a metal speciation chemistry approach. Environ. Toxicol. Chem. 2014, 33, 2225–2233. [Google Scholar] [CrossRef]
- Gopalapillai, Y.; Vigneault, B.; Halo, B.A. Root length of aquatic plant Lemna minor L. as an optimal toxicity endpoint for biomonitoring of mining effluents. IEAM (Integr. Environ. Assess. Manag.) 2014, 10, 493–497. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, J.-q.; Huang, J.; Li, F.-y.; Wang, M. The response of duckweed (Lemna minor L.) roots to Cd and its chemical forms. J. Chem. 2018, 2018, 7274020. [Google Scholar] [CrossRef]
- Park, A.; Kim, Y.-J.; Choi, E.-M.; Brown, M.T.; Han, T. A novel bioassay using root re-growth in Lemna. Aquat. Toxicol. 2013, 140–141, 415–424. [Google Scholar] [CrossRef]
- Park, J.; Brown, M.T.; Depuydt, S.; Kim, J.K.; Won, D.-S.; Han, T. Comparing the acute sensitivity of growth and photosynthetic endpoints in three Lemna species exposed to four herbicides. Environ. Pollut. 2017, 220, 818–837. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, X.; Ma, Y.; Dai, W.; Song, Z.; Wang, Y.; Shen, J.; He, X.; Yang, F.; Zhang, Z. Interaction of cerium oxide nanoparticles and ionic cerium with duckweed (Lemna minor L.): Uptake, distribution and phytotoxicity. Nanomaterials 2023, 13, 2523. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; De Saeger, J.; Bae, S.; Kim, M.; Depuydt, S.; Heynderickx, P.M.; Wu, D.; Han, T.; Park, J. 2023. Giant duckweed (Spirodela polyrhiza) root growth as a simple and sensitive indicator of copper and chromium contamination. Toxics 2023, 11, 788. [Google Scholar] [CrossRef]
- Rozman, U.; Turk, T.; Skalar, T.; Zupancic, M.; Korosi, N.C.; Marinsek, M.; Olivero-Verbel, J.; Kalcikova, G. An extensive characterization of various environmentally relevant microplastics—Material properties, leaching and ecotoxicity testing. Sci. the Total Environ. 2021, 773, 145576. [Google Scholar] [CrossRef]
- Olah, V.; Hepp, A.; Mesaros, I. Comparative study on the sensitivity of turions and active fronds of giant duckweed (Spirodela polyrhiza (L.) Schleiden) to heavy metal treatments. Chemosphere 2015, 132, 40–46. [Google Scholar] [CrossRef]
- Olah, V.; Hepp, A.; Meszaros, I. Assessment of Giant Duckweed (Spirodela polyrhiza L. Schleiden) turions as model objects in ecotoxicological applications. Bull. Environ. Contam. Toxicol. 2016, 96, 596–601. [Google Scholar] [CrossRef]
- ISO 4979:2023; Water Quality—Aquatic Toxicity Test Based on Root Regrowth in Lemna Minor. International Organization for Standardization: Geneva, Switzerland, 2023. Available online: https://www.iso.org/standard/80751.html (accessed on 15 January 2025).
- Ziegler, P. The developmental cycle of Spirodela polyrhiza turions: A model for turion-based duckweed overwintering? Plants 2024, 13, 2993. [Google Scholar] [CrossRef]
- ISO 20227:2017; Water Quality—Determination of the Growth Inhibition Effects of Waste Waters, Natural Waters and Chemicals on the Duckweed Spirodela polyrhiza—Method Using a Stock Culture Independent Microbiotest. International Organization for Standardization: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/67326.html (accessed on 15 January 2025).
- Brain, R.A.; Cedergreen, N. Biomarkers in aquatic plants: Selection and utility. Rev. Environ. Contam. Toxicol. 2009, 198, 49–109. [Google Scholar] [CrossRef]
- Pietrini, F.; Passatore, L.; Fischetti, E.; Carloni, S.; Ferrario, C.; Polesello, S.; Zacchini, M. Evaluation of morpho-physiological traits and contaminant accumulation ability in Lemna minor L. treated with increasing perfluorooctanoic acid (PFOA) concentrations under laboratory conditions. Sci. Total Environ. 2019, 695, 133828. [Google Scholar] [CrossRef]
- Aliferis, K.A.; Materzok, S.; Paziotou, G.N.; Chrysayi-Tokousbalides, M. Lemna minor L. as a model organism for ecotoxicological studies performing 1H NMR fingerprinting. Chemosphere 2009, 76, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Lomagin, A.G.; Ulyanova, L.V. A new bioassay on water pollution using duckweed Lemna minor L. Soviet Plant Physiol. 1993, 40, 137–138. [Google Scholar]
- Yang, J.; Zhao, X.; Wang, X.; Xia, M.; Ba, S.; Lim, B.L.; Hou, H. Biomonitoring of heavy metals and their phytoremediation by duckweeds: Advances and prospects. Environ. Res. 2024, 245, 118015. [Google Scholar] [CrossRef]
- Li, T.; Xiong, Z. A novel response of wild-type duckweed (Lemna paucicostata Hegelm.) to heavy metals. Environ. Toxicol. 2004, 19, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Henke, R.; Eberius, M.; Appenroth, K.-J. Induction of frond abscission by metals and other toxic compounds in Lemna minor. Aquat. Toxicol. 2011, 101, 261–265. [Google Scholar] [CrossRef]
- Olah, V.; Hepp, A.; Lakatos, G.; Meszaros, I. Induced turion formation of Spirodela polyrhiza (L.) Schleiden. Acta Biol. Szeged. 2014, 58, 103–108. Available online: http://www2.sci.u-szeged.hu/ABS (accessed on 14 December 2024).
- Appenroth, K.-J.; Krech, K.; Keresztes, A.; Fischer, W.; Koloczek, H. Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation. Chemosphere 2010, 78, 216–223. [Google Scholar] [CrossRef]
- Sree, K.S.; Keresztes, A.; Mueller-Roeber, B.; Brandt, R.; Eberius, M.; Fischer, W.; Appenroth, K.-J. Phytotoxicity of cobalt ions on the duckweed Lemna minor—Morphology, ion uptake and starch accumulation. Chemosphere 2015, 131, 149–158. [Google Scholar] [CrossRef]
- Baciak, M.; Sikorski, L.; Piotrowicz-Cieslak, A.I.; Adomas, B. Content of biogenic amines in Lemna minor (common duckweed) growing in medium contaminated with tetracycline. Aquat. Toxicol. 2016, 180, 95–102. [Google Scholar] [CrossRef]
- Elbasan, F.; Arikan-Abdulveli, B.; Ozfidan-Konakci, C.; Yildiztugay, E.; Tarhan, I.; Celik, B. Exploring the defense strategies of benzalkonium chloride exposure on the antioxidant system, photosynthesis and ROS accumulation in Lemna minor. Chemosphere 2024, 363, 142924. [Google Scholar] [CrossRef] [PubMed]
- Olah, V.; Hepp, A.; Irfan, M.; Meszaros, I. Chlorophyll fluorescence imaging-based duckweed phenotyping to assess acute phytotoxic effects. Plants 2021, 10, 2763. [Google Scholar] [CrossRef]
- Küster, A.; Altenburger, R. Development and validation of a new fluorescence-based bioassay for aquatic macrophyte species. Chemosphere 2007, 67, 19–201. [Google Scholar] [CrossRef]
- Küster, A.; Pohl, K.; Altenburger, R. A fluorescence-based bioassay for aquatic macrophytes and its suitability for effect analysis of non-photosystem II inhibitors. Environ. Sci. Pollut. Res. 2007, 14, 377–383. [Google Scholar] [CrossRef]
- Pietrini, F.; Passatore, L.; Carloni, S.; Zacchini, M. Non-standard physiological endpoints to evaluate the toxicity of emerging contaminants in aquatic plants: A case study on the exposure of Lemna minor and Spirodela polyrhiza (L.) Schleid. to dimethyl phthalate (DMP). In Emerging Contaminants and Plants. Emerging Contaminants and Associated Treatment Technologies; Aftab, T., Ed.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Razinger, J.; Drinovec, L.; Zrimec, A. Real-time in vivo visualization of oxidative stress in duckweed (Lemna minor L.). Cent. Eur. J. Biol. 2007, 3, 351–363. [Google Scholar] [CrossRef]
- Persic, V.; Derd, T.; Varga, M.; Hackenberger, B.K. Real-time CO2 uptake/emission measurements as a tool for early indication of toxicity in Lemna-tests. Aquat. Toxicol. 2019, 206, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Barth, A. Following enzyme activity with infrared spectroscopy. Sensors 2010, 10, 2626–2637. [Google Scholar] [CrossRef]
- Schwaighofer, A.; Akhgar, C.K.; Lendl, B. Broadband laser-based mid-IR spectroscopy for analysis of proteins and monitoring of enzyme activity. SAA 2021, 253, 119563. [Google Scholar] [CrossRef]
- Pietrini, F.; Zacchini, M. A new ecotoxicity assay for aquatic plants; Eco-Tox Photosystem Tool (ETPT). Trends Plant Sci. 2020, 25, 1266–1267. [Google Scholar] [CrossRef]
- Wang, W.; Li, R.; Zhu, Q.; Tang, X.; Zhao, Q. Transcriptomic and physiological analysis of common duckweed Lemna minor responses to NH4+ toxicity. BMC Plant Biol. 2016, 16, 92. [Google Scholar] [CrossRef]
- Xu, H.; Yu, C.; Xia, X.; Li, M.; Li, H.; Wang, Y.; Wang, S.; Wang, C.; Ma, Y.; Zhou, G. Comparative transcriptome analysis of duckweed (Landoltia punctata) in response to cadmium provides insights into molecular mechanisms underlying hyperaccumulation. Chemosphere 2018, 190, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Muthan, B.; Wang, J.; Welti, R.; Kosma, D.K.; Yu, L.; Deo, B.; Khatiwada, S.; Vulavala, V.K.R.; Childs, K.L.; Xu, C.; et al. Mechanisms of Spirodela polyrhiza tolerance to FGD wastewater-induced heavy-metal stress: Lipidomics, transcriptomics, and functional validation. J. Hazard. Mater. 2024, 469, 133951. [Google Scholar] [CrossRef]
- Loll, A.; Reinwald, H.; Ayobahan, S.U.; Göckener, B.; Salinas, G.; Schäfers, C.; Schlich, K.; Hamscher, G.; Eilebrecht, S. Short-term test for toxicogenomic analysis of ecotoxic modes of action in Lemna minor. Environ. Sci. Technol. 2022, 56, 11504–11515. [Google Scholar] [CrossRef]
- Su, C.; Jiang, Y.; Yang, Y.; Zhang, W.; Xu, Q. Responses of duckweed (Lemna minor L.) to aluminum stress: Physiological and proteomics analyses. Ecotoxicol. Environ. Saf. 2019, 170, 127–140. [Google Scholar] [CrossRef]
- Kostopoulou, S.; Ntatsi, G.; Arapis, G.; Aliferis, K.A. Assessment of the effects of metribuzin, glyphosate, and their mixtures on the metabolism of the model plant Lemna minor L. applying metabolomics. Chemosphere 2020, 239, 124582. [Google Scholar] [CrossRef]
- Wahman, R.; Cruzeiro, C.; Graßmann, J.; Schröder, P.; Letzel, T. The changes in Lemna minor metabolomic profile: A response to diclofenac incubation. Chemosphere 2022, 287, 132078. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.-X.; Ying, G.-G.; Chen, X.-W.; Huang, G.-Y.; Liu, Y.-S.; Jiang, Y.-X.; Pan, C.-G.; Tian, F.; Martin, F.L. Fourier transform infrared spectroscopy as a novel approach to providing effect-based endpoints in duckweed toxicity testing. Environ. Toxicol. Chem. 2017, 36, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-L.; Xiong, Q.; Wang, B.; Liu, Y.-S.; Zou, P.-L.; Hu, L.-X.; Liu, F.; Ying, G.-G. Screening of structural and functional alterations in duckweeds (Lemna minor) induced by per- and polyfluoroalkyl substances (PFASs) with FTIR spectroscopy. Environ. Pollut. 2023, 317, 120671. [Google Scholar] [CrossRef]
- Zhang, T.; Lu, Q.; Su, C.; Yang, Y.; Hu, D.; Xu, Q. Mercury induced oxidative stress, DNA damage, and activation of antioxidative system and Hsp70 induction in duckweed (Lemna minor). Ecotoxicol Environ. Saf. 2017, 143, 46–56. [Google Scholar] [CrossRef]
- Brkanac, S.R.; Domijan, A.-M.; Stefanic, P.P.; Maldini, K.; Sikiric, M.D.; Bol, V.V.; Cvjetko, P. Difference in the toxic effects of micro and nano ZnO particles on L. minor—An integrative approach. Environ. Sci. Pollut. Res. 2024, 31, 58830–58843. [Google Scholar] [CrossRef]
- Pietrini, F.; Iannilli, V.; Passatore, L.; Carloni, S.; Sciacca, G.; Cerasa, M.M.; Zacchini, M. Ecotoxicological and genotoxic effects of dimethyl phthalate (DMP) on Lemna minor L. and Spirodela polyrhiza (L.) Schleid. plants under a short-term laboratory assay. Sci. Total Environ. 2022, 806, 150972. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Jiang, Y.; Qu, Z.; Yang, Y.; Wang, W.; He, Y.; Yu, Y.; Luo, X.; Liu, W.; Han, W.; et al. Overexpression of phosphoserine aminotransferase (PSAT)-enhanced cadmium resistance and accumulation in duckweed (Lemna turionifera 5511). Plants 2024, 13, 627. [Google Scholar] [CrossRef] [PubMed]
- Van Hoeck, A.; Horemans, N.; Nauts, R.; VanHees, M.; Vandenhove, H.; Blust, R. Lemna minor plants chronically exposed to ionizing radiation: RNA-seq analysis indicates a close rate dependent shift from acclimation to survival strategies. Plant Sci. 2017, 257, 84–95. [Google Scholar] [CrossRef]
- Fu, L.; Ding, Z.; Sun, X.; Zhang, J. Physiological and transcriptomic analysis reveals distorted ion homeostasis and response in the freshwater plant Spirodela polyrhiza L. under salt stress. Genes 2019, 10, 743. [Google Scholar] [CrossRef] [PubMed]
- Shang, S.; Zhang, Z.; Li, L.; Chen, J.; Zang, Y.; Liu, X.; Wang, J.; Tang, X. Transcriptome analysis reveals gene expression patterns of Spirodela polyrhiza response to heat stress. Int. J. Biol. Macromol. 2023, 225, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Zhao, X.; Qi, G.; Bai, Z.; Wang, Y.; Wang, S.; Ma, Y.; Liu, Q.; Hu, R.; Zhou, G. Integrated analysis of transcriptome and metabolites reveals an essential role of metabolic flux in starch accumulation under nitrogen starvation in duckweed. Biotechnol. Biofuels 2017, 10, 167. [Google Scholar] [CrossRef]
- Fu, L.; Tan, D.; Sun, X.; Ding, Z.; Zhang, J. Transcriptional analysis reveals potential genes and regulatory networks involved in salicylic acid-induced flowering in duckweed (Lemna gibba). Plant. Physiol. Biochem. 2020, 155, 512–522. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Y.; Messing, J. RNA-Seq transcriptome analysis of Spirodela dormancy without reproduction. BMC Genom. 2014, 15, 60. [Google Scholar] [CrossRef]
- Pasaribu, B.; Acosta, K.; Aylward, A.; Liang, Y.; Abramson, B.W.; Colt, K.; Hartwick, N.T.; Shanklin, J.; Michael, T.P.; Lam, E. Genomics of turions from the Greater Duckweed reveal its pathways for dormancy and re-emergence strategy. New Phytol. 2023, 239, 116–131. [Google Scholar] [CrossRef]
- Wang, W.; Yang, C.; Tang, X.; Gu, X.; Zhu, Q.; Pan, K.; Hu, Q.; Ma, D. Effects of high ammonium level on biomass accumulation of common duckweed Lemna minor L. Environ. Sci. Pollut. Res. 2014, 21, 14202–14210. [Google Scholar] [CrossRef]
- Afshana; Dyar, M.A.; Reshi, Z.A. Induced genotoxicity and oxidative stress in plants: An overview. In Induced Genotoxicity and Oxidative Stress in Plants; Khan, Z., Ansari, M.Y.K., Shahwar, D., Eds.; Springer Nature: Singapore, 2021; pp. 1–27. [Google Scholar] [CrossRef]
- Picinini-Zambelli, J.; Garcia, A.L.H.; Da Silva, J. Emerging pollutants in the aquatic environment: A review of genotoxic impacts. MRR 2025, 795, 108519. [Google Scholar] [CrossRef] [PubMed]
- Kaur, L.; Kanwar, N. Duckweed: A model for phytoremediation technology. Holist. Approach Environ. 2022, 12, 39–58. Available online: https://casopis.hrcpo.com/volume-12-issue-1-kaur-et-al/ (accessed on 18 January 2025). [CrossRef]
- Ekperusi, A.O.; Sikoki, F.D.; Nwachukwu, E.O. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment; State and future perspective. Chemosphere 2019, 223, 285–309. [Google Scholar] [CrossRef] [PubMed]
- Ekperusi, A.O.; Sikoki, F.D.; Nwachukwu, E.O. Sorption of cadmium, chromium, lead, and vanadium from artificial wetlands using Lemna aequinoctialis. Int. J. Phytoremed. 2023, 26, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yao, J.; Sun, J.; Shi, L.; Cen, Y.; Su, J. The Ca2+ signaling, Glu, and GABA responds to Cd stress in duckweed. Aquat. Toxicol. 2020, 218, 105352. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Han, H.; Liu, M.; Zuo, Z.; Zhou, K.; Lü, J.; Zhu, Y.; Bai, Y.; Wang, Y. Overexpression of the Arabidopsis photorespiratory pathway gene, serine: Glyoxylate aminotransferase (AtAGT1), leads to salt stress tolerance in transgenic duckweed (Lemna minor). Plant Cell. Tiss. Organ Cult. 2013, 113, 407–416. [Google Scholar] [CrossRef]
- Canto-Pastor, A.; Molla-Morales, A.; Ernst, E.; Dahl, W.; Zhai, J.; Yan, Y.; Meyers, B.C.; Shanklin, J.; Martienssen, R. Efficient transformation and artificial miRNA gene silencing in Lemna minor. Plant Biol. 2015, 17 (Suppl. S1), 59–65. [Google Scholar] [CrossRef]
- Gan, W.C.; Ling, A.P.K. CRISPR/Cas9 in plant biotechnology: Applications and challenges. BioTechnologia 2022, 103, 81–93. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Xu, S.; Tang, X.; Zhao, J.; Yu, C.; He, G.; Xu, H.; Wang, S.; Tang, Y.; et al. Efficient genetic transformation and CRISPR/Cas9-mediated genomic editing in Lemna aequinoctialis. Plant Biotechnol. J. 2019, 17, 2143–2152. [Google Scholar] [CrossRef]
Toxicity indicator | Toxin | Duckweed species | Reference |
---|---|---|---|
Decrease in root length | Ni | Lemna minor | [69] |
Pb | Lemna minor | [70] | |
Cd | Lemna minor | [71] | |
Impaired re-growth of roots after excision | Ag, Cd, Cr, Cu, Hg | Lemna minor/gibba/paucicostata | [72] |
atrazine, diuron, paraquat, simazine | Lemna minor/gibba/paucicostata | [73] | |
Cu | Lemna minor | [27] | |
Ce | Lemna minor | [74] | |
B | Lemna minor | [51] | |
Cu, Cr | Spirodela polyrhiza | [75] | |
microplastic | Lemna minor | [76] | |
Inhibited growth of first frond produced by germinating turions | 22 substances: herbicides, organic/inorganic compounds, metals | Spirodela polyrhiza | [64] |
Ni, Cd, Cr | Spirodela polyrhiza | [77,78] |
Water contaminant | Examples | Duckweed species tested | Biomarkers |
---|---|---|---|
Metals |
| ||
Heavy metals | Cd, Co, Cu, Cr, Hg, Zn, Ni, Pb | S. polyrhiza La. punctata Le. minor | |
Nanoparticles | Ag, Cu | S. polyrhiza Le. minor Wo. globsa | |
Metalloids | As, B, Se | La. punctata Le. minor/gibba Wo. arrhiza | |
Rare earths | Pr, Ce | S. polyrhiza | |
Organic xenobiotics | |||
Natural chemicals: bacterial toxins coal tar hydrocarbons | coronatine fluoranthine | Le. paucicostata Le. minor | |
Industrial chemicals: solvents dyes surfactants | diethyl phthalate Malachite Green alkyl dimethyl amine oxide | S. polyrhiza Le. minor Le. minor | |
Agricultural chemicals: herbicides insectucides fungicides growth retardants anti-ozonants | atrazine teflubenzuron Epoxiconazole uniconazole ethylene diurea | Le. minor Le. minor Le. minor La. punctata Le. minor | |
Pharmaceuticals: analgesics antibiotics anti-depressants | diclophenac tetracycline fluoxetine | Le. minor Le. minor Le. minor | |
Particles: | polyethylene microbeads | Le. minor |
Type of investigation | Toxin | Duckweed species | Reference |
---|---|---|---|
Transcriptomics | NH4+ | Lemna minor | [103] |
Cd | Landoltia punctata | [104] | |
heavy metal mixture | Spirodela polyrhiza | [105] | |
atorvastatin/bentazon | Lemna minor | [106] | |
imazamox | Lemna minor | [29] | |
Proteomics | Al | Lemna minor | [107] |
atorvastatin/bentazon | Lemna minor | [106] | |
Metabolomics | herbicides, phytotoxin | Lemna minor | [84] |
herbicides | Lemna minor | [108] | |
diclofenac | Lemna minor | [109] | |
Lipidomics | heavy metal mixture | Spirodela polyrhiza | [105] |
FTIR spectroscpy | herbicides, heavy metals | Lemna minor | [110] |
fluoralkyls | Lemna minor | [111] | |
Genotoxicity | Hg | Lemna minor | [112] |
Zn-MP/NP | Lemna minor | [113] | |
dimethyl phthalate | Spirodela polyrhiza | [114] | |
Transformation | Cd | Lemna turionifera | [115] |
heavy metal mixture | Spirodela polyrhiza | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziegler, P. Developments in Toxicity Testing with Duckweeds. J. Xenobiot. 2025, 15, 48. https://doi.org/10.3390/jox15020048
Ziegler P. Developments in Toxicity Testing with Duckweeds. Journal of Xenobiotics. 2025; 15(2):48. https://doi.org/10.3390/jox15020048
Chicago/Turabian StyleZiegler, Paul. 2025. "Developments in Toxicity Testing with Duckweeds" Journal of Xenobiotics 15, no. 2: 48. https://doi.org/10.3390/jox15020048
APA StyleZiegler, P. (2025). Developments in Toxicity Testing with Duckweeds. Journal of Xenobiotics, 15(2), 48. https://doi.org/10.3390/jox15020048