Evaluation of Cytotoxicity, Release Behavior and Phytopathogens Control by Mancozeb-Loaded Guar Gum Nanoemulsions for Sustainable Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents, Plant Materials and Fungal Cultures
2.2. Synthesis of Blank and Mancozeb-Loaded Guar Gum Nanoemulsion
2.3. Depiction of Nanoemulsion via Physio-Chemical Techniques
2.3.1. Particle Size, PDI and Zeta Potential
2.3.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.3. Transmission Electron Microscope (TEM)
2.3.4. X-ray Diffraction Spectroscopy (XRD)
2.3.5. Thermal Analysis Using Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA)
2.3.6. Encapsulation Efficiency (%) and Loading Capacity (%)
2.4. Evaluation of In Vitro Antifungal Activity
2.5. Sustained Release Mechanism of Mancozeb
2.6. In Vivo Antifungal Efficacy of Nanoemulsion in Pot House Conditions
2.7. Study the Effects on Plant Growth Parameters
2.8. Cell Viability/Cytotoxicity of Nanoformulation against Vero Cell Line
2.9. Statistical Study
3. Results and Discussion
3.1. Physio-Chemical Properties of Synthesized Nanoemulsion
3.1.1. Size Optimization and Stability of Nanoemulsion
3.1.2. Fourier Transform Infrared (FTIR) Spectroscopy
3.1.3. X-ray Diffraction (XRD) Spectroscopy
3.1.4. Differential Scanning Calorimetry (DSC)
3.1.5. Thermogravimetric Analysis (TGA)
3.1.6. Loading Confirmation of Mancozeb via TEM
3.2. Encapsulation Efficiency (EE) and Loading Capacity (LC)
3.3. Release Behavior of Encapsulated Mancozeb from Nanoemulsion
3.4. In Vitro Antifungal Activity
3.5. In Vivo Bioefficacy of Nanoemulsion in Pot House Conditions
3.5.1. Consequence of NEs Usage on Seed Germination Percentage (GP)
3.5.2. Influence on the Dry Mass per Plant (DMPP)
3.5.3. Outcome of the Root/Shoot Ratio of the Test Plant
3.6. In Vitro Cytotoxicity Assessment of Nanocarrier on Vero Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calicioglu, O.; Flammini, A.; Bracco, S.; Bellù, L.; Sims, R. The future challenges of food and agriculture: An integrated analysis of trends and solutions. Sustainability 2019, 11, 222. [Google Scholar] [CrossRef] [Green Version]
- Environment Protection Agency. Reregistration Eligibility Decision for Mancozeb; EPA 738-R-04-012; Environment Protection Agency: Washington, DC, USA, 2005. [Google Scholar]
- Leiminger, J.H.; Hausladen, H. Studies on the development of infestation and yield effects of early blight (Alternaria spp.) in potato varieties of different ripening groups. Healthy Plants 2014, 66, 29–36. [Google Scholar]
- Landschoot, S.; Vandecasteele, M.; Carrette, J.; De Baets, B.; Höfte, M.; Audenaert, K.; Haesaert, G. Assessing the Belgian potato Alternaria population for sensitivity to fungicides with diverse modes of action. Eur. J. Plant Pathol. 2017, 148, 657–672. [Google Scholar] [CrossRef]
- Elsharkawy, E.E.; Abd El-Nasser, M.; Bakheet, A.A. Mancozeb impaired male fertility in rabbits with trials of glutathione detoxification. Regul. Toxicol. Pharmacol. 2019, 105, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Lori, G.; Tassinari, R.; Narciso, L.; Udroiu, I.; Sgura, A.; Maranghi, F.; Tait, S. Toxicological comparison of mancozeb and zoxamide fungicides at environmentally relevant concentrations by an in vitro approach. Int. J. Environ. Res. Public Health 2021, 18, 8591. [Google Scholar] [CrossRef]
- Runkle, J.; Flocks, J.; Economos, J.; Dunlop, A.L. A systematic review of Mancozeb as a reproductive and developmental hazard. Environ. Int. 2017, 99, 29–42. [Google Scholar] [CrossRef]
- Goldoni, A.; Klauck, C.R.; Da Silva, S.T.; Da Silva, M.D.; Ardenghi, P.G.; Da Silva, L.B. DNA damage in Wistar rats exposed to dithiocarbamate pesticide mancozeb. Folia Biol. 2014, 60, 202. [Google Scholar]
- Bouabdallah, N.; Mallem, L.; Abdennour, C.; Chouabia, A.; Tektak, M. Toxic impacts of a mixture of three pesticides on the reproduction and oxidative stress in male rats. J. Anim. Behav. Biometeorol. 2022, 10, e2204. [Google Scholar] [CrossRef]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Walia, A.; Mehta, P.; Guleria, S.; Chauhan, A.; Shirkot, C.K. Impact of fungicide mancozeb at different application rates on soil microbial populations, soil biological processes, and enzyme activities in soil. Sci. World J. 2014, 2014, 702909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaushik, M.; Moores, A. Nanocelluloses as versatile supports for metal nanoeparticles and their applications in catalysis. Green Chem. 2016, 18, 622–637. [Google Scholar] [CrossRef] [Green Version]
- Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 2017, 15, 11–23. [Google Scholar] [CrossRef]
- Kumar, R.; Najda, A.; Duhan, J.S.; Kumar, B.; Chawla, P.; Klepacka, J.; Malawski, S.; Sadh, P.K.; Poonia, A.K. Assessment of antifungal efficacy and release behavior of fungicide-loaded chitosan-carrageenan nanoemulsion against phytopathogenic fungi. Polymers 2021, 14, 41. [Google Scholar] [CrossRef]
- Grgić, J.; Šelo, G.; Planinić, M.; Tišma, M.; Bucić-Kojić, A. Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants 2020, 9, 923. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Huang, R.L.; Zha, X.Q.; Li, Q.M.; Pan, L.H.; Luo, J.P. Encapsulation and sustained release of curcumin by a composite hydrogel of lotus root amylopectin and chitosan. Carbohydr. Polym. 2020, 232, 115810. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, P.L.; Xiang, X.; Heiden, P. Chitosan nanoparticle based delivery systems for sustainable agriculture. Int. J. Biol. Macromol. 2015, 77, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Kutawa, A.B.; Ahmad, K.; Ali, A.; Hussein, M.Z.; Abdul Wahab, M.A.; Adamu, A.; Ismaila, A.A.; Gunasena, M.T.; Rahman, M.Z.; Hossain, M.I. Trends in nanotechnology and its potentialities to control plant pathogenic fungi: A review. Biology 2021, 10, 881. [Google Scholar] [CrossRef] [PubMed]
- Alharby, H.F.; Hakeem, K.R.; Qureshi, M.I. Weed control through herbicide-loaded nanoparticles. In Nanomaterials and Plant Potential; Springer: Cham, Switzerland, 2019; pp. 507–527. [Google Scholar]
- Bansal, P.; Kaur, P.; Duhan, J.S. Biogenesis of silver nanoparticles using Fusarium pallidoroseum and its potential against human pathogens. Ann. Biol. 2017, 33, 180–185. [Google Scholar]
- Pandit, C.; Roy, A.; Ghotekar, S.; Khusro, A.; Islam, M.N.; Emran, T.B.; Lam, S.E.; Khandaker, M.U.; Bradley, D.A. Biological agents for synthesis of nanoparticles and their applications. J. King Saud Univ. Sci. 2022, 34, 101869. [Google Scholar] [CrossRef]
- Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.K.; Poinern GE, J. Green synthesis of metallic nanoparticles via biological entities. Materials 2015, 8, 7278–7308. [Google Scholar] [CrossRef] [Green Version]
- Sarmah, J.K.; Mahanta, R.; Bhattacharjee, S.K.; Mahanta, R.; Biswas, A. Controlled release of tamoxifen citrate encapsulated in cross-linked guar gum nanoparticles. Int. J. Biol. Macromol. 2011, 49, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Duhan, J.S.; Manuja, A.; Kaur, P.; Kumar, B.; Sadh, P.K. Toxicity assessment and control of early blight and stem rot of Solanum tuberosum L. by mancozeb loaded chitosan-gum acacia nanocomposites. J. Xenobiot. 2022, 12, 74–90. [Google Scholar] [CrossRef]
- Aramendiz, J.; Imqam, A.; Fakher, S.M. Design and evaluation of a water-based drilling fluid formulation using SiO and graphene oxide nanoparticles for unconventional shales. In Proceedings of the International petroleum technology conference, Beijing, China, 22 March 2019. [Google Scholar]
- Butreddy, A.; Gaddam, R.P.; Kommineni, N.; Dudhipala, N.; Voshavar, C. PLGA/PLA-Based long-acting injectable depot microspheres in clinical use: Production and characterization overview for protein/peptide delivery. Int. J. Mol. Sci. 2021, 22, 8884. [Google Scholar] [CrossRef] [PubMed]
- Gihar, S.; Kumar, D.; Kumar, P. Facile synthesis of novel pH-sensitive grafted guar gum for effective removal of mercury (II) ions from aqueous solution. Carbohydr. Polym. Technol. Appl. 2021, 2, 100110. [Google Scholar] [CrossRef]
- Maluin, F.N.; Hussein, M.Z.; Yusof, N.A.; Fakurazi, S.; Idris, A.S.; Hilmi, Z.; Jeffery Daim, L.D. Preparation of chitosan–hexaconazole nanoparticles as fungicide nanodelivery system for combating Ganoderma disease in oil palm. Molecules 2019, 24, 2498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todoran, N.; Antonoaea, P.; Rusu, A.; Ciurba, A.; Bîrsan, M.; Redai, E. DSC and FTIR analysis for the formulation of dermal films with meloxicam in bioadhesive polymeric matrices. Rev. Chim. 2018, 69, 3692–3697. [Google Scholar] [CrossRef]
- Motta, M.V.L.; de Castro, E.V.R.; Muri, E.J.B.; Loureiro, B.V.; Costalonga, M.L.; Filgueiras, P.R. Thermal and spectroscopic analyses of guar gum degradation submitted to turbulent flow. Int. J. Biol. Macromol. 2019, 131, 43–49. [Google Scholar] [CrossRef]
- Baghdadi, Y.N.; Youssef, L.; Bouhadir, K.; Harb, M.; Mustapha, S.; Patra, D.; Tehrani-Bagha, A.R. The effects of modified zinc oxide nanoparticles on the mechanical/thermal properties of epoxy resin. J. Appl. Polym. Sci. 2020, 137, 49330. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef] [Green Version]
- Sharma, G.; Kumar, A.; Devi, K.; Sharma, S.; Naushad, M.; Ghfar, A.A.; Ahamad, T.; Stadler, F.J. Guar gum-crosslinked-Soya lecithin nanohydrogel sheets as effective adsorbent for the removal of thiophanate methyl fungicide. Int. J. Biol. Macromol. 2018, 114, 295–305. [Google Scholar] [CrossRef]
- Kamal, T.; Khan, S.B.; Haider, S.; Alghamdi, Y.G.; Asiri, A.M. Thin layer chitosan-coated cellulose filter paper as substrate for immobilization of catalytic cobalt nanoparticles. Int. J. Biol. Macromol. 2017, 104, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Spadari, C.D.C.; Lopes, L.B.; Ishida, K. Potential use of alginate-based carriers as antifungal delivery system. Front. Microbiol. 2017, 8, 97. [Google Scholar] [CrossRef] [Green Version]
- Muljajew, I.; Chi, M.; Vollrath, A.; Weber, C.; Beringer-Siemers, B.; Stumpf, S.; Hoeppener, S.; Sierka, M.; Schubert, U.S. A combined experimental and in silico approach to determine the compatibility of poly (ester amide) s and indomethacin in polymer nanoparticles. Eur. Polym. J. 2021, 156, 110606. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, Y.; Dong, H.; Niu, J.; Tang, J.; Yang, J.; Tang, G.; Zhou, Z.; Tang, R.; Shi, X.; et al. A bioresponsive system based on mesoporous organosilica nanoparticles for smart delivery of fungicide in response to pathogen presence. ACS Sustain. Chem. Eng. 2020, 8, 5716–5723. [Google Scholar] [CrossRef]
- Abdelrahman, T.M.; Qin, X.; Li, D.; Senosy, I.A.; Mmby, M.; Wan, H.; Li, J.; He, S. Pectinase-responsive carriers based on mesoporous silica nanoparticles for improving the translocation and fungicidal activity of prochloraz in rice plants. Chem. Eng. J. 2021, 404, 126440. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, C.; Zhang, S.; Zheng, L.; Li, F.; Cao, C.; Cao, L.; Huang, Q. Fungicide-loaded mesoporous silica nanoparticles promote rice seedling growth by regulating amino acid metabolic pathways. J. Hazard. Mater. 2022, 425, 127892. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, R.C.; Kumaraswamy, R.V.; Kumari, S.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci. Rep. 2017, 7, 9754. [Google Scholar] [CrossRef]
- Kumar, R.; Duhan, J.S.; Poonia, A.K. Synthesis, characterization and antimicrobial potential of mancozeb loaded chitosan nanoparticles against Fusarium pallidoroseum. Ann. Bio. 2022, 38, 138–144. [Google Scholar]
- Mondal, P.; Kumar, R.; Gogoi, R. Azomethine based nano-chemicals: Development, in vitro and in vivo fungicidal evaluation against Sclerotium rolfsii, Rhizoctonia bataticola and Rhizoctonia solani. Bioorganic Chem. 2017, 70, 153–162. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, M.E.; Hasanin, M.; Youssef, A.M.; Aldalbahi, A.; El-Newehy, M.H.; Abdelhameed, R.M. Hydroxyethyl cellulose/bacterial cellulose cryogel dopped silver@ titanium oxide nanoparticles: Antimicrobial activity and controlled release of Tebuconazole fungicide. Int. J. Biol. Macromol. 2020, 165, 1010–1021. [Google Scholar] [CrossRef]
- Singh, N.; Bhuker, A.; Jeevanadam, J. Effects of metal nanoparticle-mediated treatment on seed quality parameters of different crops. Naunyn Schmiedebergs Arch. Pharmacol. 2021, 394, 1067–1089. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.E.; Sousa, B.T.; Iglesias, M.J.; Alvarez, V.A.; Casalongué, C.A.; Oliveira, H.C.; Fraceto, L.F. Potential use of polymeric particles for the regulation of plant growth. In Polymers for Agri-Food Applications; Springer: Cham, Switzerland, 2019; pp. 45–66. [Google Scholar]
- Srivastava, G.; Das, C.K.; Das, A.; Singh, S.K.; Roy, M.; Kim, H.; Sethy, N.; Kumar, A.; Sharma, R.K.; Singh, S.K.; et al. Seed treatment with iron pyrite (FeS2) nanoparticles increases the production of spinach. RSC Adv. 2014, 4, 58495–58504. [Google Scholar] [CrossRef]
- Hoang, N.H.; Le Thanh, T.; Thepbandit, W.; Treekoon, J.; Saengchan, C.; Sangpueak, R.; Papathoti, N.K.; Kamkaew, A.; Buensanteai, N. Efficacy of Chitosan Nanoparticle Loaded-Salicylic Acid and-Silver on Management of Cassava Leaf Spot Disease. Polymers 2022, 14, 660. [Google Scholar] [CrossRef] [PubMed]
- da Cruz, T.N.; Savassa, S.M.; Montanha, G.S.; Ishida, J.K.; de Almeida, E.; Tsai, S.M.; Lavres Junior, J.; Pereira de Carvalho, H.W. A new glance on root-to-shoot in vivo zinc transport and time-dependent physiological effects of ZnSO4 and ZnO nanoparticles on plants. Sci. Rep. 2019, 9, 10416. [Google Scholar] [CrossRef] [Green Version]
- Dananjaya, S.H.S.; Erandani, W.K.C.U.; Kim, C.H.; Nikapitiya, C.; Lee, J.; De Zoysa, M. Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex. Int. J. Biol. Macromol. 2017, 105, 478–488. [Google Scholar] [CrossRef]
- Rai, M.; Ingle, A.P.; Pandit, R.; Paralikar, P.; Anasane, N.; Santos, C.A.D. Curcumin and curcumin-loaded nanoparticles: Antipathogenic and antiparasitic activities. Expert Rev. Anti Infect. Ther. 2020, 18, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Kumar, N.; Rajput, V.D.; Mandzhieva, S.; Minkina, T.; Saharan, B.S.; Kumar, D.; Sadh, P.K.; Duhan, J.S. Advances in biopolymeric nanopesticides: A new eco-friendly/eco-protective perspective in precision agriculture. Nanomaterials 2022, 12, 3964. [Google Scholar] [CrossRef]
- Kumar, R.; Nain, V.; Duhan, J.S. An ecological approach to control pathogens of Lycopersicon esculentum L. by slow release of mancozeb from biopolymeric conjugated nanoparticles. J. Xenobiot. 2022, 12, 23. [Google Scholar] [CrossRef]
- Kola Srinivas, N.S.; Verma, R.; Pai Kulyadi, G.; Kumar, L. A quality by design approach on polymeric nanocarrier delivery of gefitinib: Formulation, in vitro, and in vivo characterization. Int. J. Nanomed. 2017, 12, 15–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barani, M.; Reza Hajinezhad, M.; Sargazi, S.; Zeeshan, M.; Rahdar, A.; Pandey, S.; Khatami, M.; Zargari, F. Simulation, in vitro, and in vivo cytotoxicity assessments of methotrexate-loaded pH-responsive nanocarriers. Polymers 2021, 13, 3153. [Google Scholar] [CrossRef]
Freshly Prepared Nanoemulsion (NE) | |||
---|---|---|---|
Nanoemulsion | Size (nm) | Zeta Potential (mV) | PDI |
Blank guar-gum NEs | 186.5 ± 1.8 | −20.4 ± 0.5 | 0.435 ± 0.1 |
Mancozeb (1.0 mg/mL) loaded guar-gum NEs | 246.6 ± 0.9 | −9.80 ± 0.4 | 0.323 ± 0.2 |
Twenty days storage stability of GG NEs in distilled water at 4 °C | |||
Blank guar-gum NEs | 216.7 ± 2.1 | −9.14 ± 0.2 | 0.360 ± 0.1 |
Mancozeb (1.0 mg/mL) loaded guar-gum NEs | 394.1 ± 1.1 | −9.42 ± 0.9 | 0.221 ± 0.2 |
Nanoemulsion | EE (%) | LC (%) |
---|---|---|
GG-0.5 | 38.3 ± 0.71 | 14.3 ± 0.94 |
GG-1.0 | 38.2 ± 1.58 | 16.2 ± 0.34 |
GG-1.5 | 58.3 ± 0.85 | 18.2 ± 0.59 |
Fungi | Nanoformulation with Mancozeb (ppm) | GG NEs | GG NEs % Inhibition = dc − dt/dc × 100 | Mancozeb (ppm) | Mancozeb | Mancozeb % Inhibition = dc − dt/dc × 100 |
---|---|---|---|---|---|---|
Fungus Diameter (mm) | Fungus Diameter (mm) | |||||
A. alternata (ITCC6343) | Blank NEs, N 1.0 | 29.0 ± 1.4 | 62.6 ± 1.4c | -- | -- | |
Loaded NEs, NF 0.5 | 26.0 ± 1.4 | 66.5 ± 1.4c | F 0.5 | 12.0 ± 1.4 | 84.5 ± 1.4b | |
Loaded NEs, NF 1.0 | 13.0 ± 0.0 | 83.2 ± 0.0b | F 1.0 | 11.5 ± 0.7 | 85.2 ± 0.7b | |
Loaded NEs, NF1.5 | 12.0 ± 0.0 | 84.5 ± 0.0b | F 1.5 | 10.5 ± 0.7 | 86.5 ± 0.7b | |
S. lycopersici (ITCC5431) | Blank NEs, N 1.0 | 13.5 ± 0.7 | 59.1 ± 0.7c | -- | -- | |
Loaded NEs, NF 0.5 | 16.5 ± 0.7 | 60.0 ± 0.7c | F 0.5 | 14.5 ± 0.7 | 56.1 ± 0.7c | |
Loaded NEs, NF 1.0 | 00.0 ± 0.0 | 100 ± 0.0a | F 1.0 | 00.0 ± 0.0 | 100 ± 0.0a | |
Loaded NEs, NF 1.5 | 00.0 ± 0.0 | 100 ± 0.0a | F 1.5 | 00.0 ± 0.0 | 100 ± 0.0a | |
A. solani (ITCC3640) | Blank NEs, N 1.0 | 21.5 ± 0.7 | 66.9 ± 0.7b | -- | -- | |
Loaded NEs, NF 0.5 | 21.0 ± 1.4 | 67.7 ± 1.4b | F 0.5 | 10.5 ± 0.7 | 83.8 ± 0.7b | |
Loaded NEs, NF 1.0 | 19.0 ± 1.4 | 70.8 ± 1.4b | F 1.0 | 10.0 ± 0.0 | 84.6 ± 0.0b | |
Loaded NEs, NF 1.5 | 10.5 ± 0.7 | 83.8 ± 0.7b | F 1.5 | 10.0 ± 0.0 | 84.6 ± 0.0b | |
S. sclerotiorum (ITCC5492) | Blank NEs, N 1.0 | 14.0 ± 0.0 | 58.8 ± 0.0c | |||
Loaded NEs, NF 0.5 | 14.5 ± 0.7 | 57.4 ± 0.7c | F 0.5 | 10.5 ± 0.7 | 69.1 ± 0.7c | |
Loaded NEs, NF 1.0 | 00.0 ± 0.0 | 100 ± 0.0a | F 1.0 | 00.0 ± 0.0 | 100 ± 0.0a | |
Loaded NEs, NF 1.5 | 00.0 ± 0.0 | 100 ± 0.0a | F 1.5 | 00.0 ± 0.0 | 100 ± 0.0a |
Treatment | Tomato | Potato | ||||||
---|---|---|---|---|---|---|---|---|
Early Blight (A. alternata) | Leaf Spot (S. lycopersici) | Early Blight (A. solani) | Stem Rot (S. sclerotiorum) | |||||
% DS | % DCE | % DS | % DCE | % DS | % DCE | % DS | % DCE | |
Pure control, C | 16.1 ± 1.4 | -- | 12.7 ± 1.5 | -- | 10.5 ± 0.7 | -- | 13.5 ± 2.1 | -- |
Control + Pathogen, CP | 42.9 ± 3.3 | -- | 40.9 ± 0.8 | -- | 29.4 ± 1.6 | -- | 27.4 ± 1.6 | -- |
Fungicide, F | 10.1 ± 1.9 | 76.5 ± 5.8a | 10.2 ± 1.8 | 75.1 ± 1.8a | 08.0 ± 0.6 | 72.8 ± 1.1a | 08.7 ± 1.0 | 68.2 ± 3.9a |
Fungicide + Pathogen, FP | 14.6 ± 3.4 | 66.0 ± 3.5a | 12.9 ± 2.3 | 68.5 ± 1.1b | 09.9 ± 0.5 | 66.3 ± 2.2c | 12.9 ± 2.4 | 52.9 ± 3.4c |
GG Blank NEs, N | 12.9 ± 4.1 | 69.9 ± 5.3b | 12.2 ± 3.0 | 70.2 ± 2.2a | 07.9 ± 1.6 | 73.1 ± 0.0a | 10.0 ± 0.8 | 63.5 ± 4.1b |
Blank NEs + Pathogen, NP | 14.1 ± 5.7 | 67.1 ± 5.0b | 14.0 ± 3.7 | 65.8 ± 2.4b | 11.2 ± 2.7 | 61.9 ± 1.2c | 10.7 ± 0.8 | 60.9 ± 3.7b |
Loaded NEs, NF | 11.1 ± 3.6 | 74.1 ± 3.7a | 10.2 ± 0.9 | 75.1 ± 2.4a | 07.2 ± 1.8 | 75.5 ± 1.5a | 8.0 ± 0.6 | 70.8 ± 3.6a |
Loaded NEs + Pathogen, NFP | 13.5 ± 2.3 | 68.5 ± 1.9b | 13.2 ± 2.5 | 67.7 ± 0.5b | 08.7 ± 1.6 | 70.4 ± 2.2b | 8.9 ± 0.9 | 67.5 ± 2.3a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Nehra, M.; Kumar, D.; Saharan, B.S.; Chawla, P.; Sadh, P.K.; Manuja, A.; Duhan, J.S. Evaluation of Cytotoxicity, Release Behavior and Phytopathogens Control by Mancozeb-Loaded Guar Gum Nanoemulsions for Sustainable Agriculture. J. Xenobiot. 2023, 13, 270-283. https://doi.org/10.3390/jox13020020
Kumar R, Nehra M, Kumar D, Saharan BS, Chawla P, Sadh PK, Manuja A, Duhan JS. Evaluation of Cytotoxicity, Release Behavior and Phytopathogens Control by Mancozeb-Loaded Guar Gum Nanoemulsions for Sustainable Agriculture. Journal of Xenobiotics. 2023; 13(2):270-283. https://doi.org/10.3390/jox13020020
Chicago/Turabian StyleKumar, Ravinder, Manju Nehra, Dharmender Kumar, Baljeet Singh Saharan, Prince Chawla, Pardeep Kumar Sadh, Anju Manuja, and Joginder Singh Duhan. 2023. "Evaluation of Cytotoxicity, Release Behavior and Phytopathogens Control by Mancozeb-Loaded Guar Gum Nanoemulsions for Sustainable Agriculture" Journal of Xenobiotics 13, no. 2: 270-283. https://doi.org/10.3390/jox13020020
APA StyleKumar, R., Nehra, M., Kumar, D., Saharan, B. S., Chawla, P., Sadh, P. K., Manuja, A., & Duhan, J. S. (2023). Evaluation of Cytotoxicity, Release Behavior and Phytopathogens Control by Mancozeb-Loaded Guar Gum Nanoemulsions for Sustainable Agriculture. Journal of Xenobiotics, 13(2), 270-283. https://doi.org/10.3390/jox13020020