Microbe-Plant Interactions Targeting Metal Stress: New Dimensions for Bioremediation Applications
Abstract
:1. Introduction
2. Effects of HMs on the Environment
3. HMT-PGP (Heavy Metal Tolerant-Plant Growth Promoting) Microbial Mechanisms for Soil Heavy Metal(loid)s Remediation
3.1. Strategies for Reconstructed Metabolic Pathways in Bioremediation Techniques
3.2. De Novo Metabolic Route Reconstruction Using Computational Techniques
4. Nanoparticles and Their Role in Heavy Metal Bioremediation
4.1. Nanoparticles
4.2. As Carriers for the Active Component during Bioremediation
4.3. Nanomaterials as Active Additives for Bioremediation
5. Future Challenges
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emenike, C.U.; Jayanthi, B.; Agamuthu, P.; Fauziah, S.H. Biotransformation and removal of HMs: A review of phytoremediation and microbial remediation assessment on contaminated soil. Environ. Rev. 2018, 26, 156–168. [Google Scholar] [CrossRef]
- Ojuederie, O.B.; Babalola, O.O. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. Int. J. Environ. Res. Public Health 2017, 14, 1504. [Google Scholar] [CrossRef]
- Oves, M.; Khan, M.S.; Qari, H.A. Chromium-reducing and phosphate-solubilising Achromobacterxylosoxidans bacteria from the heavy metal-contaminated soil of the Brass city, Moradabad, India. Int. J. Environ. Sci. Technol. 2019, 16, 6967–6984. [Google Scholar] [CrossRef]
- Oves, M.; Khan, M.S.; Zaidi, A.; Ahmad, E. Soil Contamination, Nutritive Value, and Human Health Risk Assessment of HMs: An Overview. In Toxicity of HMs to Legumes and Bioremediation; Springer: Vienna, Austria, 2012; pp. 1–27. [Google Scholar]
- Lebov, J.F.; Engel, L.S.; Richardson, D.; Hogan, S.L.; Hoppin, J.A.; Sandler, D.P. Pesticide use and risk of end-stage renal disease among licensed pesticide applicators in the Agricultural Health Study. Occup. Environ. Med. 2016, 73, 3–12. [Google Scholar] [CrossRef]
- Gupta, U.C.; Gupta, S.C. Trace element toxicity relationships to crop production and livestock and human health: Implications for management. Commun. Soil Sci. Plant Anal. 1998, 29, 1491–1522. [Google Scholar] [CrossRef]
- Kong, Z.; Glick, B.R. The role of plant growth-promoting bacteria in metal phytoremediation. Adv. Microb. Physiol. 2017, 71, 97–132. [Google Scholar] [PubMed]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some HMs. Interdiscip. Toxicol. 2014, 7, 60. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. The relative impact of toxic HMs (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef] [PubMed]
- Mahimairaja, S.; Bolan, N.S.; Adriano, D.C.; Robinson, B. Arsenic contamination and its risk management in complex environmental settings. Adv. Agron. 2005, 86, 1–82. [Google Scholar]
- Sarwar, N.; Imran, M.; Shaheen, M.R.; Ishaque, W.; Kamran, M.A.; Matloob, A.; Rehim, A.; Hussain, S. Phytoremediation strategies for soils contaminated with HMs: Modifications and future perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef]
- Chaudhary, T.; Shukla, P. Bioinoculant capability enhancement through metabolomics and systems biology approaches. Brief. Funct. Genom. 2019, 18, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Zaidi, A.; Wani, P.A.; Oves, M. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ. Chem. Lett. 2009, 7, 1–19. [Google Scholar] [CrossRef]
- Sharma, D.; Saharan, B.S. (Eds.) Microbial Cell Factories; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Khare, E.; Arora, N.K. Effects of Soil Environment on Field Efficacy of Microbial Inoculants. In Plant Microbes Symbiosis: Applied Facets; Springer: New Delhi, India, 2015; pp. 353–381. [Google Scholar]
- Zaidi, A.; Khan, M.; Ahemad, M.; Oves, M. Plant growth promotion by phosphate solubilising bacteria. Acta Microbiol. Immunol. Hung. 2009, 56, 263–284. [Google Scholar] [CrossRef] [PubMed]
- Al-Akeel, K. The pollution of water by trace elements research trends. Adv. Bioremed. Phytoremed. 2017, 10, 72776. [Google Scholar]
- Wei, Z.; Van Le, Q.; Peng, W.; Yang, Y.; Yang, H.; Gu, H.; Lam, S.S.; Sonne, C.A. review on phytoremediation of contaminants in air, water and soil. J. Hazard. Mater. 2021, 403, 123658. [Google Scholar] [CrossRef]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. HMs, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Mehta, P. Impending water crisis in India and comparing clean water standards among developing and developed nations. Arch. Appl. Sci. Res. 2012, 4, 497–507. [Google Scholar]
- Fashola, M.O.; Ngole-Jeme, V.M.; Babalola, O.O. Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance. Int. J. Environ. Res. Public Health 2016, 13, 1047. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Jahan, S.A. A review on the distribution of Hg in the environment and its human health impacts. J. Hazard. Mater. 2016, 306, 376–385. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Singh Sidhu, G.P.; Bali, A.S.; Handa, N.; Kapoor, D.; Yadav, P.; Khanna, K.; et al. Photosynthetic response of plants under different abiotic stresses: A review. J. Plant Growth Regul. 2020, 39, 509–531. [Google Scholar] [CrossRef]
- Ranga, P.; Sindhu, M.; Kumari, S.; Khan, S.; Saharan, B.S. Bioremediation of HMs. Nat. Sci. E-Mag. 2022, 2, 27–29. [Google Scholar]
- Abbas, A.A.; Jingsong, G.; Ping, L.Z.; Ya, P.Y.; Al-Rekabi, W.S. Review on LandWll leachate treatments. J. Appl. Sci. 2009, 5, 534–545. [Google Scholar]
- Srivastava, N.K.; Majumder, C.B. Novel biofiltration methods for the treatment of HMs from industrial waste-water. J. Hazard. Mater. 2008, 151, 1–8. [Google Scholar] [CrossRef]
- Chaudhary, T.; Gera, R.; Shukla, P. Deciphering the potential of Rhizobium pusense MB-17a, a plant growth-promoting root endophyte, and functional annotation of the genes involved in the metabolic pathway. Front. Bioeng. Biotechnol. 2021, 8, 617034. [Google Scholar] [CrossRef]
- Ayangbenro, A.S.; Babalola, O.O. A new strategy for heavy metal polluted environments: A review of microbial biosorbents. IJERPH 2017, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Ranga, P.; Sharma, D.; Saharan, B.S. Bioremediation of Textile Effluent using Bacterial Consortium Obtained from Industrial Polluted Site. Ecol. Environ. Conserv. 2020, 26, S247–S254. [Google Scholar]
- Jian, L.; Bai, X.; Zhang, H.; Song, X.; Li, Z. Promotion of growth and metal accumulation of alfalfa by coinoculation with Sinorhizobium and Agrobacterium under copper and zinc stress. Peer J. 2019, 7, e6875. [Google Scholar] [CrossRef]
- Lebrazi, S.; Fikri-Benbrahim, K. Rhizobium-Legume Symbioses: Heavy Metal Effects and Principal Approaches for Bioremediation of Contaminated Soil. In Legumes for Soil Health and Sustainable Management; Springer: Singapore, 2018; pp. 205–233. [Google Scholar]
- Abou-Shanab, R.A.I.; van Berkum, P.; Angle, J.S. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 2007, 68, 360–367. [Google Scholar] [CrossRef]
- Chaintreuil, C.; Rigault, F.; Moulin, L.; Jaffré, T.; Fardoux, J.; Giraud, E.; Dreyfus, B.; Bailly, X. Nickel resistance determinants in Bradyrhizobium strains from nodules of the endemic New Caledonia legume Serianthes calycina. Appl. Environ. Microbiol. 2007, 73, 8018–8022. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef]
- Srivastava, S.; Singh, N. Mitigation approach of arsenic toxicity in chickpea grown in arsenic amended soil with arsenic tolerant plant growth promoting Acinetobacter sp. Ecol. Eng. 2014, 70, 146–153. [Google Scholar] [CrossRef]
- Glick, B.R. Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv. 2010, 28, 367–374. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Q.; Wang, B.; Hou, J.; Luo, Y.; Tang, C.; Ashley, E.; Franks, A.E. Plant growth-promoting rhizobacteria enhance the growth and Cd uptake of Sedum plumbizincicolain a Cd-contaminated soil. J. Soils Sediments 2015, 15, 1191–1199. [Google Scholar] [CrossRef]
- Li, K.; Ramakrishna, W. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. J. Hazard. Mater. 2011, 189, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Akhtar, M.J.; Zahir, Z.A.; Naveed, M.; Mitter, B.; Sessitsch, A. Cadmium-tolerant bacteria induce metal stress tolerance in cereals. Environ. Sci. Pollut. Res. 2014, 21, 11054–11065. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.N.; Shim, J.; You, Y.; Myung, H.; Bang, K.S.; Cho, M.; Kamala-Kannan, S.; Oh, B.T. Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J. Hazard. Mater. 2012, 199–200, 314–320. [Google Scholar] [CrossRef]
- Kuffner, M.; Maria, S.D.; Puschenreiter, M.; Fallmann, K.; Wieshammer, G.; Gorfer, M.; Strauss, J.; Rivelli, A.R.; Sessitsch, A. Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J. Appl. Microbiol. 2010, 108, 1471–1484. [Google Scholar] [CrossRef]
- Wani, P.A.; Khan, M.S. Isolation of multiple metal and antibiotic resistant mesorhizobium species and their plant growth promoting activity. Res. J. Microbiol. 2013, 8, 25. [Google Scholar] [CrossRef]
- Ameen, F.; Alsamhary, K.; Alabdullatif, J.A.; Nadhari, S. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicol. Environ. Saf. 2021, 213, 112027. [Google Scholar] [CrossRef]
- Bhattacharyya, N.; Anand, U.; Kumar, R.; Ghorai, M.; Aftab, T.; Jha, N.K.; Rajapaksha, A.U.; Bundschuh, J.; Bontempi, E.; Dey, A. Phytoremediation and sequestration of soil metals using the CRISPR/Cas9 technology to modify plants: A review. Environ. Chem. Lett. 2023, 21, 429–445. [Google Scholar] [CrossRef]
- Dangi, A.K.; Sharma, B.; Hill, R.T.; Shukla, P. Bioremediation through microbes: Systems biology and metabolic engineering approach. Crit. Rev. Biotechnol. 2019, 39, 79–98. [Google Scholar] [CrossRef] [PubMed]
- Igiri, B.E.; Okoduwa, S.I.; Idoko, G.O.; Akabuogu, E.P.; Adeyi, A.O.; Ejiogu, I.K. Toxicity and bioremediation of HMs contaminated ecosystem from tannery wastewater: A review. J. Toxicol. 2018, 2018, 2568038. [Google Scholar] [CrossRef] [PubMed]
- Saeed, Q.; Xiukang, W.; Haider, F.U.; Kučerik, J.; Mumtaz, M.Z.; Holatko, J.; Naseem, M.; Kintl, A.; Ejaz, M.; Naveed, M.; et al. Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. Int. J. Mol. Sci. 2021, 22, 10529. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, X.; Xiong, T.; Wang, H.; Jiang, L. Bioremediation of co-contaminated soil with HMs and pesticides: Influence factors, mechanisms and evaluation methods. J. Chem. Eng. 2020, 398, 125657. [Google Scholar] [CrossRef]
- Tyagi, S.; Kumar, R.; Saharan, B.S.; Nadda, A.K. Plant-Microbe Interaction for Sustainable Agriculture. In Plant-Microbial Interactions and Smart Agricultural Biotechnology; CRC Press: Boca Raton, FL, USA, 2021; pp. 1–10. [Google Scholar]
- Ali, F.; Jilani, G.; Fahim, R.; Bai, L.; Wang, C.; Tian, L.; Jiang, H. Functional and structural roles of wiry and sturdy rooted emerged macrophytes root functional traits in the abatement of nutrients and metals. J. Environ. Manag. 2019, 249, 109330. [Google Scholar] [CrossRef] [PubMed]
- Khanpour-Alikelayeh, E.; Partovinia, A. Synergistic and Antagonistic Effects of Microbial Co-culture on Bioremediation of Polluted Environments. Microb. Rejuvenation Polluted Environ. 2021, 2, 229–265. [Google Scholar]
- Fosso-Kankeu, E.; Mulaba-Bafubiandi, A.F. Implication of plants and microbial metalloproteins in the bioremediation of polluted waters: A review. Phys. Chem. Earth Parts A/B/C 2014, 67, 242–252. [Google Scholar] [CrossRef]
- Mishra, J.; Singh, R.; Arora, N.K. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front. Microbiol. 2017, 8, 1706. [Google Scholar] [CrossRef]
- Saharan, B.S.; Parshad, J.; Kumar, D.; Sharma, N. Plant-Microbial Interactions in Natural/Organic Cultivation of Horticultural Plants. In Plant-Microbial Interactions and Smart Agricultural Biotechnology; CRC Press: Boca Raton, FL, USA, 2021; pp. 115–128. [Google Scholar]
- Chaudhary, T.; Shukla, P. Commercial Bioinoculant Development: Techniques and Challenges. In Microbial Enzymes and Biotechniques; Springer: Singapore, 2020; pp. 57–70. [Google Scholar]
- Vassilev, N.; Mendes, G.; Costa, M.; Vassileva, M. Biotechnological tools for enhancing microbial solubilisation of insoluble inorganic phosphates. Geomicrobiol. J. 2014, 31, 751–763. [Google Scholar] [CrossRef]
- Wenzel, W.W. Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 2009, 321, 385–408. [Google Scholar] [CrossRef]
- Luo, Q.; Wang, S.; Sun, L.N.; Wang, H.; Bao, T.; Adeel, M. Identification of root exudates from the Pb-accumulator Sedum alfredii under Pb stresses and assessment of their roles. J. Plant Interact. 2017, 12, 272–278. [Google Scholar] [CrossRef]
- Shreya, D.; Jinal, H.N.; Kartik, V.P.; Amaresan, N. Amelioration effect of chromium-tolerant bacteria on growth, physiological properties and chromium mobilisation in chickpea (Cicer arietinum) under chromium stress. Arch. Microbiol. 2020, 202, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, M.K.; Yadav, P.; Shukla, A.; Srivastava, S. Utilising the potential of microorganisms for managing arsenic contamination: A feasible and sustainable approach. Front. Environ. Sci. 2018, 6, 24. [Google Scholar] [CrossRef]
- Monteiro, C.M.; Castro, P.M.; Malcata, F.X. Metal uptake by microalgae: Underlying mechanisms and practical applications. Biotechnol. Prog. 2012, 28, 299–311. [Google Scholar] [CrossRef]
- Chaturvedi, R.; Archana, G. Cytosolic expression of synthetic phytochelatin and bacterial metallothionein genes in Deinococcusradiodurans R1 for enhanced tolerance and bioaccumulation of cadmium. Biometals 2014, 27, 471–482. [Google Scholar] [CrossRef]
- Murthy, S.; Bali, G.; Sarangi, S.K. Effect of lead on metallothionein concentration in lead resistant bacteria Bacillus cereus isolated from industrial effluent. Afr. J. Biotechnol. 2011, 10, 15966–15972. [Google Scholar] [CrossRef]
- Sharma, J.; Shamim, K.; Dubey, S.K.; Meena, R.M. Metallothionein assisted periplasmic lead sequestration as lead sulfite by Providenciavermicola strain SJ2A. Sci. Total Environ. 2017, 579, 359–365. [Google Scholar] [CrossRef]
- Hossain, M.A.; Piyatida, P.; da Silva, J.A.T.; Fujita, M. Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J. Bot. 2012, 2012, 872875. [Google Scholar] [CrossRef]
- Ferrol, N.; Tamayo, E.; Vargas, P. The heavy metal paradox in arbuscular mycorrhizas: From mechanisms to biotechnological applications. J. Exp. Bot. 2016, 67, 6253–6265. [Google Scholar] [CrossRef]
- Yao, Q.; Yang, R.; Long, L.; Zhu, H. Phosphate application enhances the resistance of arbuscular mycorrhizae in clover plants to cadmium via polyphosphate accumulation in fungal hyphae. Environ. Exp. Bot. 2014, 108, 63–70. [Google Scholar] [CrossRef]
- Naveed, S.; Li, C.; Lu, X.; Chen, S.; Yin, B.; Zhang, C.; Ge, Y. Microalgal extracellular polymeric substances and their interactions with metal (loid) s: A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1769–1802. [Google Scholar] [CrossRef]
- Freitas, F.; Alves, V.D.; Reis, M.A. Advances in bacterial exopolysaccharides: From production to biotechnological applications. Trends Biotechnol. 2011, 29, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Diwan, B. Bacterial exopolysaccharide mediated heavy metal removal: A review on biosynthesis, mechanism and remediation strategies. Biotechnol. Rep. 2017, 13, 58–71. [Google Scholar] [CrossRef]
- Kumar, P.; Kundu, V.S.; Kumar, S.; Saharan, B.S.; Kumar, V.; Chauhan, N. Hydrothermal Synthesis of Cu-ZnO-/TiO2-Based Engineered Nanomaterials for the Efficient Removal of Organic Pollutants and Bacteria from Water. BioNanoScience 2017, 7, 574–582. [Google Scholar] [CrossRef]
- Dvorak, P.; Nikel, P.I.; Damborský, J.; de Lorenzo, V. Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol. Adv. 2017, 35, 845–866. [Google Scholar] [CrossRef]
- Medema, M.H.; Van Raaphorst, R.; Takano, E.; Breitling, R. Computational tools for the synthetic design of biochemical pathways. Nat. Rev. Microbiol. 2012, 10, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, T.; Shukla, P. Bioinoculants for bioremediation applications and disease resistance: Innovative perspectives. Indian J. Microbiol. 2019, 59, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Altman, T.; Travers, M.; Kothari, A.; Caspi, R.; Karp, P.D. A systematic comparison of the MetaCyc and KEGG pathway databases. BMC Bioinform. 2013, 14, 1–15. [Google Scholar] [CrossRef]
- Oberhardt, M.A.; Palsson, B.O.; Papin, J.A. Applications of genome-scale metabolic reconstructions. Mol. Syst. Biol. 2009, 5, 320. [Google Scholar] [CrossRef]
- Dhanasekaran, A.R.; Pearson, J.L.; Ganesan, B.; Weimer, B.C. Metabolome searcher: A high throughput tool for metabolite identification and metabolic pathway mapping directly from mass spectrometry and using genome restriction. BMC Bioinform. 2015, 16, 1–13. [Google Scholar] [CrossRef]
- Becker, S.A.; Feist, A.M.; Mo, M.L.; Hannum, G.; Palsson, B.Ø.; Herrgard, M.J. Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox. Nat. Protoco. 2007, 2, 727–738. [Google Scholar] [CrossRef]
- Kumar, A.; Yadav, A.N.; Mondal, R.; Kour, D.; Subrahmanyam, G.; Shabnam, A.A.; Khan, S.A.; Yadav, K.K.; Sharma, G.K.; Cabral-Pinto, M.; et al. Myco-remediation: A mechanistic understanding of contaminants alleviation from natural environment and future prospect. Chemosphere 2021, 284, 131325. [Google Scholar] [CrossRef]
- Hadadi, N.; Hatzimanikatis, V. Design of computational retrobiosynthesis tools for the design of de novo synthetic pathways. Curr. Opin. Chem. Biol. 2015, 28, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Bilal, M.; Iqbal, H.M.; Raj, A. Trends in predictive biodegradation for sustainable mitigation of environmental pollutants: Recent progress and future outlook. Sci. Total Environ. 2021, 770, 14456. [Google Scholar] [CrossRef]
- Kotera, M.; Goto, S. Metabolic pathway reconstruction strategies for central metabolism and natural product biosynthesis. Biophys. Phys. 2016, 13, 195–205. [Google Scholar] [CrossRef]
- Mughal, B.; Zaidi, S.Z.; Zhang, X.; Hassan, S.U. Biogenic nanoparticles: Synthesis, characterisation and applications. Appl. Sci. 2021, 11, 2598. [Google Scholar] [CrossRef]
- Goutam, S.P.; Saxena, G. Biogenic Nanoparticles for Removal of HMs and Organic Pollutants from Water and Waste-Water: Advances, Challenges, and Future Prospects. In Bioremediation for Environmental Sustainability; Elsevier: Amsterdam, The Netherlands, 2021; pp. 623–636. [Google Scholar]
- Rao, C.N.; Biswas, K. Characterization of nanomaterials by physical methods. Annu. Rev. Anal. Chem. 2009, 2, 435–462. [Google Scholar] [CrossRef] [PubMed]
- Riddin, T.; Gericke, M.; Whiteley, C.G. Biological synthesis of platinum nanoparticles: Effect of initial metal concentration. Enzyme Microb. Technol. 2010, 46, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, M.S.; Aggarwal, A.; Sah, M.K. Engineering Biomaterials for the Bioremediation: Advances in Nanotechnological Approaches for HMs Removal from Natural Resources. In Emerging Technologies in Environmental Bioremediation; Shah, M.P., Rodriguez-Couto, S., Şengor, S.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 14; pp. 323–339. [Google Scholar]
- Riaz, M.; Kamran, M.; Fang, Y.; Wang, Q.; Cao, H.; Yang, G.; Deng, L.; Wang, Y.; Zhou, Y.; Anastopoulos, I.; et al. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. J. Hazard. Mater. 2021, 402, 123919. [Google Scholar] [CrossRef]
- Amin, I.; Nazir, R.; Rather, M.A. Nano-Bioremediation: An Innovative Approach for Remedying HMs using Fungi. J. Bioremediat. Biodegrad. 2021, 12, 2. [Google Scholar]
- Ramezani, M.; Rad, F.A.; Ghahari, S.; Ghahari, S.; Ramezani, M. Nano-bioremediation application for environmental contamination by microorganisms. Microb. Rejuvenation Polluted Environ. 2021, 2, 349–378. [Google Scholar]
- Samal, S.; Mishra, C.S.K. Agrochemical Contamination of Soil Recent Technology Innovations for Bioremediation. In Bioremediation Science From Theory to Practice; CRC Press: Boca Raton, FL, USA, 2021; pp. 170–179. [Google Scholar]
- Jiamjitrpanich, W.; Parkpian, P.; Polprasert, C.; Kosanlavit, R. Enhanced Phytoremediation Efficiency of TNT-Contaminated Soil by Nanoscale Zero Valent Iron. In 2nd International Conference on Environment and Industrial Innovation IPCBEE; IACSIT Press: Singapore, 2012; Volume 35, pp. 82–86. [Google Scholar]
- Ajmal, Z.; Muhmood, A.; Usman, M.; Kizito, S.; Lu, J.; Dong, R.; Wu, S. Phosphate removal from aqueous solution using iron oxides: Adsorption, desorption and regeneration characteristics. J. Colloid Interface Sci. 2018, 528, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Raffa, C.M.; Chiampo, F. Bioremediation of agricultural soils polluted with pesticides: A review. Bioengineering 2021, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Selvinsimpson, S.; Chen, Y. Microbial-Based Synthesis of Nanoparticles to Remove Different Pollutants from Wastewater. In Environmental Applications of Microbial Nanotechnology; Elsevier: Amsterdam, The Netherlands, 2023; pp. 167–181. [Google Scholar]
- Bilal, M.; Noreen, S.; Zdarta, J.; Mulla, S.I.; Lou, W.Y.; Iqbal, H.M. Enzyme-oriented strategies to mitigate polluting agents from environment. Microb. Rejuvenation Polluted Environ. 2020, 2, 267–290. [Google Scholar]
- Rathnayake, I.V.N.; Munagamage, T.; Pathirathne, A.; Megharaj, M. Whole cell microalgal-cyanobacterial array biosensor for monitoring Cd, Cr and Zn in aquatic systems. Water Sci. Technol. 2021, 84, 1579–1593. [Google Scholar] [CrossRef]
- San Keskin, N.O.; Celebioglu, A.; Sarioglu, O.F.; Uyar, T.; Tekinay, T. Encapsulation of living bacteria in electrospuncyclodextrin ultrathin fibers for bioremediation of HMs and reactive dye from waste-water. Colloids Surf. B Biointerfaces 2018, 161, 169–176. [Google Scholar] [CrossRef]
- Sarioglu, O.F.; San Keskin, N.O.; Celebioglu, A.; Tekinay, T.; Uyar, T. Bacteria encapsulated electrospun nanofibrous webs for remediation of methylene blue dye in water. Colloids Surf. B Biointerfaces 2017, 152, 245–251. [Google Scholar] [CrossRef]
- Boopathi, S.; Gopinath, S.; Boopathi, T.; Balamurugan, V.; Rajeshkumar, R.; Sundararaman, M. Characterization and antimicrobial properties of silver and silver oxide nanoparticles synthesised by cell-free extract of a mangrove-associated Pseudomonas aeruginosa M6 using two different thermal treatments. Ind. Eng. Chem. Res. 2012, 51, 5976–5985. [Google Scholar] [CrossRef]
- Rajnish, K.N.; Samuel, M.S.; Datta, S.; Chandrasekar, N.; Balaji, R.; Jose, S.; Selvarajan, E. Immobilization of cellulase enzymes on nano and micro-materials for breakdown of cellulose for biofuel production-a narrative review. Int. J. Biol. Macromol. 2021, 182, 1793–1802. [Google Scholar] [CrossRef]
- Sicard, C.; Perullini, M.; Spedalieri, C.; Coradin, T.; Brayner, R.; Livage, J.; Jobbágy, M.; Bilmes, S.A. CeO2 nanoparticles for the protection of photosynthetic organisms immobilised in silica gels. J. Mater. Chem. 2011, 23, 1374–1378. [Google Scholar] [CrossRef]
- Lei, Q.; Guo, J.; Noureddine, A.; Wang, A.; Wuttke, S.; Brinker, C.J.; Zhu, W. Sol–gel-based advanced porous silica materials for biomedical applications. Adv. Funct. Mater. 2020, 30, 1909539. [Google Scholar] [CrossRef]
- Pannier, A.; Mkandawire, M.; Soltmann, U.; Pompe, W.; Böttcher, H. Biological activity and mechanical stability of sol–gel-based biofilters using the freeze-gelation technique for immobilisation of Rhodococcus ruber. Appl. Microbiol. Biotechnol. 2012, 93, 1755–1767. [Google Scholar] [CrossRef] [PubMed]
- Zango Usman, U.; Mukesh, Y.; Vandana, S.; Sharma, J.K.; Sanjay, P.; Sidhartha, D.; Sharma Anil, K. Microbial bioremediation of HMs: Emerging trends and recent advances. Res. J. Biotechnol. 2020, 15, 1–10. [Google Scholar]
- Verma, S.; Kuila, A. Bioremediation of HMs by microbial process. Environ. Technol. Innov. 2019, 14, 100369. [Google Scholar] [CrossRef]
- Tayang, A.; Songachan, L.S. Microbial bioremediation of HMs. Curr. Sci. 2021, 120, 00113891. [Google Scholar] [CrossRef]
- Sharma, P.; Pandey, A.K.; Kim, S.H.; Singh, S.P.; Chaturvedi, P.; Varjani, S. Critical review on microbial community during in-situ bioremediation of HMs from industrial wastewater. Environ. Technol. Innov. 2021, 24, 101826. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. Bioremediation of toxic HMs (THMs) contaminated sites: Concepts, applications and challenges. Environ. Sci. Pollut. Res. 2020, 27, 27563–27581. [Google Scholar] [CrossRef]
- Medfu Tarekegn, M.; Zewdu Salilih, F.; Ishetu, A.I. Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food Agric. 2020, 6, 1783174. [Google Scholar] [CrossRef]
- Kumar, V. Mechanism of Microbial Heavy Metal Accumulation from a Polluted Environment and Bioremediation. In Microbial Cell Factories; CRC Press: Boca Raton, FL, USA, 2018; pp. 149–174. [Google Scholar]
- Kamal, N.; Prashad, J.; Saharan, B.S.; Kayasth, M.; Mudgal, V.; Duhan, J.S.; Mandal, B.S.; Sadh, P.K. Ecosystem Protection through Myco-Remediation of Chromium and Arsenic. J. Xenobiot. 2023, 13, 159–171. [Google Scholar] [CrossRef]
- Sharma, P.; Dutta, D.; Udayan, A.; Kumar, S. Industrial waste-water purification through metal pollution reduction employing microbes and magnetic nanocomposites. J. Environ. Chem. Eng. 2021, 9, 106673. [Google Scholar] [CrossRef]
- Salem, S.S.; Hammad, E.N.; Mohamed, A.A.; El-Dougdoug, W. A comprehensive review of nanomaterials: Types, synthesis, characterisation, and applications. Biointerface Res. Appl. Chem. 2022, 13, 41. [Google Scholar]
- Alao, M.B.; Bamigboye, C.O.; Adebayo, E.A. Microbial Nanobiotechnology in Environmental Pollution Management: Prospects and Challenges. In Biotechnological Innovations for Environmental Bioremediation; Springer: Singapore, 2022; pp. 25–51. [Google Scholar] [CrossRef]
- Saharan, B.S.; Brar, B.; Duhan, J.S.; Kumar, R.; Marwaha, S.; Rajput, V.D.; Minkina, T. Molecular and Physiological Mechanisms to Mitigate Abiotic Stress Conditions in Plants. Life 2022, 12, 1634. [Google Scholar] [CrossRef] [PubMed]
- Tsekhmistrenko, S.I.; Bityutskyy, V.S.; Tsekhmistrenko, O.S.; Horalskyi, L.P.; Tymoshok, N.O.; Spivak, M.Y. Bacterial synthesis of nanoparticles: A green approach. Biosyst. Divers. 2020, 28, 9–17. [Google Scholar] [CrossRef]
- Salem, S.S.; Fouda, A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biol. Trace Elem. Res. 2021, 199, 344–370. [Google Scholar] [CrossRef]
- Furgal, K.M.; Meyer, R.L.; Bester, K. Removing selected steroid hormones, biocides and pharmaceuticals from water by means of biogenic manganese oxide nanoparticles in situ at ppb levels. Chemosphere 2015, 136, 321–326. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Guo, Z.; Zhang, Y.; Zhang, S.; Wang, J.; Gu, N. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater. Lett. 2007, 61, 3984–3987. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, D.; Pan, X.; Lee, D.J.; Al-Misned, F.A.; Mortuza, M.G. Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere 2017, 170, 266–273. [Google Scholar] [CrossRef]
- Sunkar, S.; Nachiyar, C.V. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac. J. Trop. Biomed. 2012, 2, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Mahanty, S.; Das, P.; Chaudhuri, P.; Das, S. Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr(VI) from aqueous solution. Chem. Eng. J. 2019, 385, 123790. [Google Scholar] [CrossRef]
- Kim, H.K.; Jeong, S.W.; Yang, J.E.; Choi, Y.J. Highly efficient and stable removal of arsenic by live cell fabricated magnetic nanoparticles. Int. J. Mol. Sci. 2019, 20, 3566. [Google Scholar] [CrossRef] [PubMed]
- Subramaniyam, V.; Subashchandrabose, S.R.; Thavamani, P.; Megharaj, M.; Chen, Z.; Naidu, R. Chlorococcum sp. MM11-a novel phyco-nanofactory for the synthesis of iron nanoparticles. J. Appl. Phycol. 2014, 27, 2. [Google Scholar] [CrossRef]
- Mukherjee, D.; Ghosh, S.; Majumdar, S.; Annapurna, K. Green synthesis of α-Fe2O3 nanoparticles for arsenic (V) remediation with a novel aspect for sludge management. J. Environ. Chem. Eng. 2016, 4, 639–650. [Google Scholar] [CrossRef]
- Al-Qahtani, K.M. Cadmium removal from aqueous solution by green synthesise zero-valent silver nanoparticles with Benjamina leaves extract. Egypt. J. Aquat. Res. 2017, 43, 269–274. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, D.; Qian, H.; Liang, Y.; Pan, X.; Gadd, G.M. Interactions between biogenic selenium nanoparticles and goethite colloids and consequence for remediation of elemental mercury contaminated groundwater. Sci. Total Environ. 2018, 613–614, 672–678. [Google Scholar] [CrossRef]
- Khan, A.; Ahmad, F. Nanomaterials as Unique Carriers in Agricultural Practices for Plant Growth and Development: A State of Current Knowledge. In Plant and Nanoparticles; Springer: Singapore, 2022; pp. 281–314. [Google Scholar] [CrossRef]
- Liu, S.H.; Zeng, G.M.; Niu, Q.Y.; Liu, Y.; Zhou, L.; Jiang, L.H.; Tan, X.-F.; Xu, P.; Zhang, C.; Cheng, M. Bioremediation mechanisms of combined pollution of PAHs and HMs by bacteria and fungi: A mini review. Bioresour. Technol. 2017, 224, 25–33. [Google Scholar] [CrossRef]
- Văcar, C.L.; Covaci, E.; Chakraborty, S.; Li, B.; Weindorf, D.C.; Frențiu, T.; Pârvu, M.; Podar, D. Heavy metal-resistant filamentous fungi as potential mercury bioremediators. J. Fungi 2021, 7, 386. [Google Scholar] [CrossRef]
- Coleman, D.C.; Wall, D.H. Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. Soil Microbiol. Ecol. Biochem. 2015, 4, 111–149. [Google Scholar]
Microbes | Plant | Isolated Sources | PGP Traits | Metal Stress | Experimental Conditions | Results | References |
---|---|---|---|---|---|---|---|
Sinorhizobium meliloti | Medicagolupulina | Root nodule of M. lupulina | Siderophore production, IAA, and ACC deaminase activity | 200 mg kg−1 Cu | 1.6 mM Cu | Enhanced Cu uptake and improved plant growth. Antioxidant activity in excess Cu stress conditions | [30] |
Rhizobium halophytocola | Ciceraritenum | Root nodule | IAA and phosphate solubilization | 4 mM Pb | 1 Mm Ni | Increased plant growth and yield. Reduced as plants absorb | [31] |
Mesorhizobium sp. RC4 | Helianthus annuus | Contaminated soil with Cr | P solubilization and IAA production | 16 mM Ni | 5 mM Cr | Enhanced Ni and Cr uptake and plant growth | [32] |
Bradyrhizobium | Brassica juncea | Cr and Zn hyperaccumulators in stems | 1.8 mM Zn | 1.4 mM Cr | Increased shoot and root length | [33] | |
Rahnella | Brassica napus | Roots of Polygonumpubescens with Mnhyperaccumulator region | Phosphate solubilization, IAA, and siderophore production | 200 mg kg−1 Zn, 25 mg kg−1 Cd, | 150 mg L−1 Cu, 1550 mg L−1 Cd, and 3000 mg L−1 Zn | Increased uptake levels of Zn, Pb, and Cd in the aerial parts and root tissues of plants. | [34] |
Acinetobacter | Ciceraritenum | Contaminated soil with As | IAA, ACC deaminase activity, and phosphate solubilization | 10 mg kg−1Arsenic (V) | 1500 mg L−1 As (III) | Increased plant yield and growth. Reduced As uptake by plants | [35] |
Bacillus pumilus | Sedum plumbizincicola | Cd and Zn hyperaccumulators in stems | Siderophore production, IAA, and ACC deaminase activity | 5.9 mg kg−1 Cd, 153 mg kg−1 Pb | 400 mg L−1 Cd, 3500 mg L−1 P | Increased plant biomass and Cd uptake by colonization in the rhizosphere | [36] |
Rhodococcuserythropolis | Sedum plumbizincicola | Roots of S. Graptosedum | P solubilization and IAA production | 132 mg kg−1 Zn | 20 mg L−1 Cd, 600 mg L−1 Zn | Enhanced Cd uptake and plant growth | [37] |
Pseudomonas sp. | Helianthus annuus | Torch lake sediment | Phosphate solubilization, IAA production | 500 mg kg−1 Cu | 6 mM Zn, 5 mM Pb, 0.3 Hg | Increased Cu and Cd accumulation in sunflowers. Increased total biomass of plants | [38] |
Klebsiella sp. | Triticum aestivum | Rhizospheric soil of maize with industrial effluent | ACC deaminase, exopolysaccharide, oxidase, siderophores, and IAA production | 80 mg kg−1 Cd | 500 mg L−1 Cd | Lowered Cd uptake and promoted wheat growth | [39] |
Bacillus sp. | Brassica juncea | Alnus firma roots | IAA and siderophores production | 150 mg L−1 Pb | 150 ppm Cd, 150 ppm Ni, and 800 ppm Cu | Increased shoot and root length | [40] |
Microbacterium | Salix caprea | Plant tissues of S. caprea | Siderophore production, IAA, and ACC deaminase activity | 608.2 mg kg−1 Zn, 98.5 mg kg−1 Pb | 4 mM Cd | By increasing the concentrations of Zn and Cd in leaves | [41] |
Rhizobium sp. | Lens culinaris | Root nodules of lentil plants | ACC deaminase activity, phosphate solubilization, HCN, and ammonia production | 290 and 580 mg kg−1 Ni | 300μgmL−1 Cd, 1400μgmL−1 Pb | Decreased uptake of Ni, increased nodulation, nitrogen content, chlorophyll, and seed yield | [42] |
Rhizobium, Pseudomonas, Arthrobacter, Agrobacterium, and Serratia | Brassica juncea | Root nodules of Brassica | Ammonia production, IAA, and siderophores production | 80 mg kg−1 Cd | 50 mg L− 1 ZVI-NPs | Enhanced toxic metal uptake and improved plant growth | [43] |
Arthrobacter and Enterobacter | Mustard | Plant tissues of sunflower | By ACCD, phytohormone, siderophore, and dissolving insoluble mineral nutrients | 190 mg kg−1 Ni | 141.34 mg g−1 of Ni and Cd | By increasing the concentrations of heavy toxic metals in leaves | [44] |
Actinobacteria and Mycobacterium | Triticum aestivum | From rhizospheric soil | IAA, siderophore production, and ACC deaminase activity | 180 mg kg−1 Cu, Ni, and Cd | 151.34 mg g−1 of Ni and Cd | By enhancement of Cd and Cu uptake | [45] |
Rhodotorula mucilaginosa | Brassica juncea | Root nodules of Brassica | Ammonia production, IAA, and siderophores production | 156 mg L−1 Cr | 4.79 to 10.25% for planktonic cells | By biofilm formation | [46] |
Arthrobacter, Azoarcus, Alcaligenes, and Enterobacter | Sunflower and mustard | Plant tissues of sunflower | By ACCD, phytohormone, siderophore, and dissolving insoluble mineral nutrients | 290 mg kg−1 Ni | 141.34 mg g−1 of Ni and Cd | By increasing the concentrations of Ni and Cd in leaves | [47] |
Ralstonia eutropha | Indian mustard, alfalfa, and sunflower | From rhizospheric soil | IAA, siderophore production, and ACC deaminase activity | 200 mg kg−1 Cu | 800 ppm Cu | Enhanced Co and Cu uptake and improved plant growth | [48] |
Associated Microbes | Modification | Applied Nanotechnology | Mechanism | Removal Capacity | References |
---|---|---|---|---|---|
Actinomycetes | Synthesized organic framework in actinomycetes | Silica nanomaterials | Degradation by photocatalysis | By decolorization of industrial effluent (melanoidins and textile dyes), up to 80% | [95] |
Pleurotus ostreatus | Immobilization of Laccase | Enzyme immobilization | Oxidation by laccase | Degradation of carbamazepine is 10–15%, and bisphenol-A degradation is 90% | [96] |
Synechococcus | Sol-gel method | By optical biosensor | By detection of heavy metal | Cd2+ and Cr6+ | [97] |
Lysinibacillus | Encapsulation by bacterial cells | By cyclodextrin fibers | By bacterial remediation | Removal efficiency of Cr(VI) = 58 ± 1.4% and Ni(II) = 70 ± 0.2% | [98] |
Pseudomonas aeruginosa | Encapsulation by bacterial cells | By spun nanofibrous webs | By removal of different dyes | Removal of methylene blue up to 55–70% at polymer matrices (polyvinyl alcohol and polyethylene oxide) | [99] |
Pseudomonas aeruginosa | Synthesized from bacterial cell-free culture supernatant | By Zirconia nanomaterial | By electrostatic interaction among zwitter ions | Tetracycline adsorption of 626.67 mg/g | [100] |
Aspergillus nidulans | Modified activated carbon | By enzyme immobilization | By bacterial remediation | [101] | |
Chlorella vulgaris | Enzyme immobilization | CeO2 nanoparticles | By detection of heavy metal | The precursors used to create the final products have defensive qualities. The cells that were immobilized were shielded from UV and H2O2. | [102] |
Saccharomyces cerevisiae | Immobilization of bacterial cells | Sol gel method | By examining the thickness of the generated films and the shape of the resulting structures. | By bacterial remediation | [103] |
Rhodococcus ruber | Immobilization | Aluminosilicate | Investigate the structure, mechanical properties, and biological activity of ceramic composites. | By degrading phenol by 10% | [104] |
Pseudomonas and Arthrobacter | By electrostatic interaction among zwitter ions | By spun nanofibrous network | By bacterial remediation | By decolorization of industrial effluent, up to 65% | [105] |
Arthrobacter and Methosinus | By genetically engineered bacteria | By metal mobilization | Microbe-assisted phytoremediation | Removal of polycyclic hydrocarbons (PAHs) on a large scale | [106] |
Penicillium sp | By extracellular sequestration | Precipitation and adsorption | By detoxification | detoxify Hg(II) ions by 5–7% | [107] |
Micrococcus, Enterobacter, and Flavobacterium | By metal absorption process | By biofilm bioremediation | By biosorption | 4.79 to 10.25% of toxic metals | [108] |
Staphylococcus epidermidis | Microbe-assisted phytoremediation | Enzyme immobilization | By carbonate mineralization | 86% Pband 76.8% Cr(VI) | [109] |
Aspergillus sp. and Rhizopus sp. | By electrostatic interaction among zwitter ions | By mobilization of metals | By bioaccumulation and metal leaching processes | Removal of 6–8% of the dry cell mass | [110] |
Agrobacterium | Encapsulated in alginate with iron oxide nanoparticles | By nanoparticles | By adsorption process | 197.02 mg/g for Pb | [111] |
Aspergillus tamarii and Aspergillus ustus | Microbe-assisted phytoremediation | By mobilization of metals | By fungal remediation | 58.6% and 80% for chromium and arsenic, respectively. | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saharan, B.S.; Chaudhary, T.; Mandal, B.S.; Kumar, D.; Kumar, R.; Sadh, P.K.; Duhan, J.S. Microbe-Plant Interactions Targeting Metal Stress: New Dimensions for Bioremediation Applications. J. Xenobiot. 2023, 13, 252-269. https://doi.org/10.3390/jox13020019
Saharan BS, Chaudhary T, Mandal BS, Kumar D, Kumar R, Sadh PK, Duhan JS. Microbe-Plant Interactions Targeting Metal Stress: New Dimensions for Bioremediation Applications. Journal of Xenobiotics. 2023; 13(2):252-269. https://doi.org/10.3390/jox13020019
Chicago/Turabian StyleSaharan, Baljeet Singh, Twinkle Chaudhary, Balwan Singh Mandal, Dharmender Kumar, Ravinder Kumar, Pardeep Kumar Sadh, and Joginder Singh Duhan. 2023. "Microbe-Plant Interactions Targeting Metal Stress: New Dimensions for Bioremediation Applications" Journal of Xenobiotics 13, no. 2: 252-269. https://doi.org/10.3390/jox13020019
APA StyleSaharan, B. S., Chaudhary, T., Mandal, B. S., Kumar, D., Kumar, R., Sadh, P. K., & Duhan, J. S. (2023). Microbe-Plant Interactions Targeting Metal Stress: New Dimensions for Bioremediation Applications. Journal of Xenobiotics, 13(2), 252-269. https://doi.org/10.3390/jox13020019