The Underlying Mechanism of Poisoning after the Accidental Inhalation of Aerosolised Waterproofing Spray
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Exposure Cases
2.2. Chemical Composition of the Product
2.3. Animals
2.4. Ethical Statement
2.5. In Vivo Exposure of Guardian Textile Protection
2.6. In Vitro Exposure of Lung Surfactant in the Constrained Drop Surfactometer
2.7. Aerosol Measurements
2.8. Statistics
3. Results
3.1. Description of Poisoning Cases
3.1.1. Case A
3.1.2. Case B
3.2. Aerosol Measurements
3.3. In Vivo Experiments
3.4. In Vitro Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Walters, G.I.; Trotter, S.; Sinha, B.; Richmond, Z.; Burge, P.S. Biopsy-proven hypersensitivity pneumonitis caused by a fluorocarbon waterproofing spray. Occup. Med. 2017, 67, 308–310. [Google Scholar] [CrossRef]
- Harada, T.; Hirabayashi, Y.; Takayama-Isagawa, Y.; Sakamoto, H.; Kawaishi, M.; Hara, H.; Aizawa, S. Pulmonary Injury from Waterproofing Spray During a Hike. Wilderness Environ. Med. 2017, 28, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Sawamoto, T.; Morita, S.; Watanabe, Y.; Omata, A.; Suzuki, R.; Tsuchikane, M.; Inokuchi, S. A Case of Acute Respiratory Distress Syndrome Caused by Waterproofing Spray Inhalation. Tokai J. Exp. Clin. Med. 2018, 43, 106–110. [Google Scholar] [PubMed]
- Borges, J.A.; Fradinho, F.; Ferreira, A.J. Pneumonitis Associated with Fluoropolymer Waterproofing Agents: Case Report. Acta Medica Port. 2023, 35, 275–277. [Google Scholar] [CrossRef]
- Duch, P.; Nørgaard, A.W.; Hansen, J.S.; Sørli, J.B.; Jacobsen, P.; Lynggard, F.; Levin, M.; Nielsen, G.D.; Wolkoff, P.; Ebbehøj, N.E.; et al. Pulmonary toxicity following exposure to a tile coating product containing alkylsiloxanes. A clinical and toxicological evaluation. Clin. Toxicol. 2014, 52, 498–505. [Google Scholar] [CrossRef]
- Kodaka, N.; Nakano, C.; Oshio, T.; Watanabe, K.; Niitsuma, K.; Imaizumi, C.; Hirouchi, T.; Yoshida, Y.; Yamada, Y.; Matsuse, H. Waterproofing Spray-Associated Lung Injury Review: Differences between Cases of Early and Delayed Improvement of Waterproofing Spray-Associated Lung Injury. J. Clin. Med. 2023, 12, 2404. [Google Scholar] [CrossRef]
- Nørgaard, A.W.; Jensen, K.A.; Janfelt, C.; Lauritsen, F.R.; Clausen, P.A.; Wolkoff, P. Release of VOCs and particles during use of nanofilm spray products. Environ. Sci. Technol. 2009, 43, 7824–7830. [Google Scholar] [CrossRef] [PubMed]
- Laycock, A.; Wright, M.D.; Romer, I.; Buckley, A.; Smith, R. Characterisation of particles within and aerosols produced by nano-containing consumer spray products. Atmos. Environ. X 2020, 8, 100079. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Tachiwada, T.; Yamasaki, K.; Nakamura, K.; Katafuchi, E.; Tahara, M.; Isoshima, Y.; Ohira, H.; Kawabata, H.; Hara, K.; et al. An Autopsy Case of An Acute Exacerbation of Idiopathic Pulmonary Fibrosis Triggered by the Inhalation of a Waterproofing Spray. Intern. Med. 2022, 61, 1881–1886. [Google Scholar] [CrossRef]
- Shimoda, M.; Tanaka, Y.; Fujiwara, K.; Furuuchi, K.; Osawa, T.; Morimoto, K.; Yano, R.; Kokutou, H.; Yoshimori, K.; Ohta, K. Waterproofing spray-associated pneumonitis review: Comparison with acute eosinophilic pneumonia and hypersensitivity pneumonitis. Medicine 2021, 100, e25054. [Google Scholar] [CrossRef]
- Sørli, J.; Sengupta, S.; Jensen, A.; Nikiforov, V.; Clausen, P.; Hougaard, K.; Højriis, S.; Frederiksen, M.; Hadrup, N. Risk assessment of consumer spray products using in vitro lung surfactant function inhibition, exposure modelling and chemical analysis. Food Chem. Toxicol. 2022, 164, 112999. [Google Scholar] [CrossRef] [PubMed]
- Possmayer, F.; Zuo, Y.Y.; Veldhuizen, R.A.W.; Petersen, N.O. Pulmonary Surfactant: A Mighty Thin Film. Chem. Rev. 2023, 123, 13209–13290. [Google Scholar] [CrossRef]
- Castillo-Sanchez, J.C.; Cruz, A.; Perez-Gil, J. Structural hallmarks of lung surfactant: Lipid-protein interactions, membrane structure and future challenges. Arch. Biochem. Biophys. 2021, 703, 108850. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, E.; Vogel, U.; Hougaard, K.S.; Perez-Jil, J.; Zuo, Y.Y.; Sørli, J.B. An adverse outcome pathway for lung surfactant function inhibition leading to decreased lung function. Curr. Res. Toxicol. 2021, 2, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Food, Agriculture and Fisheries of Denmark, LBK nr 474 af 15/05/2014. 2014. Available online: https://www.retsinformation.dk/eli/lta/2014/474 (accessed on 22 May 2024).
- Ministry of Food, Agriculture and Fisheries of Denmark, BEK nr 12 af 07/01/2016. 2016. Available online: https://www.retsinformation.dk/eli/lta/2016/12 (accessed on 22 May 2024).
- European Commission. Directive 2010/63/EU of the European Parliment and of the Council on the Protection of Animals Used for Scientific Purposes. Official Journal of the European Union. 2010. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF (accessed on 22 May 2024).
- Sørli, J.B.; Hougaard, K.S.; Hadrup, N. Plethysmograph training: A refinement for collection of respiration data in mice. Anim. Model. Exp. Med. 2023, 6, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.; Alarie, Y. A method for repeated evaluation of pulmonary performance in unanesthetized, unrestrained guinea pigs and its application to detect effects of sulfuric acid mist inhalation. Toxicol. Appl. Pharmacol. 1982, 63, 72–90. [Google Scholar] [CrossRef] [PubMed]
- Alarie, Y.; Stokinger, H.E. Sensory Irritation by Airborne Chemicals. CRC Crit. Rev. Toxicol. 1973, 2, 299–363. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.T.; Nielsen, G.D. Effects of methacrolein on the respiratory tract in mice. Toxicol. Lett. 2000, 114, 197–202. [Google Scholar] [CrossRef]
- Xu, Y.; Parra-Ortiz, E.; Wan, F.; Cañadas, O.; Garcia-Alvarez, B.; Thakur, A.; Franzyk, H.; Pérez-Gil, J.; Malmsten, M.; Foged, C. Insights into the mechanisms of interaction between inhalable lipid-polymer hybrid nanoparticles and pulmonary surfactant. J. Colloid Interface Sci. 2023, 633, 511–525. [Google Scholar] [CrossRef]
- Yu, K.; Yang, J.; Zuo, Y.Y. Automated Droplet Manipulation Using Closed-Loop Axisymmetric Drop Shape Analysis. Langmuir 2016, 32, 4820–4826. [Google Scholar] [CrossRef] [PubMed]
- Sørli, J.B.; Da Silva, E.; Bäckman, P.; Levin, M.; Thomsen, B.L.; Koponen, I.K.; Larsen, S.T. A Proposed In Vitro Method to Assess Effects of Inhaled Particles on Lung Surfactant Function. Am. J. Respir. Cell Mol. Biol. 2016, 54, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, G.D.; Larsen, S.T.; Hougaard, K.S.; Hammer, M.; Wolkoff, P.; Clausen, P.A.; Wilkins, C.K.; Alarie, Y. Mechanisms of acute inhalation effects of (+) and (−)-α-pinene in BALB/c mice. Basic Clin. Pharmacol. Toxicol. 2005, 96, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Hougaard, K.S.; Jensen, A.C.; Sørli, J.B. Correlation between inhibition of lung surfactant function in vitro and rapid reduction in tidal volume following exposure to plant protection products in mice. Toxicology 2023, 492, 153546. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, M.; Tanaka, J. Pulmonary Collapse and Pneumonia Due to Inhalation of a Waterproofing Aerosol in Female CD-I Mice. J. Toxicol. Clin. Toxicol. 1995, 33, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Nørgaard, A.W.; Hansen, J.S.; Sørli, J.B.; Levin, M.; Wolkoff, P.; Nielsen, G.D.; Larsen, S.T. Pulmonary Toxicity of Perfluorinated Silane-Based Nanofilm Spray Products: Solvent Dependency. Toxicol. Sci. 2014, 137, 179–188. [Google Scholar] [CrossRef]
- Nielsen, G.D.; Wolkoff, P. Evaluation of airborne sensory irritants for setting exposure limits or guidelines: A systematic approach. Regul. Toxicol. Pharmacol. 2017, 90, 308–317. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jensen, A.C.Ø.; Ebbehøj, N.E.; Huusom, A.J.; Jensen, K.A.; Vogel, U.B.; Sørli, J.B. The Underlying Mechanism of Poisoning after the Accidental Inhalation of Aerosolised Waterproofing Spray. J. Xenobiot. 2024, 14, 679-689. https://doi.org/10.3390/jox14020039
Jensen ACØ, Ebbehøj NE, Huusom AJ, Jensen KA, Vogel UB, Sørli JB. The Underlying Mechanism of Poisoning after the Accidental Inhalation of Aerosolised Waterproofing Spray. Journal of Xenobiotics. 2024; 14(2):679-689. https://doi.org/10.3390/jox14020039
Chicago/Turabian StyleJensen, Alexander C. Ø., Niels E. Ebbehøj, Anja J. Huusom, Keld A. Jensen, Ulla B. Vogel, and Jorid B. Sørli. 2024. "The Underlying Mechanism of Poisoning after the Accidental Inhalation of Aerosolised Waterproofing Spray" Journal of Xenobiotics 14, no. 2: 679-689. https://doi.org/10.3390/jox14020039
APA StyleJensen, A. C. Ø., Ebbehøj, N. E., Huusom, A. J., Jensen, K. A., Vogel, U. B., & Sørli, J. B. (2024). The Underlying Mechanism of Poisoning after the Accidental Inhalation of Aerosolised Waterproofing Spray. Journal of Xenobiotics, 14(2), 679-689. https://doi.org/10.3390/jox14020039