Application of Fabric Phase Sorptive Extraction (FPSE) Engaged to Tandem LC-MS/MS for Quantification of Brorphine in Oral Fluid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Working/Standard Solutions and Calibrators
2.3. Pre-Treatment of Fabric for Sol-Gel Coatings
2.4. Preliminary Experiments
2.5. Sample Collection and Storage
2.6. FPSE Procedure
2.7. LC Conditions
2.8. MS/MS Conditions
2.9. Method Validation
2.10. Statistical Analysis
3. Results
3.1. Method Development
3.2. Optimization of the FPSE Procedure for Sample Preparation
3.3. Method Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- UNODC. Booklet 2: Global Overview of Drug Demand and Drug Supply. In World Drug Report 2021; United Nations: Vienna, Austria, 2021; Available online: https://www.unodc.org/res/wdr2021/field/WDR21_Booklet_2.pdf (accessed on 29 June 2021).
- EMCDDA. European Drug Report 2020: Trends and Developments; Publications Office of the European Union: Luxembourg, 2020; Available online: https://www.emcdda.europa.eu/system/files/publications/13236/TDAT20001ENN_web.pdf (accessed on 29 June 2021).
- EMCDDA. European Drug Report 2021: Trends and Developments; Publications Office of the European Union: Luxembourg, 2021; Available online: https://www.emcdda.europa.eu/system/files/publications/13838/TDAT21001ENN.pdf (accessed on 29 June 2021).
- Krotulski, A.J.; Papsun, D.M.; Noble, C.; Kacinko, S.L.; Logan, B.K. Brorphine—Investigation and quantitation of a new potent synthetic opioid in forensic toxicology casework using liquid chromatography-mass spectrometry. J. Forensic Sci. 2021, 66, 664–676. [Google Scholar] [CrossRef]
- Grafinger, K.E.; Wilde, M.; Otte, L.; Auwärter, V. Pharmacological and metabolic characterization of the novel synthetic opioid brorphine and its detection in routine casework. Forensic Sci. Int. 2021, 327, 110989. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, N.M.; Schmid, C.L.; Ross, N.C.; Lovell, K.M.; Yue, Z.; Chen, Y.T.; Cameron, M.D.; Bohn, L.M.; Bannister, T.D. Optimization of a series of Mu opioid receptor (MOR) agonists with high G protein signaling bias. J. Med. Chem. 2018, 6, 8895–8907. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.A.J. Derivatives of Benzimidazolinyl Piperidine. U.S. Patent 3,318,900, 9 May 1967. [Google Scholar]
- Vandeputte, M.M.; Krotulski, A.J.; Papsun, D.M.; Logan, B.K.; Stove, C.P. The Rise and Fall of Isotonitazene and Brorphine: Two Recent Stars in the Synthetic Opioid Firmament. J. Anal. Toxicol. 2021, 46, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Vohra, V.; King, A.M.; Jacobs, E.; Aaron, C. Death associated with brorphine, an emerging novel synthetic opioid. Clin. Toxicol. 2021, 59, 851–852. [Google Scholar] [CrossRef] [PubMed]
- Razinger, G.; Grenc, D.; Pezdir, T.; Kranvogl, R.; Brvar, M. Severe rhabdomyolysis and acute kidney failure due to synthetic opioid brorphine exposure in combination with chronic sertraline therapy. Eur. J. Clin. Pharmacol. 2021, 77, 1759–1761. [Google Scholar] [CrossRef] [PubMed]
- Verougstraete, N.; Vandeputte, M.M.; Lyphout, C.; Cannaert, A.; Hulpia, F.; Van Calenbergh, S.; Verstraete, A.G.; Stove, C. First Report on Brorphine: The Next Opioid on the Deadly New Psychoactive Substance Horizon? J. Anal. Toxicol. 2021, 44, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Meng, S.; Shi, J.; Lu, L. Control of fentanyl-related substances in China. Lancet Psychiatry 2019, 6, e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DEA. CFR Part 1308. In Schedules of Controlled Substances: Temporary Placement of Brorphine in Schedule I.; DEA: Springfield, VA, USA, 2021; pp. 78047–78050. Volume 85. Available online: https://www.deadiversion.usdoj.gov/fed_regs/rules/2020/fr1203_2.htm (accessed on 29 June 2021).
- DEA. CFR Part 1308. In Schedules of Controlled Substances: Temporary Placement of Brorphine in Schedule I.; DEA: Springfield, VA, USA, 2021; pp. 11862–11867. Volume 86. Available online: https://deadiversion.usdoj.gov/fed_regs/rules/2021/fr0301_4.htm (accessed on 29 June 2021).
- de Campos, E.G.; da Costa, B.R.B.; dos Santos, F.S.; Monedeiro, F.; Alves, M.N.R.; Santos Junior, W.J.R.; De Martinis, B.S. Alternative matrices in forensic toxicology: A critical review. Forensic Toxicol. 2022, 40, 1–18. [Google Scholar] [CrossRef]
- Sorribes-Soriano, A.; Valencia, A.; Esteve-Turrillas, F.A.; Armenta, S.; Herrero-Martínez, J.M. Development of pipette tip based poly(methacrylic acid-co-ethylene glycol dimethacrylate) monolith for the extraction of drugs of abuse from oral fluid samples. Talanta 2019, 205, 120158. [Google Scholar] [CrossRef] [PubMed]
- Rocchi, R.; Simeoni, M.C.; Montesano, C.; Vannutelli, G.; Curini, R.; Sergi, M.; Compagnone, D. Analysis of new psychoactive substances in oral fluids by means of microextraction by packed sorbent followed by ultra-high-performance liquid chromatography-tandem mass spectrometry. Drug Test Anal. 2018, 10, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Agazzi, S.; Riboni, N.; Erdal, N.; Hakkarainen, M.; Ilag, L.L.; Anzillotti, L.; Andreoli, R.; Marezza, F.; Moroni, F.; et al. Novel sample-substrates for the determination of new psychoactive substances in oral fluid by desorption electrospray ionization-high resolution mass spectrometry. Talanta 2019, 202, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.M. Solventless Microextraction Techniques for Pharmaceutical Analysis: The Greener Solution. Front. Chem. 2022, 9, 785830. [Google Scholar] [CrossRef] [PubMed]
- Kabir, A.; Furton, K.G.; Malik, A. Innovations in sol-gel microextraction phases for solvent-free sample preparation in analytical chemistry. Trends Anal. Chem. 2013, 45, 197–218. [Google Scholar] [CrossRef]
- Jiménez-Holgado, C.; Chrimatopoulos, C.; Stathopoulos, V.; Sakkas, V. Investigating the Utility of Fabric Phase Sorptive Extraction and HPLC-UV-Vis/DAD to Determine Antidepressant Drugs in Environmental Aqueous Samples. Separations 2020, 7, 39. [Google Scholar] [CrossRef]
- Aznar, M.; Alfaro, P.; Nerin, C.; Kabir, A.; Furton, K.G. Fabric phase sorptive extraction: An innovative sample preparation approach applied to the analysis of specific migration from food packaging. Anal. Chim. Acta 2016, 936, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Tartaglia, A.; Kabir, A.; D’Ambrosio, F.; Ramundo, P.; Ulusoy, S.; Ulusoy, H.I.; Merone, G.M.; Savini, F.; D’Ovidio, C.; De Grazia, U.; et al. Fast off-line FPSE-HPLC-PDA determination of six NSAIDs in saliva samples. J. Chromatogr. B 2020, 1144, 122082. [Google Scholar] [CrossRef] [PubMed]
- Scientific Working Group for Forensic Toxicology (SWGTOX). Standard Practices for Method Validation in Forensic Toxicology. J. Anal. Toxicol. 2013, 37, 452–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Center for Drug Evaluation and Research (CDER). Bioanalytical Method Validation-Guidance for Industry, Food and Drug Administration. 2018. Available online: https://www.fda.gov/downloads/drugs/guidances/ucm070107.Pdf (accessed on 29 June 2021).
- Imre, S.; Tero-Vescan, A.; Dogaru, M.T.; Kelemen, L.; Muntean, D.-L.; Curticapean, A.; Szegedi, N.; Vari, C.-E. With or Without Internal Standard in HPLC Bioanalysis. A Case Study. J. Chromatogr. Sci. 2019, 57, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Boumba, V.A.; Di Rago, M.; Peka, M.; Drummer, O.H.; Gerostamoulos, D. The analysis of 132 novel psychoactive substances in human hair using a single step extraction by tandem LC/MS. Forensic Sci. Int. 2017, 279, 192–202. [Google Scholar] [CrossRef] [PubMed]
Q1 Mass (Da) | Q3 Mass (Da) | Dwell Time (ms) | ID | DP (Volts) | EP (Volts) | CE (Volts) | CXP (Volts) | |
---|---|---|---|---|---|---|---|---|
1 | 399.9 | 218.2 | 400 | Brorphine 1 | 106 | 10 | 29 | 20 |
2 | 399.9 | 182.9 | 400 | Brorphine 2 | 106 | 10 | 33 | 16 |
3 | 399.9 | 104.06 | 400 | Brorphine 3 | 106 | 10 | 59 | 12 |
Analyte | LOD (ng/mL) | LOQ (ng/mL) | Matrix Effect | Extraction Efficiency | Intra-Day Precision | Inter-Day Precision | ||||
---|---|---|---|---|---|---|---|---|---|---|
Low (%) | High (%) | Low (%) | High (%) | Low (%) | High (%) | Low (%) | High (%) | |||
Brorphine | 0.015 | 0.05 | −20 | −23 | 65 | 75 | 6.4 | 7.6 | 9.9 | 8.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florou, D.; Vlachou, T.; Sakkas, V.; Boumba, V. Application of Fabric Phase Sorptive Extraction (FPSE) Engaged to Tandem LC-MS/MS for Quantification of Brorphine in Oral Fluid. J. Xenobiot. 2022, 12, 356-364. https://doi.org/10.3390/jox12040025
Florou D, Vlachou T, Sakkas V, Boumba V. Application of Fabric Phase Sorptive Extraction (FPSE) Engaged to Tandem LC-MS/MS for Quantification of Brorphine in Oral Fluid. Journal of Xenobiotics. 2022; 12(4):356-364. https://doi.org/10.3390/jox12040025
Chicago/Turabian StyleFlorou, Dimitra, Thalia Vlachou, Vasilios Sakkas, and Vassiliki Boumba. 2022. "Application of Fabric Phase Sorptive Extraction (FPSE) Engaged to Tandem LC-MS/MS for Quantification of Brorphine in Oral Fluid" Journal of Xenobiotics 12, no. 4: 356-364. https://doi.org/10.3390/jox12040025
APA StyleFlorou, D., Vlachou, T., Sakkas, V., & Boumba, V. (2022). Application of Fabric Phase Sorptive Extraction (FPSE) Engaged to Tandem LC-MS/MS for Quantification of Brorphine in Oral Fluid. Journal of Xenobiotics, 12(4), 356-364. https://doi.org/10.3390/jox12040025