Novel Technique for Simultaneous Ethylene Glycol and Its Metabolites Determination in Human Whole Blood and Urine Samples Using GC–QqQ–MS/MS
Abstract
:1. Introduction
1.1. Epidemiology of Ethylene Glycol Intoxications
1.2. The Aim of the Work
2. Materials and Methods
2.1. Chemicals
2.2. Biological Material
2.3. Working Solutions, Calibration Curve, Quality Control Samples
2.4. Sample Preparation
2.5. Instrumentation
2.6. Validation
2.6.1. Selectivity
2.6.2. Linearity
2.6.3. Precision and Accuracy
2.6.4. Carryover
2.6.5. The Limit of Detection and Limit of Quantification
2.6.6. Recovery and Matrix Effect
2.6.7. Dilution Effect
3. Results
3.1. Chromatographic Separation and Optimization of Mass Spectrometer Parameters
3.2. Validation Process
3.3. Application of the Method to Authentic Cases
4. Discussion
4.1. Optimization of Sample Preparation
Reference | Analysed Substances | Analysed Biological Material | Matrix used for Calibration | Sample Volume [μl] | ISTD | Derivatization Agent | Sample Preparation Technique | LOQ [μg/mL] | Injection Volume [μL] | MS Mode |
---|---|---|---|---|---|---|---|---|---|---|
[44] | ethylene glycol | whole blood | whole blood | 250 | ethylene glycol-d6 | heptafluorobutyric anhydride | LLE with n-hexane | nd | 1.0 | SIM |
[42] | ethylene glycol | plasma urine | plasma | 200 | 1,3-propanediol | pivalic anhydride /triethylamine /methanol (20:1:1 v/v/v) | precipitation with acetone | 100 | 1.0 | scan |
[37] | ethylene glycol | plasma | water | 50 | ethylene glycol-d4 | dimethylformamide + N,O-bis-(trimethylsilyl)-trifluoroacetamide | – | 50 | – | SIM |
[14] | ethylene glycol glycolic acid | serum | serum | 50 | 1,3-propanediol | N-(tert-butyl-dimethylsilyl)-N-methyltrifluoroacetamide | precipitation with acetic acid and ACN | 10 | 1.0 | MRM |
[15] | ethylene glycol glycolic acid | serum urine | serum | 100 | 1,3-propanediol 3-(4-chloro-phenyl)propionic acid | isobutyl chloroformate | extraction with borate buffer in pH 9 | 50 | 1.0 | MRM |
[16] | ethylene glycol glycolic acid | whole blood | whole blood | 50 | 1,3-propanediol | N-(tert-butyl-dimethylsilyl)-N-methyltrifluoroacetamide | precipitation with ACN | 50 | 1.0 | scan |
[41] | ethylene glycol | serum | bovine serum | 100 | 1,3-propanediol | phenylboronic acid | precipitation with ACN | nd | 0.5–1.0 | – |
[38] | ethylene glycol glycolic acid | plasma urine | plasma | 50 | 1,3-propanediol | N,O-bis-(trimethylsilyl)-trifluoroacetamide | nd | 50 | 1.0 | MRM |
[39] | ethylene glycol | serum | serum | 50 | 1,2-butanediol | 4-carboethoxy-hexafluorobutyryl chloride | LLE with acetone | nd | 2.0 | scan |
[40] | ethylene glycol | serum | serum | 50 | 1,4-butanediol | pentafluorooctanoyl chloride | LLE with acetone | nd | 1.0–2.0 | scan |
[43] | ethylene glycol | plasma | plasma | 200 | 1,3-propanediol | pivalic anhydride /triethylamine /methanol (20:1:1 v/v/v) | LLE with acetone | nd | 0.5 | scan |
[17] | ethylene glycol glycolic acid | serum plasma urine | bovine serum albumin | 20 | 1,3-propanediol | bis- N,O-trimethylsilyl trifluoroacetamide | – | 0.39 | 1.0 | SIM |
Presented method | ethylene glycol glycolic acid glyoxal glyoxylic acid a oxalic acid a | whole blood urine | whole blood and urine | 50 | ethylene glycol-d4 BHB-d4 methylglyoxal | N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide + tert-butyldimethylchlorosilane, pentafluorophenylhydrazine | precipitation with ACN, LLE with hexane | 1.0 | 0.2 | MRM |
4.2. Optimization of Derivatization
4.3. Optimization of GC–MS Analysis
4.4. Fragmentation Pathway of the Analytes
4.5. Analysis of Biological Material
5. Conclusions
Novelty of the Method
- Simultaneous derivatization of alcohol’s, aldehyde’s, and carboxylic acid’s analogs from one sample.
- The method allows simultaneous ethylene glycol and its metabolite determination within a short time.
- Biological sample volume is reduced to only 50 μL.
- Method was successfully applied to three authentic postmortem cases of intoxication where concentrations of ethylene glycol and its metabolites were presented, allowing for an increase in toxicological knowledge on the subject.
- The lowest LOQ value (1 μg/mL) for ethylene glycol was achieved.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, F.; Liu, D.; Chen, Z. Recent advances in biological production of 1,3-propanediol: New routes and engineering strategies. Green Chem. 2022, 24, 1390–1403. [Google Scholar] [CrossRef]
- Ferreira, A.M.C.; Laespada, M.E.F.; Pavón, J.L.P.; Cordero, B.M. In situ aqueous derivatization as sample preparation technique for gas chromatographic determinations. J. Chromatogr. A 2013, 1296, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Fang, K.; Pan, X.; Huang, B.; Liu, J.; Wang, Y.; Gao, J. Simultaneous derivatization of hydroxyl and ketone groups for the analysis of steroid hormones by GC–MS. Chromatographia 2010, 72, 949–956. [Google Scholar] [CrossRef]
- Flores, R.M.; Doskey, P.V. Evaluation of multistep derivatization methods for identification and quantification of oxygenated species in organic aerosol. J. Chromatogr. A. 2015, 1418, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kruse, J.A. Methanol and ethylene glycol intoxication. Crit. Care. Clin. 2012, 28, 661–711. [Google Scholar] [CrossRef]
- Wachełko, O.; Zawadzki, M.; Szpot, P. A novel procedure for stabilization of azide in biological samples and method for its determination (HS-GC-FID/FID). Sci. Rep. 2021, 11, 15568. [Google Scholar] [CrossRef]
- Wachełko, O.; Chłopaś-Konowałek, A.; Zawadzki, M.; Szpot, P. Old poison, new problem: Cyanide fatal intoxications associated with internet shopping. J. Anal. Toxicol. 2022, 46, e52–e59. [Google Scholar] [CrossRef]
- Tusiewicz, K.; Wachełko, O.; Zawadzki, M.; Szpot, P. The stability of cyanide in human biological samples. A systematic review, meta-analysis and determination of cyanide (GC-QqQ-MS/MS) in an authentic casework 7 years after fatal intoxication. Toxicol. Mech. Methods 2024, 34, 271–282. [Google Scholar] [CrossRef]
- Tusiewicz, K.; Wachełko, O.; Zawadzki, M.; Chłopaś-Konowałek, A.; Jurek, T.; Kawecki, J.; Szpot, P. The dark side of social media: Two deaths related with chloroform intoxication. J. Forensic. Sci. 2022, 67, 1300–1307. [Google Scholar] [CrossRef]
- Vadysinghe, A.N.; Kumarasinghe, W.G.G.B.; Kodikara, S.; Wickramasinghe, N. Suicide by ethylene glycol/brake oil poisoning—A case report, Egypt. J. Forensic. Sci. 2021, 11, 28. [Google Scholar] [CrossRef]
- Bronstein, A.C.; Spyker, D.A.; Cantilena, L.R., Jr.; Green, J.L.; Rumack, G.H.; Heard, S.E. 2007 annual report of the American association of poison control centers’ national poison data system (NPDS): 25th annual report. Clin. Toxicol. 2008, 46, 927–1057. [Google Scholar] [CrossRef]
- Eder, A.F.; McGrath, C.M.; Dowdy, Y.G.; Tomaszewski, J.E.; Rosenberg, F.M.; Wilson, R.B.; Wolf, B.A.; Shaw, L.M. Ethylene glycol poisoning: Toxicokinetic and analytical factors affecting laboratory diagnosis. Clin. Chem. 1998, 44, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Porter, W.H. Ethylene glycol poisoning: Quintessential clinical toxicology; analytical conundrum. Clin. Chim. Acta 2012, 413, 365–377. [Google Scholar] [CrossRef]
- Porter, W.H.; Rutter, P.W.; Yao, H. Simultaneous determination of ethylene glycol and glycolic acid in serum by gas chromatography-mass spectrometry. J. Anal. Toxicol. 1999, 23, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Hložek, T.; Bursová, M.; Čabala, R. Simultaneous and cost-effective determination of ethylene glycol and glycolic acid in human serum and urine for emergency toxicology by GC-MS. Clin. Biochem. 2015, 48, 189–191. [Google Scholar] [CrossRef] [PubMed]
- Rosano, T.G.; Swift, T.A.; Kranick, C.J.; Sikirica, M. Ethylene glycol and glycolic acid in postmortem blood from fatal poisonings. J. Anal. Toxicol. 2009, 33, 508–513. [Google Scholar] [CrossRef]
- Van Hee, P.; Neels, H.; De Doncker, M.; Vrydags, N.; Schatteman, K.; Uyttenbroeck, W.; Hamers, N.; Himpe, D.; Lambert, W. Analysis of γ-hydroxybutyric acid, DL-lactic acid, glycolic acid, ethylene glycol and other glycols in body fluids by a direct injection gas chromatography-mass spectrometry assay for wide use. Clin. Chem. Lab. Med. 2004, 42, 1341–1345. [Google Scholar] [CrossRef]
- Judea-Pusta, C.T.; Muţiu, G.; Paşcalău, A.V.; Buhaş, C.L.; Ciursaş, A.N.; Nistor-Cseppento, C.D.; Bodea, A.; Judea, A.S.; Vicaş, R.M.; Dobjanschi, L.; et al. The importance of the histopathological examination in lethal acute intoxication with ethylene glycol. Case report. Rom. J. Morphol. Embryol. 2018, 59, 965–969. [Google Scholar]
- Lapolla, A.; Flamini, R.; Vedova, A.D.; Senesi, A.; Reitano, R.; Fedele, D.; Basso, E.; Seraglia, R.; Traldi, P. Glyoxal and methylglyoxal levels in diabetic patients: Quantitative determination by a new GC/MS method. Clin. Chem. Lab. Med. 2023, 41, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- McFadden, B.A.; Howes, W.V. The determination of glyoxylic acid in biological systems. Anal. Biochem. 1960, 1, 240–248. [Google Scholar] [CrossRef]
- Pereira, R.S. A photometric method for the determination of oxalic acid. Mikrochem. Ver. Mit Mikrochim. Acta 1951, 36, 398–406. [Google Scholar] [CrossRef]
- Neng, N.R.; Cordeiro, C.A.A.; Freire, A.P.; Nogueira, J.M.F. Determination of glyoxal and methylglyoxal in environmental and biological matrices by stir bar sorptive extraction with in-situ derivatization. J. Chromatogr. A. 2007, 1169, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Scheijen, J.L.; Schalkwijk, C.G. Quantification of glyoxal, methylglyoxal and 3-deoxyglucosone in blood and plasma by ultra performance liquid chromatography tandem mass spectrometry: Evaluation of blood specimen. Clin. Chem. Lab. Med. 2014, 52, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Campillo, N.; Viñas, P.; Marín, J.; Hernández-Córdoba, M. Glyoxal and methylglyoxal determination in urine by surfactant-assisted dispersive liquid–liquid microextraction and LC. Bioanalysis 2017, 9, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Mansilla, A.; Durán-Merás, I.; Cañada, F.C.; Márquez, M.P. High-performance liquid chromatographic determination of glyoxal and methylglyoxal in urine by prederivatization to lumazinic rings using in serial fast scan fluorimetric and diode array detectors. Anal. Biochem. 2007, 371, 82–91. [Google Scholar] [CrossRef]
- Ojeda, A.G.; Wrobel, K.; Escobosa, A.R.C.; Garay-Sevilla, M.E.; Wrobel, K. High-performance liquid chromatography determination of glyoxal, methylglyoxal, and diacetyl in urine using 4-methoxy-o-phenylenediamine as derivatizing reagent. Anal. Biochem. 2014, 449, 52–58. [Google Scholar] [CrossRef]
- Chihara, K.; Kishikawa, N.; Ohyama, K.; Nakashima, K.; Kuroda, N. Determination of glyoxylic acid in urine by liquid chromatography with fluorescence detection, using a novel derivatization procedure based on the Petasis reaction. Anal. Bioanal. Chem. 2012, 403, 2765–2770. [Google Scholar] [CrossRef]
- Ali, M.F.; Kishikawa, N.; Kuroda, N. Development of HPLC method for estimation of glyoxylic acid after pre-column fluorescence derivatization approach based on thiazine derivative formation: A new application in healthy and cardiovascular patients’ sera. J. Chromatogr. B 2020, 1143, 122054. [Google Scholar] [CrossRef]
- Tuero, G.; González, J.; Sahuquillo, L.; Freixa, A.; Gomila, I.; Elorza, M.A.; Barceló, B. Value of glycolic acid analysis in ethylene glycol poisoning: A clinical case report and systematic review of the literature. Forensic Sci. Int. 2018, 290, e9–e14. [Google Scholar] [CrossRef]
- Peters, F.T.; Hartung, M.; Schmitt, M.H.G.; Daldrup, T.; Musshoff, F. Requirements for the validation of analytical methods. Toxichem. Krimtech. 2009, 76, 185–208. [Google Scholar]
- Szpot, P.; Wachełko, O.; Zawadzki, M. Application of ultra-sensitive GC-QqQ-MS/MS (MRM) method for the determination of diclofenac in whole blood samples without derivatization. J. Chromatogr. B 2021, 1179, 122860. [Google Scholar] [CrossRef] [PubMed]
- Wachełko, O.; Szpot, P.; Tusiewicz, K.; Nowak, K.; Chłopaś-Konowałek, A.; Zawadzki, M. An ultra-sensitive UHPLC-QqQ-MS/MS method for determination of 54 benzodiazepines (pharmaceutical drugs, NPS and metabolites) and z-drugs in biological samples. Talanta 2023, 251, 123816. [Google Scholar] [CrossRef]
- Chambers, E.; Wagrowski-Diehl, D.M.; Lu, Z.; Mazzeo, J.R. Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. J. Chromatogr. B 2007, 852, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Tusiewicz, K.; Chłopaś-Konowałek, A.; Wachełko, O.; Zawadzki, M.; Szpot, P. A fatal case involving the highest ever reported 4-CMC concentration. J. Forensic. Sci. 2023, 68, 349–354. [Google Scholar] [CrossRef]
- Zawadzki, M.; Wachełko, O.; Chłopaś-Konowałek, A.; Szpot, P. Quantification and distribution of 4-fluoroisobutyryl fentanyl (4-FiBF) in postmortem biological samples using UHPLC–QqQ-MS/MS. Forensic Toxicol. 2021, 39, 451–463. [Google Scholar] [CrossRef]
- Szpot, P.; Nowak, K.; Wachełko, O.; Tusiewicz, K.; Chłopaś-Konowałek, A.; Zawadzki, M. Methyl (S)-2-(1-7 (5-fluoropentyl)-1H-indole-3-carboxamido)-3,3-dimethylbutanoate (5F-MDMB-PICA) intoxication in a child with identification of two new metabolites (ultra-high-performance liquid chromatography-tandem mass spectrometry). Forensic Toxicol. 2023, 41, 47–58. [Google Scholar] [CrossRef]
- Robson, A.F.; Lawson, A.J.; Lewis, L.; Jones, A.; George, S. Validation of a rapid, automated method for the measurement of ethylene glycol in human plasma. Ann. Clin. Biochem. 2017, 54, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.R.; Weber, A.A.; Maurer, H.H. A validated GC-MS procedure for fast, simple, and cost-effective quantification of glycols and GHB in human plasma and their identification in urine and plasma developed for emergency toxicology. Anal. Bioanal. Chem. 2011, 400, 411–414. [Google Scholar] [CrossRef]
- Dasgupta, A.; Macaulay, R. A novel derivatization of ethylene glycol from human serum using 4-carbethoxyhexafluorobutyryl chloride for unambiguous gas chromatography-chemical ionization mass spectrometric identification and quantification. Am. J. Clin. Pathol. 1995, 104, 283–288. [Google Scholar] [CrossRef]
- Dasgupta, A.; Blackwell, W.; Griego, J.; Malik, S. Gas chromatographic-mass spectrometric identification and quantitation of ethylene glycol in serum after derivatization with perfluorooctanoyl chloride: A novel derivative. J. Chromatogr. B. Biomed. Sci. Appl. 1995, 666, 63–70. [Google Scholar] [CrossRef]
- Porter, W.H.; Auansakul, A. Gas-chromatographic determination of ethylene glycol in serum. Clin. Chem. 1982, 28, 75–78. [Google Scholar] [CrossRef]
- Maurer, H.H.; Peters, F.T.; Paul, L.D.; Kraemer, T. Validated gas chromatographic–mass spectrometric assay for determination of the antifreezes ethylene glycol and diethylene glycol in human plasma after microwave-assisted pivalylation. J. Chromatogr. B Biomed. Sci. Appl. 2001, 754, 401–409. [Google Scholar] [CrossRef]
- Maurer, H.; Kessler, C. Identification and quantification of ethylene glycol and diethylene glycol in plasma using gas chromatography-mass spectrometry. Arch. Toxicol. 1988, 62, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Wurita, A.; Suzuki, O.; Hasegawa, K.; Gonmori, K.; Minakata, K.; Yamagishi, I.; Nozawa, H.; Watanabe, K. Sensitive determination of ethylene glycol, propylene glycol and diethylene glycol in human whole blood by isotope dilution gas chromatography–mass spectrometry, and the presence of appreciable amounts of the glycols in blood of healthy subjects. Forensic Toxicol. 2013, 31, 272–280. [Google Scholar] [CrossRef]
- Boumba, V.A.; Ziavrou, K.S.; Vougiouklakis, T. Biochemical pathways generating post-mortem volatile compounds co-detected during forensic ethanol analyses. Forensic Sci. Int. 2008, 174, 133–151. [Google Scholar] [CrossRef]
- Thornalley, P.J. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems-role in ageing and disease. Drug Metab. Drug Interact. 2008, 23, 125–150. [Google Scholar] [CrossRef]
- Rabbani, N.; Thornalley, P.J. Measurement of methylglyoxal by stable isotopic dilution analysis LC-MS/MS with corroborative prediction in physiological samples. Nat. Protoc. 2014, 9, 1969–1979. [Google Scholar] [CrossRef]
- Kold-Christensen, R.; Jensen, K.K.; Smedegård-Holmquist, E.; Sørensen, L.K.; Hansen, J.; Jørgensen, K.A.; Kristensen, P.; Johannsen, M. ReactELISA method for quantifying methylglyoxal levels in plasma and cell cultures. Redox Biol. 2019, 26, 101252. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, E.J.; Engelhart, D.A.; Jenkins, A.J.; Balraj, E.K. Homicidal ethylene glycol intoxication: A report of a case. Am. J. Forensic Med. Pathol. 2006, 27, 151–155. [Google Scholar] [CrossRef]
- Hatchett, R. A severe and fatal case of ethylene glycol poisoning. Intensive Crit. Care Nurs. 1993, 9, 183–190. [Google Scholar] [CrossRef]
- Baselt, R.C. Ethylene glycol. In Disposition of Toxic Drugs and Chemicals in Man, 12th ed.; Boland, D.M., Ed.; Biomedical Publications: Seal Beach, CA, USA, 2020; pp. 804–805. [Google Scholar]
- Harvey, D.J.; Vouros, P. Mass spectrometric fragmentation of trimethylsilyl and related alkylsilyl derivatives. Mass Spectrom. Rev. 2020, 39, 105–211. [Google Scholar] [CrossRef] [PubMed]
- Szpot, P.; Wachełko, O.; Zawadzki, M. Diclofenac Concentrations in Post-Mortem Specimens-Distribution, Case Reports, and Validated Method (UHPLC-QqQ-MS/MS) for Its Determination. Toxics 2022, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Schnedler, N.; Burckhardt, G.; Burckhardt, B.C. Glyoxylate is a substrate of the sulfate-oxalate exchanger, sat-1, and increases its expression in HepG2 cells. J. Hepatol. 2011, 54, 513–520. [Google Scholar] [CrossRef]
- Ermer, T.; Nazzal, L.; Tio, M.C.; Waikar, S.; Aronson, P.S.; Knauf, F. Oxalate homeostasis. Nat. Rev. Nephrol. 2023, 19, 123–138. [Google Scholar] [CrossRef]
- Leth, P.M.; Gregersen, M. Ethylene glycol poisoning. Forensic Sci. Int. 2005, 155, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Brent, J. Fomepizole for ethylene glycol and methanol poisoning. N. Engl. J. Med. 2009, 360, 2216–2223. [Google Scholar] [CrossRef]
- Sandberg, Y.; Rood, P.P.; Russcher, H.; Zwaans, J.J.M.; Weige, J.D.; van Daele, P.M. Falsely elevated lactate in severe ethylene glycol intoxication. Neth. J. Med. 2010, 68, 320–323. [Google Scholar]
- Verelst, S.; Vermeersch, P.; Desmet, K. Ethylene glycol poisoning presenting with a falsely elevated lactate level. Clin. Toxicol. 2009, 47, 236–238. [Google Scholar] [CrossRef]
- Furnica, C.; Knieling, A.; Damian, S.I.; Diac, M.; David, S.; Iliescu, D.B.; Iov, C.J. Fatal ethylene glycol intoxication secondary to accidental ingestion. Ren. Fail. 2017, 5, 7. [Google Scholar] [CrossRef]
- Morfin, J.; Chin, A. Urinary calcium oxalate crystals in ethylene glycol intoxication. N. Engl. J. Med. 2005, 353, e21. [Google Scholar] [CrossRef]
- Toth-Manikowski, S.M.; Menn-Josephy, H.; Bhatia, J. A case of chronic ethylene glycol intoxication presenting without classic metabolic derangements. Case Rep. Nephrol. 2014, 1, 128145. [Google Scholar] [CrossRef] [PubMed]
- Freilich, B.M.; Altun, Z.; Ramesar, C.; Medalia, A. Neuropsychological sequelae of ethylene glycol intoxication: A case study. Appl. Neuropsychol. 2007, 14, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Huttner, H.B.; Berger, C.; Schwab, S. Severe ethylene glycol intoxication mimicking acute basilar artery occlusion. Neurocrit. Care. 2005, 3, 171–173. [Google Scholar] [CrossRef]
- Michelis, M.F.; Mitchell, B.; Davis, B.B. “Bicarbonate resistant” metabolic acidosis in association with ethylene glycol intoxication. Clin. Toxicol. 1976, 9, 53–60. [Google Scholar] [CrossRef]
- Scherger, D.L.; Wruk, K.M.; Linden, C.; Rumack, B. Ethylene glycol intoxication. J. Emerg. Nurs. 1983, 9, 71–73. [Google Scholar]
- Parry, M.F.; Wallach, R. Ethylene glycol poisoning. Am. J. Med. 1974, 57, 143–150. [Google Scholar] [CrossRef]
- Levy, R.I. Renal failure secondary to ethylene glycol intoxication. JAMA 1960, 173, 1210–1213. [Google Scholar] [CrossRef]
- Underwood, F.; Bennett, W.M. Ethylene glycol intoxication: Prevention of renal failure by aggressive management. JAMA 1973, 226, 1453–1454. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, D.; Hewlett, T.P.; Webb, R.; Brown, S.T.; Ordinario, A.T.; McMartin, K.E. Ethylene glycol intoxication: Evaluation of kinetics and crystalluria. Am. J. Med. 1988, 84, 145–152. [Google Scholar] [CrossRef]
- Cadnapaphornchai, P.; Taher, S.; Bhathena, D.; McDonald, F.D. Ethylene glycol poisoning: Diagnosis based on high osmolal and anion gaps and crystalluria. Ann. Emerg. Med. 1981, 10, 94–97. [Google Scholar] [CrossRef]
- Davis, D.P.; Bramwell, K.J.; Hamilton, R.S.; Williams, S.R. Ethylene glycol poisoning: Case report of a record-high level and a review. J. Emerg. Med. 1997, 15, 653–667. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.L.; Hunter, J.M. Ethylene glycol poisoning: A case report. Anaesthesia 1982, 37, 332–338. [Google Scholar] [CrossRef]
- Liberek, T.; Śliwarska, J.; Czurak, K.; Perkowska-Ptasińska, A.; Weber, E.; Rutkowski, B. Prolonged renal failure in the course of atypical ethylene glycol intoxication. Acta Biochim. Pol. 2013, 60, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Martinez Manzano, J.M.; Elkholy, K.O.; Lo, K.B. Brain MRI abnormalities in acute ethylene glycol poisoning: A case report. Toxicol. Commun. 2022, 6, 74–77. [Google Scholar] [CrossRef]
- Meng, Q.H.; Adeli, K.; Zello, G.A.; Porter, W.H.; Krahn, J. Elevated serum glycoaldehyde in ethylene glycol poisoning: A case report. Clin. Chim. Acta 2006, 366, 338–341. [Google Scholar] [CrossRef]
- Morgan, B.W.; Ford, M.D.; Follmer, R. Ethylene glycol ingestion resulting in brainstem and midbrain dysfunction. J. Toxicol. Clin. Toxicol. 2000, 38, 445–451. [Google Scholar] [CrossRef]
- Piagnerelli, M.; Lejeune, P.; Vanhaeverbeek, M. Diagnosis and treatment of an unusual cause of metabolic acidosis: Ethylene glycol poisoning. Acta Clin. Belg. 1999, 54, 351–356. [Google Scholar] [CrossRef]
- Reddy, N.J.; Lewis, L.D.; Gardner, T.B.; Osterling, W.; Eskey, C.J.; Nierenberg, D.W. Two cases of rapid onset Parkinson’s syndrome following toxic ingestion of ethylene glycol and methanol. Clin. Pharmacol. Ther. 2007, 81, 114–121. [Google Scholar] [CrossRef]
- Rosen, R.; Robbins-Juarez, S.; Stevens, J. Ethylene glycol intoxication requiring ECMO support. Case Rep. Crit. Care 2021, 1, 5545351. [Google Scholar] [CrossRef]
- Schwerk, N.; Desel, H.; Schulz, M.; Schwerk, C.; Kiess, W.; Siekmeyer, W. Successful therapy of paediatric ethylene glycol poisoning: A case report and annual survey by a regional poison centre. Acta Paediatr. 2007, 96, 461–463. [Google Scholar] [CrossRef]
- Singh, R.; Arain, E.; Buth, A.; Kado, J.; Soubani, A.; Imran, N. Ethylene glycol poisoning: An unusual cause of altered mental status and the lessons learned from management of the disease in the acute setting. Case Rep. Crit. Care 2016, 1, 9157393. [Google Scholar] [CrossRef]
- Steinke, W.; Arendt, G.; Mull, M.; Reiners, K.; Toyka, K.V. Good recovery after sublethal ethylene glycol intoxication: Serial EEG and CT findings. J. Neurol. 1989, 236, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Tang, J. Prompt diagnosis of ethylene glycol intoxication by an unusual “lactate gap”: A case report. Clin. Pract. Cases Emerg. Med. 2022, 6, 80. [Google Scholar] [CrossRef] [PubMed]
- Wollersen, H.; Erdmann, F.; Risse, M.; Dettmeyer, R. Oxalate-crystals in different tissues following intoxication with ethylene glycol: Three case reports. Leg. Med. 2009, 11, S488–S490. [Google Scholar] [CrossRef]
- Lulić, D.; Gornik, I.; Šarić, J.P.; Mirić, M.; Lukić, A.; Lulić, I. Successful treatment of late obstetric ethylene glycol intoxication with ethanol via the enteral route: A case report. Croat. Med. J. 2023, 64, 436. [Google Scholar] [CrossRef]
- Quintanilla, C.; Panthappattu, J.; Hosseini, D.; Omidvari, K. Filling In the Gaps: Ethylene Glycol Poisoning Presenting With Isolated Lactate and Osmolar Gaps. Cureus 2024, 16, e54749. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Khayat, M.; Owshalimpur, D.; Banda, M.; Munoz, J.; White, W.C.; Forster, B.M.; Petteys, S.K.; Sullivan, S.B.; Watson, M.; et al. Mass poisoning from ethylene glycol at a US Military base. Mil. Med. 2023, 188, e3261–e3264. [Google Scholar] [CrossRef]
- Arai, H.; Ikeda, H.; Ichiki, M.; Iino, M.; Kumai, M.; Ikeda, M. A case of poisoning by a mixture of methanol and ethylene glycol. Tohoku J. Exp. Med. 1983, 141, 473–480. [Google Scholar] [CrossRef]
- Jobard, E.; Harry, P.; Turcant, A.; Roy, P.M.; Allain, P. 4-Methylpyrazole and hemodialysis in ethylene glycol poisoning. J. Toxicol. Clin. Toxicol. 1996, 34, 373–377. [Google Scholar] [CrossRef]
- Kuskonmaz, B.; Duzova, A.; Kanbur, N.O.; Gurakan, F.; Gumruk, F.; Gurgey, A. Hemophagocytic syndrome and acute liver failure associated with ethylene glycol ingestion: A case report. Pediatr. Hematol. Oncol. 2006, 23, 427–432. [Google Scholar] [CrossRef]
- Walder, A.D.; Tyler, C.K.G. Ethylene glycol antifreeze poisoning three case reports and a review of treatment. Anaesthesia 1994, 49, 964–967. [Google Scholar] [CrossRef] [PubMed]
- Velez, L.I.; Shepherd, G.; Lee, Y.C.; Keyes, D.C. Ethylene glycol ingestion treated only with fomepizole. J. Med. Toxicol. 2007, 3, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Song, C.H.; Bae, H.J.; Ham, Y.R.; Na, K.R.; Lee, K.W.; Choi, D.E. A case of ethylene glycol intoxication with acute renal injury: Successful recovery by fomepizole and renal replacement therapy. Electrolyte Blood Press. 2017, 15, 47. [Google Scholar] [CrossRef]
- Vasavada, N.; Williams, C.; Hellman, R.N. Ethylene glycol intoxication: Case report and pharmacokinetic perspectives. Pharmacotherapy 2003, 23, 1652–1658. [Google Scholar] [CrossRef]
- Cox, R.D.; Phillips, W.J. Ethylene glycol toxicity. Mil. Med. 2004, 169, 660–663. [Google Scholar] [CrossRef] [PubMed]
- Basnayake, B.M.D.B.; Wazil, A.W.M.; Nanayakkara, N.; Mahanama, R.M.B.S.S.; Premathilake, P.N.S.; Galkaduwa, K.K.M.C.D.K. Ethylene glycol intoxication following brake fluid ingestion complicated with unilateral facial nerve palsy: A case report. J. Med. Case Rep. 2019, 13, 1–4. [Google Scholar] [CrossRef]
- Turk, J.; Morrell, L.; Avioli, L.V. Ethylene glycol intoxication. Arch. Intern. Med. 1986, 146, 1601–1603. [Google Scholar] [CrossRef]
- Stapenhorst, L.; Hesse, A.; Hoppe, B. Hyperoxaluria after ethylene glycol poisoning. Pediatr. Nephrol. 2008, 23, 2277–2279. [Google Scholar] [CrossRef]
- Callanan, V.J.; Davis, M.S. Gender differences in suicide methods. Soc. Psychiatry Psychiatr. Epidemiol. 2012, 47, 857–869. [Google Scholar] [CrossRef]
- Maier, W. Cerebral computed tomography of ethylene glycol intoxication. Neuroradiology 1983, 24, 175–177. [Google Scholar] [CrossRef]
- Harry, P.; Turcant, A.; Bouachour, G.; Houze, P.; Alquier, P.; Allain, P. Efficacy of 4-methylpyrazole in ethylene glycol poisoning: Clinical and toxicokinetic aspects. Hum. Exp. Toxicol. 1994, 13, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Harry, P.; Jobard, E.; Briand, M.; Caubet, A.; Turcant, A. Ethylene glycol poisoning in a child treated with 4-methylpyrazole. Pediatrics 1998, 102, e31. [Google Scholar] [CrossRef]
- Dezso, A.; Ramsden, R.; Saeed, S.R.; Wessels, J.; Mawman, D. Bilateral cochlear implantation after ethylene glycol intoxication: A case report. Cochlear Implants Int. 2011, 12, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.R.; Ayyar, D.R. Neurological complications of ethylene glycol intoxication: Report of a case. Arch. Neurol. 1981, 38, 724–726. [Google Scholar] [CrossRef]
- Boukobza, M.; Baud, F.J.; Gourlain, H.; Champion, S.; Malissin, I.; Mégarbane, B. Neuroimaging findings and follow-up in two cases of severe ethylene glycol intoxication with full recovery. J. Neurol. Sci. 2015, 359, 343–346. [Google Scholar] [CrossRef]
- Fellman, D.M. Facial diplegia following ethylene glycol ingestion. Arch. Neurol. 1982, 39, 739–740. [Google Scholar] [CrossRef]
- Narita, I.; Shimada, M.; Nakamura, N.; Murakami, R.; Fujita, T.; Fukuda, W.; Tomita, H. Successful resuscitation of a patient with life-threatening metabolic acidosis by hemodialysis: A case of ethylene glycol intoxication. Case Rep. Nephrol. 2017. [Google Scholar] [CrossRef]
- Kralova, I.; Stepanek, Z.; Dusek, J. Ethylene glycol intoxication misdiagnosed as eclampsia. Acta Anaesthesiol. Scand. 2006, 50, 385–387. [Google Scholar] [CrossRef] [PubMed]
- Wijayasinghe, S.; Dharmaband, R.; Mallawaarachchi, R. Ethylene glycol intoxication following brake oil ingestion: A case report. Sri Lankan J. Anaesthesiol. 2022, 30. [Google Scholar] [CrossRef]
- Laher, A.E.; Goldstein, L.N.; Wells, M.D.; Dufourq, N.; Moodley, P. Unwell after drinking homemade alcohol–A case of ethylene glycol poisoning. Afr. J. Emerg. Med. 2013, 3, 71–74. [Google Scholar] [CrossRef]
- Caparros-Lefebvre, D.; Policard, J.; Sengler, C.; Benabdallah, E.; Colombani, S.; Rigal, M. Bipallidal haemorrhage after ethylene glycol intoxication. Neuroradiology 2005, 47, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Kyle, P.B. Ethylene glycol toxicity. In Toxicology Cases for the Clinical and Forensic Laboratory; Academic Press: cambridge, MA, USA, 2020; pp. 51–54. [Google Scholar] [CrossRef]
- Kaiser, N.; Reiger, I.; Foidl, E.; Berek, K.; Baumgartl, P. Ethyleneglycol intoxication in a dipsomaniac patient. Nephrol. Dial. Transplant. 1997, 12, 1753–1754. [Google Scholar] [CrossRef] [PubMed]
- Christiansson, L.K.; Kaspersson, K.E.; Kulling, E.J.; Ovrebo, S. Treatment of severe ethylene glycol intoxication with continuous arteriovenous hemofiltration dialysis. J. Toxicol. Clin. Toxicol. 1995, 33, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Orlando, A.; Sciutti, F.; Colombo, C.N.; Fiocco, E.; Ambrosini, E.; Coccolo, M.; Pellegrini, C.; Degani, A.; Biglia, A.; Mojoli, F. Ethylene glycol poisoning requiring veno-arterial ECMO: A case report. Perfusion 2024, 39, 423–425. [Google Scholar] [CrossRef]
- Ting, S.M.; Ching, I.; Nair, H.; Langman, G.; Suresh, V.; Temple, R.M. Early and late presentations of ethylene glycol poisoning. Am. J. Kidney Dis. 2009, 53, 1091–1097. [Google Scholar] [CrossRef]
- Steinhart, B. Case report: Severe ethylene glycol intoxication with normal osmolal gap—“A chilling thought”. J. Emerg. Med. 1990, 8, 583–585. [Google Scholar] [CrossRef]
- Bobbitt, W.H.; Williams, R.M.; Freed, C.R. Severe ethylene glycol intoxication with multisystem failure. West. J. Med. 1986, 144, 225. [Google Scholar]
- Haupt, M.C.; Zull, D.N.; Adams, S.L. Massive ethylene glycol poisoning without evidence of crystalluria: A case for early intervention. J. Emerg. Med. 1988, 6, 295–300. [Google Scholar] [CrossRef]
- Behnke, B. An Acute Poisoning of Ethylene Glycol. EC Clin. Med. Case Rep. 2022, 5, 65–68. [Google Scholar]
- Steels, S.; De Bont, E.; Verbinnen, M.; Van den Eede, N.; Pauwels, S. A False-Positive Gamma-Hydroxy Butyric Acid Urine Screening in a Patient with High Anion Gap Metabolic Acidosis Due to Ethylene Glycol Poisoning. J. Anal. Toxicol. 2023, 47, e10–e13. [Google Scholar] [CrossRef]
Substance | Molecular Weight [g/mol] | Retention Time [min] | Theoretical M+ value [Da] | Precursor ion [m/z] | Product ion [m/z] | SRM Ratio [%] a | Loop Time [sec] | Collision Energy [V] |
---|---|---|---|---|---|---|---|---|
Ethylene glycol | 62.07 | 7.480 | 304.224834 | 233.0 | 147.1 * | 100.00 | 0.22 | 8.0 |
115.1 | 10.25 | 8.0 | ||||||
189.3 | 10.30 | 2.0 | ||||||
Glyoxal | 58.04 | 11.281 | 418.02708 | 418.0 | 236.1 * | 100.00 | 0.22 | 11.0 |
182.1 | 40.79 | 29.0 | ||||||
155.1 | 4.34 | 35.0 | ||||||
Glycolic acid | 76.05 | 8.108 | 304.188448 | 247.0 | 73.1 * | 100.00 | 0.22 | 29.0 |
147.1 | 119.92 | 20.0 | ||||||
189.1 | 102.04 | 8.0 | ||||||
Glyoxylic acid | 74.04 | 5.482 | 188.086322 | 131.0 | 59.1 * | 100.00 | 0.22 | 10.0 |
103.1 | 55.20 | 10.0 | ||||||
73.0 | 5.74 | 15.0 | ||||||
Oxalic acid | 90.03 | 8.361 | 318.167713 | 261.0 | 73.1 * | 100.00 | 0.22 | 17.0 |
147.1 | 96.47 | 8.0 | ||||||
189.1 | 23.34 | 5.0 | ||||||
Methylglyoxal | 72.06 | 11.331 | 432.04273 | 432.0 | 250.1 * | 100.00 | 0.22 | 8.0 |
182.0 | 73.36 | 29.0 | ||||||
230.0 | 5.07 | 11.0 | ||||||
Ethylene glycol-d4 | 66.09 | 7.475 | 308.249941 | 237.0 | 147.1 * | 100.00 | 0.22 | 8.0 |
115.1 | 27.47 | 8.0 | ||||||
189.3 | 8.60 | 2.0 | ||||||
BHB-d4 | 108.10 | 8.620 | 336.244855 | 279.0 | 73.1 * | 100.00 | 0.22 | 26.0 |
163.2 | 88.72 | 8.0 | ||||||
147.1 | 87.92 | 20.0 |
Substance | Calibration Curve | ||||||
---|---|---|---|---|---|---|---|
The Linear Concentration Range [μg/mL] | Internal Standard | The Coefficient of Determination (R2) | LLOQ [μg/mL] | ||||
Ethylene glycol | 1–450 | Ethylene glycol-d4 | 0.9996 | 1.0 | |||
450–5000 | 0.9960 | ||||||
Glyoxal | 0.1–50 | Methylglyoxal | 0.9992 | 0.1 | |||
Glycolic acid | 500–5000 | BHB-d4 | 0.9999 | 500 | |||
Validation Parameters | |||||||
Concentration Level [μg/mL] | Intraday | Interday | Recovery [%] * | Matrix Effect [%] * | Dilution Effect RE [%] * | ||
Precision RSD [%] * | Accuracy RE [%] * | Precision RSD [%] * | Accuracy RE [%] * | ||||
20 100 450 2500 | 2.9 0.7 6.8 4.2 | −4.0 −3.2 4.7 −1.8 | 2.3 1.6 7.0 7.8 | −6.8 −2.1 4.6 9.4 | 98.2 101.9 99.7 96.8 | −1.8 1.9 0.3 −3.2 | – – – 11.6 |
0.5 | 12.1 | −8.0 | 7.5 | −4.0 | 101.5 | 1.3 | – |
5 | 7.4 | 2.1 | 7.2 | −3.2 | 107.3 | 7.4 | – |
50 | 5.8 | −2.5 | 2.5 | −1.6 | 102.2 | 2.8 | −9.3 |
500 | 8.1 | −6.7 | 7.5 | 11.3 | 84.9 | −15.1 | – |
1500 | 7.3 | 0.4 | 11.1 | −9.3 | 87.3 | −12.7 | – |
5000 | 10.6 | −5.9 | 4.7 | −3.2 | 88.0 | −12.0 | −7.2 |
Case No. | Material | Ethylene Glycol [μg/mL] | Glyoxal [μg/mL] | Glycolic Acid [μg/mL] | Glyoxylic Acid [μg/mL] | Oxalic Acid [μg/mL] |
---|---|---|---|---|---|---|
1 | whole blood | 61 | 4.52 | 1780 | + | + |
urine | 212 | 1.59 | 2570 | + | + | |
2 | whole blood | 5204 | nd | 1857 | + | + |
urine | 6678 | nd | 3898 | + | + | |
3 | whole blood | 1008 | nd | 5901 | + | + |
urine | 1468 | 0.31 | 5801 | + | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tusiewicz, K.; Wachełko, O.; Zawadzki, M.; Szpot, P. Novel Technique for Simultaneous Ethylene Glycol and Its Metabolites Determination in Human Whole Blood and Urine Samples Using GC–QqQ–MS/MS. J. Xenobiot. 2024, 14, 1143-1164. https://doi.org/10.3390/jox14030065
Tusiewicz K, Wachełko O, Zawadzki M, Szpot P. Novel Technique for Simultaneous Ethylene Glycol and Its Metabolites Determination in Human Whole Blood and Urine Samples Using GC–QqQ–MS/MS. Journal of Xenobiotics. 2024; 14(3):1143-1164. https://doi.org/10.3390/jox14030065
Chicago/Turabian StyleTusiewicz, Kaja, Olga Wachełko, Marcin Zawadzki, and Paweł Szpot. 2024. "Novel Technique for Simultaneous Ethylene Glycol and Its Metabolites Determination in Human Whole Blood and Urine Samples Using GC–QqQ–MS/MS" Journal of Xenobiotics 14, no. 3: 1143-1164. https://doi.org/10.3390/jox14030065
APA StyleTusiewicz, K., Wachełko, O., Zawadzki, M., & Szpot, P. (2024). Novel Technique for Simultaneous Ethylene Glycol and Its Metabolites Determination in Human Whole Blood and Urine Samples Using GC–QqQ–MS/MS. Journal of Xenobiotics, 14(3), 1143-1164. https://doi.org/10.3390/jox14030065