Baccharis Species Essential Oils: Repellency and Toxicity against Yellow Fever Mosquitoes and Imported Fire Ants
Abstract
:1. Introduction
2. Results
2.1. Mosquito Bioassays
2.2. Imported Fire Ant Bioassays
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Plant Material
5.1.1. Extraction of Essential Oils
5.1.2. Isolation of Compounds and Gas Chromatography-Mass Spectrometry (GC/MS) Analysis
5.2. Bioassays
5.2.1. Mosquitoes
5.2.2. K & D Bioassay
5.2.3. Larval Bioassays
5.2.4. Statistical Analyses
5.3. Imported Fire Ants
5.3.1. Digging Bioassay
5.3.2. Toxicity Bioassay
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, A.; Abbas, A.; Debboun, M. Zika virus: Epidemiology, vector and sexual transmission neurological disorders and vector management—A review. Int. J. Curr. Res. 2017, 10, 58721–58737. [Google Scholar]
- Bhatt, S.; Weiss, D.; Cameron, E.; Bisanzio, D.; Mappin, B.; Dalrymple, U.; Battle, K.; Moyes, C.; Henry, A.; Eckhoff, P. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 2015, 526, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Liu, N. Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Annu. Rev. Entomol. 2015, 60, 537–559. [Google Scholar] [CrossRef]
- Leal, W.S. The enigmatic reception of DEET—The gold standard of insect repellents. Curr. Opin. Insect Sci. 2014, 6, 93–98. [Google Scholar] [CrossRef]
- Frances, S.P. Efficacy and Safety of Repellents Containing Deet; CRC Press: New York, NY, USA, 2006; pp. 311–325. [Google Scholar]
- Lofgren, C.S.; Banks, W.A.; Glancey, B. Biology and control of imported fire ants. Annu. Rev. Entomol. 1975, 20, 1–30. [Google Scholar] [CrossRef]
- Wylie, R.; Yang, C.C.S.; Tsuji, K. Invader at the gate: The status of red imported fire ant in Australia and Asia. Ecol. Res. 2020, 35, 6–16. [Google Scholar] [CrossRef]
- Gutrich, J.J.; VanGelder, E.; Loope, L. Potential economic impact of introduction and spread of the red imported fire ant, Solenopsis invicta, in Hawaii. Environ. Sci. Policy 2007, 10, 685–696. [Google Scholar] [CrossRef]
- Chan, K.H.; Guénard, B. Ecological and socio-economic impacts of the red import fire ant, Solenopsis invicta (Hymenoptera: Formicidae), on urban agricultural ecosystems. Urban Ecosyst. 2020, 23, 1–12. [Google Scholar] [CrossRef]
- Siddiqui, J.A.; Zhang, Y.; Luo, Y.; Bamisile, B.S.; Rehman, N.U.; Islam, W.; Qasim, M.; Jiang, Q.; Xu, Y. Comprehensive detoxification mechanism assessment of red imported fire ant (Solenopsis invicta) against indoxacarb. Molecules 2022, 27, 870. [Google Scholar] [CrossRef]
- Pan, F.; Lu, Y.; Wang, L. Toxicity and sublethal effects of sulfoxaflor on the red imported fire ant, Solenopsis invicta. Ecotoxicol. Environ. Saf. 2017, 139, 377–383. [Google Scholar] [CrossRef]
- Zhang, B.-z.; Kong, F.-c.; Wang, H.-t.; Gao, X.-w.; Zeng, X.-n.; Shi, X.-y. Insecticide induction of O-demethylase activity and expression of cytochrome P450 genes in the red imported fire ant (Solenopsis invicta Buren). J. Integr. Agric. 2016, 15, 135–144. [Google Scholar] [CrossRef]
- Wen, C.; Shen, L.; Chen, J.; Zhang, J.; Feng, Y.; Wang, Z.; Chen, X.; Cai, J.; Wang, L.; He, Y. Red imported fire ants cover the insecticide-treated surfaces with particles to reduce contact toxicity. J. Pest Sci. 2022, 95, 1135–1150. [Google Scholar] [CrossRef]
- Drees, B.M.; Calixto, A.A.; Nester, P.R. Integrated pest management concepts for red imported fire ants Solenopsis invicta (Hymenoptera: Formicidae). Insect Sci. 2013, 20, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Garay, J.; Brennan, T.; Bon, D. Essential oils a viable pest control alternative. Int. J. Ecotoxicol. Ecobiol. 2020, 5, 13–22. [Google Scholar]
- Senthil-Nathan, S. A review of resistance mechanisms of synthetic insecticides and botanicals, phytochemicals, and essential oils as alternative larvicidal agents against mosquitoes. Front. Physiol. 2020, 10, 1591. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Chen, J.; Khan, I.A. Toxicity and repellency of Magnolia grandiflora seed essential oil and selected pure compounds against the workers of hybrid imported fire ants (Hymenoptera: Formicidae). J. Econ. Entomol. 2022, 115, 412–416. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides in the twenty-first century—Fulfilling their promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef]
- Cantrell, C.L.; Ali, A.; Duke, S.O.; Khan, I. Identification of mosquito biting deterrent constituents from the Indian folk remedy plant Jatropha curcas. J. Med. Entomol. 2011, 48, 836–845. [Google Scholar] [CrossRef]
- Assadpour, E.; Can Karaça, A.; Fasamanesh, M.; Mahdavi, S.A.; Shariat-Alavi, M.; Feng, J.; Kharazmi, M.S.; Rehman, A.; Jafari, S.M. Application of essential oils as natural biopesticides; recent advances. Crit. Rev. Food Sci. Nutr. 2023, 1–21. [Google Scholar] [CrossRef]
- Ntalli, N.; Koliopoulos, G.; Giatropoulos, A.; Menkissoglu-Spiroudi, U. Plant secondary metabolites against arthropods of medical importance. Phytochem. Rev. 2019, 18, 1255–1275. [Google Scholar] [CrossRef]
- Guleria, S.; Tiku, A. Botanicals in Pest Management: Current Status and Future Perspectives. Integrated Pest Management: Innovation-Development Process; Springer: Berlin/Heidelberg, Germany, 2009; Volume 1, pp. 317–329. [Google Scholar]
- Blum, M.S.; Everett, D.M.; Jones, T.H.; Fales, H.M. Arthropod natural products as insect repellents. In Naturally Occurring Pest Bioregulators, American Symposium Circular 449; Hedin, P.A., Ed.; ACS Publications: Washington, DC, USA, 1991; pp. 14–26. [Google Scholar]
- Vander Meer, R.; Seawright, J.A.; Banks, W.A. The use of repellents for area exclusion of pest ants. In Proceedings of the 1st International Conference on Insect Pests in the Urban Environment, Cambridge, UK, 30 June–3 July 1993; Wildey, K.B., Robinson, W.H., Eds.; BPCC Wheatons Ltd.: Exeter, UK; St John’s College: Cambridge, UK, 1993; p. 494. [Google Scholar]
- Chen, J. Assessment of repellency of nine phthalates against red imported fire ant (Hymenoptera: Formicidae) workers using ant digging behavior. J. Entomol. Sci. 2005, 40, 368–377. [Google Scholar] [CrossRef]
- Manfron, J.; Farago, P.V.; Khan, I.A.; Raman, V. Morpho-anatomical characteristics of species of Baccharis. In Baccharis: From Evolutionary and Ecological Aspects to Social Uses and Medicinal Applications; Springer Nature: Berlin, Germany, 2022; pp. 217–237. [Google Scholar]
- Budel, J.M.; Duarte, M.R.; Döll-Boscardin, P.M.; Farago, P.V.; Matzenbacher, N.I.; Sartoratto, A.; Sales Maia, B.H. Composition of essential oils and secretory structures of Baccharis anomala, B. megapotamica and B. ochracea. J. Essent. Oil Res. 2012, 24, 19–24. [Google Scholar] [CrossRef]
- Budel, J.; Raman, V.; Monteiro, L.; Almeida, V.P.; Bobek, V.; Heiden, G.; Takeda, I.; Khan, I. Foliar anatomy and microscopy of six Brazilian species of Baccharis (Asteraceae). Microsc. Res. Tech. 2018, 81, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, D.A. Clasificación infragenérica de las especies argentinas de Baccharis (Asteraceae, Astereae). Darwiniana 2001, 39, 131–154. [Google Scholar]
- Florão, A.; Budel, J.M.; do Rocio Duarte, M.; Marcondes, A.; Rodrigues, R.A.F.; Rodrigues, M.V.N.; de Moraes Santos, C.A.; Weffort-Santos, A.M. Essential oils from Baccharis species (Asteraceae) have anti-inflammatory effects for human cells. J. Essent. Oil Res. 2012, 24, 561–570. [Google Scholar] [CrossRef]
- Perera, W.H.; Bizzo, H.R.; Gama, P.E.; Alviano, C.S.; Salimena, F.R.G.; Alviano, D.S.; Leitão, S.G. Essential oil constituents from high altitude Brazilian species with antimicrobial activity: Baccharis parvidentata Malag., Hyptis monticola Mart. ex Benth. and Lippia origanoides Kunth. J. Essent. Oil Res. 2017, 29, 109–116. [Google Scholar] [CrossRef]
- Valarezo, E.; Rosales, J.; Morocho, V.; Cartuche, L.; Guaya, D.; Ojeda-Riascos, S.; Armijos, C.; González, S. Chemical composition and biological activity of the essential oil of Baccharis obtusifolia Kunth from Loja, Ecuador. J. Essent. Oil Res. 2015, 27, 212–216. [Google Scholar] [CrossRef]
- de Oliveira, R.N.; Rehder, V.L.G.; Oliveira, A.S.S.; Júnior, Í.M.; de Carvalho, J.E.; de Ruiz, A.L.T.G.; de Lourdes Sierpe Jeraldo, V.; Linhares, A.X.; Allegretti, S.M. Schistosoma mansoni: In vitro schistosomicidal activity of essential oil of Baccharis trimera (less) DC. Exp. Parasitol. 2012, 132, 135–143. [Google Scholar] [CrossRef]
- Budel, J.M.; Wang, M.; Raman, V.; Zhao, J.; Khan, S.I.; Rehman, J.U.; Techen, N.; Tekwani, B.; Monteiro, L.M.; Heiden, G. Essential oils of five Baccharis species: Investigations on the chemical composition and biological activities. Molecules 2018, 23, 2620. [Google Scholar] [CrossRef]
- Kurdelas, R.R.; López, S.; Lima, B.; Feresin, G.E.; Zygadlo, J.; Zacchino, S.; López, M.L.; Tapia, A.; Freile, M.L. Chemical composition, anti-insect and antimicrobial activity of Baccharis darwinii essential oil from Argentina, Patagonia. Ind. Crops Prod. 2012, 40, 261–267. [Google Scholar] [CrossRef]
- Botas, G.D.S.; Cruz, R.A.S.; De Almeida, F.B.; Duarte, J.L.; Araújo, R.S.; Souto, R.N.P.; Ferreira, R.; Carvalho, J.C.T.; Santos, M.G.; Rocha, L.; et al. Baccharis reticularia DC. and limonene nanoemulsions: Promising larvicidal agents for Aedes aegypti (Diptera: Culicidae) control. Molecules 2017, 22, 1990. [Google Scholar] [CrossRef] [PubMed]
- Alves, K.F.; Caetano, F.H.; Pereira Garcia, I.J.; Santos, H.L.; Silva, D.B.; Siqueira, J.M.; Tanaka, A.S.; Alves, S.N. Baccharis dracunculifolia (Asteraceae) essential oil toxicity to Culex quinquefasciatus (Culicidae). Environ. Sci. Pollut. Res. 2018, 25, 31718–31726. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.A.; Ferreira-Sa, P.S.; Garcia, M.D., Jr.; Pereira, V.L.P.; Carvalho, J.C.T.; Rocha, L.; Fernandes, C.P.; Souto, R.N.P.; Araujo, R.S.; Botas, G. Nano-emulsions of the essential oil of Baccharis reticularia and its constituents as eco-friendly repellents against Tribolium castaneum. Ind. Crops Prod. 2021, 162, 113282. [Google Scholar] [CrossRef]
- Shaaya, E.; Rafaeli, A. Essential oils as biorational insecticides–potency and mode of action. In Insecticides Design Using Advanced Technologies; Springer: Berlin/Heidelberg, Germany, 2007; pp. 249–261. [Google Scholar]
- Isman, M.B.; Machial, C.M.; Miresmailli, S.; Bainard, L.D. Essential oil-based pesticides: New insights from old chemistry. In Pesticide Chemistry: Crop Protection, Public Health, Environmental Safety; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 201–209. [Google Scholar]
- Enan, E. Insecticidal activity of essential oils: Octopaminergic sites of action. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2001, 130, 325–337. [Google Scholar] [CrossRef]
- Tong, F.; Coats, J.R. Effects of monoterpenoid insecticides on [3H]-TBOB binding in house fly GABA receptor and 36Cl—Uptake in American cockroach ventral nerve cord. Pestic. Biochem. Physiol. 2010, 98, 317–324. [Google Scholar] [CrossRef]
- Gaire, S.; Zheng, W.; Scharf, M.E.; Gondhalekar, A.D. Plant essential oil constituents enhance deltamethrin toxicity in a resistant population of bed bugs (Cimex lectularius L.) by inhibiting cytochrome P450 enzymes. Pestic. Biochem. Physiol. 2021, 175, 104829. [Google Scholar] [CrossRef]
- Norris, E.J.; Johnson, J.B.; Gross, A.D.; Bartholomay, L.C.; Coats, J.R. Plant essential oils enhance diverse pyrethroids against multiple strains of mosquitoes and inhibit detoxification enzyme processes. Insects 2018, 9, 132. [Google Scholar] [CrossRef]
- Ali, A.; Cantrell, C.L.; Bernier, U.R.; Duke, S.O.; Schneider, J.C.; Agramonte, N.M.; Khan, I. Aedes aegypti (Diptera: Culicidae) biting deterrence: Structure-activity relationship of saturated and unsaturated fatty acids. J. Med. Entomol. 2012, 49, 1370–1378. [Google Scholar] [CrossRef]
- Prajapati, V.; Tripathi, A.; Aggarwal, K.; Khanuja, S. Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresour. Technol. 2005, 96, 1749–1757. [Google Scholar] [CrossRef]
- Kaur, G.; Kaur, R.; Kaur, S. Essential oil used as larvicides and ovicides. In Essential Oils: Extraction Methods and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2023; pp. 427–442. [Google Scholar]
- Sousa, R.M.O.; Rosa, J.S.; Oliveira, L.; Cunha, A.; Fernandes-Ferreira, M. Activities of Apiaceae essential oils and volatile compounds on hatchability, development, reproduction and nutrition of Pseudaletia unipuncta (Lepidoptera: Noctuidae). Ind. Crops Prod. 2015, 63, 226–237. [Google Scholar] [CrossRef]
- Giatropoulos, A.; Koliopoulos, G.; Pantelakis, P.-N.; Papachristos, D.; Michaelakis, A. Evaluating the Sublethal Effects of Origanum vulgare Essential Oil and Carvacrol on the Biological Characteristics of Culex pipiens biotype molestus (Diptera: Culicidae). Insects 2023, 14, 400. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, C.L.; Ali, A.; Jones, A.M.P. Isolation and identification of mosquito biting deterrents from the North American mosquito repelling folk remedy plant, Matricaria discoidea DC. PLoS ONE 2018, 13, e0206594. [Google Scholar] [CrossRef]
- Ali, A.; Tabanca, N.; Raman, V.; Avonto, C.; Yang, X.; Demirci, B.; Khan, I.; Chittiboyina, A. Chemical compositions of essential oils from German, Roman, and Chinese Chamomile flowers and their biological activities against three economically important insect pests. Rec. Nat. Prod. 2023, 17, 595–614. [Google Scholar] [CrossRef]
- Shah, F.M.; Guddeti, D.K.; Paudel, P.; Chen, J.; Li, X.-C.; Khan, I.A.; Ali, A. Matricaria chamomilla essential oils: Repellency and toxicity against imported fire ants (Hymenoptera: Formicidae). Molecules 2023, 28, 5584. [Google Scholar] [CrossRef]
- Gillij, Y.; Gleiser, R.; Zygadlo, J. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour. Technol. 2008, 99, 2507–2515. [Google Scholar] [CrossRef]
- Chantraine, J.M.; Laurent, D.; Ballivian, C.; Saavedra, G.; Ibanez, R.; Vilaseca, L.A. Insecticidal activity of essential oils on Aedes aegypti larvae. Phytother. Res. 1998, 12, 350–354. [Google Scholar] [CrossRef]
- de Souza, M.T.; de Souza, M.T.; Bernardi, D.; de Melo, D.J.; Zarbin, P.H.G.; Zawadneak, M.A.C. Insecticidal and oviposition deterrent effects of essential oils of Baccharis spp. and histological assessment against Drosophila suzukii (Diptera: Drosophilidae). Sci. Rep. 2021, 11, 3944. [Google Scholar] [CrossRef]
- Chen, J.; Cantrell, C.; Duke, S.; Allen, M. Repellency of callicarpenal and intermedeol against workers of imported fire ants (Hymenoptera: Formicidae). J. Econ. Entomol. 2008, 101, 265–271. [Google Scholar] [CrossRef]
- Paudel, P.; Shah, F.M.; Guddeti, D.K.; Ali, A.; Chen, J.; Khan, I.A.; Li, X.-C. Repellency of carvacrol, thymol, and their Acetates against Imported Fire Ants. Insects 2023, 14, 790. [Google Scholar] [CrossRef]
- Appel, A.G.; Gehret, M.J.; Tanley, M.J. Repellency and toxicity of mint oil granules to red imported fire ants (Hymenoptera: Formicidae). J. Econ. Entomol. 2004, 97, 575–580. [Google Scholar] [CrossRef]
- He, Y.; Zhang, J.; Shen, L.; Wang, L.; Qian, C.; Lyu, H.; Yi, C.; Cai, J.; Chen, X.; Wen, X. Eugenol derivatives: Strong and long-lasting repellents against both undisturbed and disturbed red imported fire ants. J. Pest Sci. 2023, 96, 327–344. [Google Scholar] [CrossRef]
- Lard, C.F.; Schmidt, J.; Morris, B.; Estes, L.; Ryan, C.; Bergquist, D. An Economic Impact of Imported Fire Ants in the United States of America; Texas A&M University, Department of Agricultural Economics, Texas Agricultural Experiment Station: College Station, TX, USA, 2006. [Google Scholar]
- Lard, C.; Willis, D.B.; Salin, V.; Robison, S. Economic assessments of red imported fire ant on Texas’ urban and agricultural sectors. Southwest. Entomol. 2002, 25, 123–137. [Google Scholar]
- Zhang, N.; Tang, L.; Hu, W.; Wang, K.; Zhou, Y.; Li, H.; Huang, C.; Chun, J.; Zhang, Z. Insecticidal, fumigant, and repellent activities of sweet wormwood oil and its individual components against red imported fire ant workers (Hymenoptera: Formicidae). J. Insect Sci. 2014, 14, 241. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Tang, L.; Li, W.; Wang, K.; Cheng, D.; Zhang, Z. Fumigant toxicity and repellence activity of camphor essential oil from Cinnamonum camphora Siebold against Solenopsis invicta workers (Hymenoptera: Formicidae). J. Insect Sci. 2015, 15, 129. [Google Scholar] [CrossRef]
- Kafle, L.; Shih, C.J. Toxicity and repellency of compounds from clove (Syzygium aromaticum) to red imported fire ants Solenopsis invicta (Hymenoptera: Formicidae). J. Econ Entomol. 2013, 106, 131–135. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Yoshimura, M.; Huang, R.-N. Wasabi versus red imported fire ants: Preliminary test of repellency of microencapsulated allyl isothiocyanate against Solenopsis invicta (Hymenoptera: Formicidae) using bait traps in Taiwan. Appl. Entomol. Zool. 2019, 54, 193–196. [Google Scholar] [CrossRef]
- Klun, J.A.; Kramer, M.; Debboun, M. A new in vitro bioassay system for discovery of novel human-use mosquito repellents1. J. Am. Mosq. Control Assoc. 2005, 21, 64–70. [Google Scholar] [CrossRef]
- Pridgeon, J.W.; Meepagala, K.M.; Becnel, J.J.; Clark, G.G.; Pereira, R.M.; Linthicum, K.J. Structure–activity relationships of 33 piperidines as toxicants against female adults of Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2007, 44, 263–269. [Google Scholar] [CrossRef]
- Ross, K.G.; Meer, R.K.V.; Fletcher, D.J.; Vargo, E.L. Biochemical phenotypic and genetic studies of two introduced fire ants and their hybrid (Hymenoptera: Formicidae). Evolution 1987, 41, 280–293. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 978-1-932633-21-4. [Google Scholar]
- Davies, N. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
EO/Compound | n * | Slope ± SE | LC50 ppm (95% CI) ** | LC90 ppm (95% CI) | χ2 | df |
---|---|---|---|---|---|---|
B. reticularioides | 50 | 2.3 ± 0.32 | 84.4 (75.1–95.5) | 147.3 (124.8–191.9 | 50.5 | 48 |
B. pauciflosculosa | 50 | 1.9 ± 0.21 | 31.9 (28.1–36.3) | 63.2 (53.3–80.1) | 82.1 | 48 |
B. sphenophylla | 50 | 2.2 ± 0.25 | 30.8 (27.4–34.8) | 55.5 (47.3–70.0) | 7.6 | 48 |
B. punctulata | 50 | 2.0 ± 0.23 | 20.4 (18.0–23.1) | 38.8 (33.0–49.0) | 75.6 | 48 |
B. microdonta | 50 | 1.35 ± 0.14 | 28.6 (24.5–33.3) | 73.4 (59.4–98.4) | 95.0 | 48 |
Kongol | 50 | 1.94 ± 0.22 | 32.3 (30.3–39.1) | 62.1 (52.5–78.9) | 78.1 | 38 |
Spathulenol | 50 | 1.99 ± 0.24 | 48.7 (43.1–55.6) | 92.7 (77.6–120.8) | 67.2 | 38 |
Conc. (µg/g) | Sand Removed ± SE * | F-Value | p-Value | Conc. (µg/g) | Sand Removed ± SE | F-Value | p-Value | Conc. (µg/g) | Sand Removed ± SE | F-Value | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|
RIFA | BIFA | HIFA | |||||||||
Essential oil | |||||||||||
Control | 1.05 ± 0.20 A | 3.17 | 0.085 | Control | 1.30 ± 0.16 A | 3.14 | 0.0868 | Control | 2.25 ± 0.41 A | 3.77 | 0.0593 |
2.4 | 0.50 ± 0.16 A | 2.4 | 0.41 ± 0.24 A | 19.5 | 0.59 ± 0.17 A | ||||||
1.2 | 0.48 ± 0.02 A | 1.2 | 0.91 ± 0.27 A | 9.8 | 0.56 ± 0.08 A | ||||||
0.6 | 0.71 ± 0.15 A | 0.6 | 0.93 ± 0.16 A | 4.8 | 1.59 ± 0.12 A | ||||||
Control | 1.80 ± 0.18 A | 15.39 | 0.001 | Control | 1.20 ± 0.23 A | 15.39 | 0.0011 | Control | 2.34 ± 0.22 A | 22.94 | 0.0003 |
19.5 | 0.61 ± 0.03 B | 19.5 | 0.003 ± 0.003 B | 156 | 0.14 ± 0.11 B | ||||||
9.8 | 1.00 ± 0.13 B | 9.8 | 0.18 ± 0.16 B | 78 | 0.32 ± 0.18 B | ||||||
4.9 | 0.64 ± 0.17 B | 4.9 | 0.33 ± 0.31 B | 39 | 0.66 ± 0.29 B | ||||||
DEET | |||||||||||
Control | 1.43 ± 0.19 A | 14.86 | 0.001 | Control | 2.37 ± 0.30 A | 34.85 | 0.0001 | Control | 1.45 ± 0.19 A | 19.83 | 0.0005 |
156 | 0.08 ± 0.04 C | 156 | 0.32 ± 0.27 C | 156 | 0.04 ± 0.43 B | ||||||
78 | 0.74 ± 0.18 B | 78 | 1.43 ± 0.12 B | 78 | 0.24 ± 0.20 B | ||||||
39 | 1.13 ± 0.10 AB | 39 | 2.06 ± 0.08 A | 39 | 1.11 ± 0.12 A |
E. Oil/Compound | n * | Slope ± SE | LC50 (95% CI) ** | LC90 (95% CI) | χ2 | df |
---|---|---|---|---|---|---|
RIFA | ||||||
B. microdonta | 30 | 3.08 ± 0.58 | 78.9 (68.7–90.2) | 119.7 (102.5–158.3) | 28.3 | 13 |
Bifenthrin | 40 | 1.21 ± 0.18 | 0.03 (0.023 ± 0.04) | 0.09 (0.06 ± 0.16) | 42 | 19 |
BIFA | ||||||
B. microdonta | 30 | 2.58 ± 0.56 | 97.1 (76.8–126.7) | 159.5 (123.2–282.9) | 21 | 13 |
Bifenthrin | 40 | 1.36 ± 0.23 | 0.032 (0.023 ± 0.044) | 0.08 (0.06 ± 0.15) | 34 | 19 |
HIFA | ||||||
B. microdonta | 30 | 1.93 ± 0.36 | 136.5 (108.2–174.3) | 265.2 (201.4–453.8) | 29.4 | 13 |
Bifenthrin | 40 | 0.86 ± 0.13 | 0.018 (0.013 ± 0.024) | 0.07861 (0.05 ± 0.17) | 42.4 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Shah, F.M.; Manfron, J.; Monteiro, L.M.; de Almeida, V.P.; Raman, V.; Khan, I.A. Baccharis Species Essential Oils: Repellency and Toxicity against Yellow Fever Mosquitoes and Imported Fire Ants. J. Xenobiot. 2023, 13, 641-652. https://doi.org/10.3390/jox13040041
Ali A, Shah FM, Manfron J, Monteiro LM, de Almeida VP, Raman V, Khan IA. Baccharis Species Essential Oils: Repellency and Toxicity against Yellow Fever Mosquitoes and Imported Fire Ants. Journal of Xenobiotics. 2023; 13(4):641-652. https://doi.org/10.3390/jox13040041
Chicago/Turabian StyleAli, Abbas, Farhan Mahmood Shah, Jane Manfron, Luciane M. Monteiro, Valter P. de Almeida, Vijayasankar Raman, and Ikhlas A. Khan. 2023. "Baccharis Species Essential Oils: Repellency and Toxicity against Yellow Fever Mosquitoes and Imported Fire Ants" Journal of Xenobiotics 13, no. 4: 641-652. https://doi.org/10.3390/jox13040041
APA StyleAli, A., Shah, F. M., Manfron, J., Monteiro, L. M., de Almeida, V. P., Raman, V., & Khan, I. A. (2023). Baccharis Species Essential Oils: Repellency and Toxicity against Yellow Fever Mosquitoes and Imported Fire Ants. Journal of Xenobiotics, 13(4), 641-652. https://doi.org/10.3390/jox13040041