Uses of Antibiotics in Ornamental Fish in Hong Kong and the Antibiotic Resistance in the Associated Zoonotic Pathogens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Research Premises and Sampling
2.3. Antibiotic Analysis
2.3.1. Sample Extraction
2.3.2. Instrumental Analysis
2.3.3. Method Validation and Quality Control
2.4. Bacterial Analysis
2.4.1. Bacterial Isolation
2.4.2. Antibiotic Susceptibility Test
2.5. Data Analysis
3. Results
3.1. Concentrations of Antibiotics in Carriage Water Samples
3.2. Antibiotic Resistance Prevalence and MIC of Aeromonas and Pseudomonas spp.
3.3. Correlations of Concentrations of Antibiotics and the Corresponding MIC Levels of Aeromonas and Pseduomonas spp.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Target Antibiotics | Abbreviation | Retention Time (min) | Precursor Ion | Product Ion 1 | Product Ion 2 | Fragmentation (v) |
---|---|---|---|---|---|---|
Ciprofloxacin | CFX | 3.85 | 332.1 | 231.1 | 314.1 | 135 |
Enrofloxacin | EFX | 4.013 | 360.2 | 342.2 | 316.2 | 135 |
Ofloxacin | OFX | 3.815 | 362.2 | 318.2 | 261.1 | 145 |
Oxalinic acid | OA | 6.213 | 262.1 | 216 | 244.1 | 85 |
Sparfloxacin | SAR | 4.328 | 393.2 | 349.2 | 251.1 | 150 |
Sarafloxacin | SFX | 4.314 | 386.1 | 368.2 | 342.2 | 150 |
Norfloxacin | NFX | 3.80 | 320.1 | 302.2 | 231.1 | 105 |
Chlortetracycline | CTC | 4.926 | 479.1 | 462.2 | 444.1 | 150 |
Doxycycline | DC | 5.152 | 445.2 | 428.1 | 98 | 125 |
Oxytetracycline | OTC | 3.919 | 461.2 | 426.1 | 443.2 | 140 |
Tetracycline | TC | 4.089 | 445.1 | 410.1 | 154 | 120 |
Tylosin tartrate | TYL | 8.625 | 916.5 | 174.1 | 101.1 | 185 |
Roxithromycin | RTM | 11.545 | 839.5 | 158.1 | 116.1 | 190 |
Clarithromycin | CTM | 11.382 | 748.5 | 158.1 | 116 | 200 |
sulfamethazine | STZ | 4.496 | 279.1 | 186 | 124.1 | 115 |
sulfamonomethoxine | SMM | 4.915 | 281.1 | 156 | 108 | 105 |
sulfathiazole | SAZ | 3.898 | 256 | 156 | 92.1 | 110 |
sulfamethoxazole | SMX | 5.564 | 254.1 | 156 | 92 | 110 |
Sulfamerazine | SMZ | 4.193 | 265.1 | 108 | 92.1 | 110 |
Sulfadiazine | SDZ | 3.865 | 251.1 | 108.1 | 92.1 | 120 |
Trimethoprim | TMP | 5.784 | 291.2 | 230.1 | 123 | 155 |
Sulfamethoxazole-13C6 | SMZ-13C6 | 5.557 | 261.1 | 162 | 98 | 87 |
Ciprofloxacin-d8 | CFX-d8 | 3.865 | 340.2 | 322.2 | 235 | 113 |
Roxithromyxcin-d7 | RTM-d7 | 11.48 | 845.6 | 158.1 | 116 | 136 |
Caffeine-13C3 | Caffeine-13C3 | 3.733 | 198.1 | 140 | 112.1 | 84 |
Group | Compound | Recovery (%) | LOD (ng L−1) | LOQ (ng L−1) | |
---|---|---|---|---|---|
50 ng L−1 | 100 ng L−1 | ||||
Fluoroquinolones | CFX | 65.0 ± 11.4 | 72.8 ± 13.0 | 0.040 | 0.122 |
EFX | 70.8 ± 10.5 | 58.9 ± 6.8 | 0.316 | 0.957 | |
OFX | 70.7 ± 14.0 | 79.4 ± 7.2 | 0.023 | 0.069 | |
OA | 96.0 ± 1.6 | 75.9 ± 11.6 | 0.008 | 0.024 | |
SAR | 89.9 ± 7.0 | 92.7 ± 15.3 | 0.024 | 0.072 | |
SFX | 78.7 ± 9.1 | 95.1 ± 15.4 | 0.028 | 0.084 | |
NFX | 66.2 ± 13.7 | 65.9 ± 7.6 | 0.067 | 0.203 | |
Tetracycline | CTC | 118.2 ± 16.2 | 91.5 ± 14.5 | 0.210 | 0.640 |
DC | 91.03 ± 7.1 | 76.41 ± 15.9 | 0.226 | 0.685 | |
OTC | 107.6 + 13.9 | 63.69 + 9.1 | 0.201 | 0.610 | |
TC | 89.27 + 6.7 | 72.79 + 21.3 | 0.230 | 0.696 | |
Macrolides | TYL | 80.17 + 4.3 | 65.18 + 11.6 | 0.013 | 0.041 |
RTM | 68.0 + 5.4 | 60.33 + 6.1 | 0.041 | 0.126 | |
CTM | 82.35 + 1.3 | 76.5 + 4.1 | 0.091 | 0.275 | |
Sulfonamides | STZ | 90.2 ± 19.3 | 76.8 ± 12.3 | 0.018 | 0.056 |
SMM | 98.4 ± 5.4 | 91.8 ± 10.6 | 0.108 | 0.328 | |
SAZ | 70.0 ± 7.0 | 87.6 ± 3.5 | 0.110 | 0.334 | |
SMX | 96.2 ± 2.0 | 90.0 ± 5.3 | 0.056 | 0.170 | |
SMZ | 80.2 ± 6.7 | 80.7 ± 14.8 | 0.017 | 0.052 | |
SDZ | 82.4 ± 6.4 | 99.3 ± 10.7 | 0.051 | 0.155 | |
Diaminopyrimidines | TMP | 95.1 ± 4.7 | 99.8 ± 7.8 | 0.011 | 0.033 |
References
- Grand View Research. Ornamental Fish Market Size, Share & Trends Analysis Report By Product (Tropical Freshwater, Temperate, Marine), By Application (Commercial, Household), By Region, And Segment Forecasts, 2022–2030; Grand View Research: San Francisco, CA, USA, 2021; p. 85. [Google Scholar]
- Austin, B.; Austin, D.A. Bacterial Fish Pathogens: Disease of Farmed and Wild Fish; Springer International Publishing AG: Cham, Switzerland, 2016. [Google Scholar]
- Magnadottir, B. Immunological Control of Fish Diseases. Mar. Biotechnol. 2010, 12, 361–379. [Google Scholar] [CrossRef]
- Cabello, F.C.; Godfrey, H.P.; Tomova, A.; Ivanova, L.; Dölz, H.; Millanao, A.; Buschmann, A.H. Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 2013, 15, 1917–1942. [Google Scholar] [CrossRef] [PubMed]
- Weir, M.; RajiĆ, A.; Dutil, L.; Cernicchiaro, N.; Uhland, F.C.; Mercier, B.; TuŠEvljak, N. Zoonotic bacteria, antimicrobial use and antimicrobial resistance in ornamental fish: A systematic review of the existing research and survey of aquaculture-allied professionals. Epidemiol. Infect. 2012, 140, 192–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabello, F.C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ Microbiol 2006, 8, 7. [Google Scholar] [CrossRef]
- Liu, X.; Steele, J.C.; Meng, X.-Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environ. Pollut. 2017, 223, 161–169. [Google Scholar] [CrossRef]
- He, X.; Deng, M.; Wang, Q.; Yang, Y.; Yang, Y.; Nie, X. Residues and health risk assessment of quinolones and sulfonamides in cultured fish from Pearl River Delta, China. Aquaculture 2016, 458, 38–46. [Google Scholar] [CrossRef]
- Guruge, K.S.; Goswami, P.; Tanoue, R.; Nomiyama, K.; Wijesekara, R.G.S.; Dharmaratne, T.S. First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways. Sci. Total Environ. 2019, 690, 683–695. [Google Scholar] [CrossRef]
- Hemamalini, N.; Shanmugam, S.A.; Kathirvelpandian, A.; Deepak, A.; Kaliyamurthi, V.; Suresh, E. A critical review on the antimicrobial resistance, antibiotic residue and metagenomics-assisted antimicrobial resistance gene detection in freshwater aquaculture environment. Aquac. Res. 2022, 53, 344–366. [Google Scholar] [CrossRef]
- Hossain, S.; Heo, G.J. Ornamental fish: A potential source of pathogenic and multidrug-resistant motile Aeromonas spp. Lett. Appl. Microbiol. 2021, 72, 2–12. [Google Scholar] [CrossRef]
- Liu, S.; Dong, G.; Zhao, H.; Chen, M.; Quan, W.; Qu, B. Occurrence and risk assessment of fluoroquinolones and tetracyclines in cultured fish from a coastal region of northern China. Environ. Sci. Pollut. Res. Int. 2018, 25, 8035–8043. [Google Scholar] [CrossRef]
- Iwu, C.D.; Korsten, L.; Okoh, A.I. The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health. MicrobiologyOpen 2020, 9, e1035. [Google Scholar] [CrossRef] [PubMed]
- Elmund, G.K.; Morrison, S.M.; Grant, D.W.; Nevins, M.P. Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste. Bull. Environ. Contam. Toxicol. 1971, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Cabello, F.C.P.; Godfrey, H.P.P.; Buschmann, A.H.P.; Dölz, H.J.P. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect. Dis. 2016, 16, e127–e133. [Google Scholar] [CrossRef] [PubMed]
- Heuer, H.; Schmitt, H.; Smalla, K. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 2011, 14, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Heuer, H.; Solehati, Q.; Zimmerling, U.; Kleineidam, K.; Schloter, M.; Müller, T.; Focks, A.; Thiele-Bruhn, S.; Smalla, K. Accumulation of Sulfonamide Resistance Genes in Arable Soils Due to Repeated Application of Manure Containing Sulfadiazine. Appl. Environ. Microbiol. 2011, 77, 2527–2530. [Google Scholar] [CrossRef] [Green Version]
- Nunes, O.C.; Manaia, C.M.; Kolvenbach, B.A.; Corvini, P.F.X. Living with sulfonamides: A diverse range of mechanisms observed in bacteria. Appl. Microbiol. Biotechnol. 2020, 104, 10389–10408. [Google Scholar] [CrossRef]
- Ryu, S.-H.; Park, S.-G.; Choi, S.-M.; Hwang, Y.-O.; Ham, H.-J.; Kim, S.-U.; Lee, Y.-K.; Kim, M.-S.; Park, G.-Y.; Kim, K.-S.; et al. Antimicrobial resistance and resistance genes in Escherichia coli strains isolated from commercial fish and seafood. Int. J. Food Microbiol. 2012, 152, 14–18. [Google Scholar] [CrossRef]
- Lupo, A.; Coyne, S.; Berendonk, T.U. Origin and evolution of antibiotic resistance: The common mechanisms of emergence and spread in water bodies. Front. Microbiol. 2012, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, H.; Zhao, H. Prevalence of antibiotic resistance genes in wastewater collected from ornamental fish market in northern China. Environ. Pollut. 2021, 271, 116316. [Google Scholar] [CrossRef]
- Verner-Jeffreys, D.W.; Welch, T.J.; Schwarz, T.; Pond, M.J.; Woodward, M.J.; Haig, S.J.; Rimmer, G.S.E.; Roberts, E.; Morrison, V.; Baker-Austin, C. High prevalence of multidrug-tolerant bacteria and associated antimicrobial resistance genes isolated from ornamental fish and their carriage water. PLoS ONE 2009, 4, e8388. [Google Scholar] [CrossRef]
- Hossain, S.; De Silva, B.C.J.; Wimalasena, S.H.M.P.; Pathirana, H.N.K.S.; Dahanayake, P.S.; Heo, G.-J. Distribution of Antimicrobial Resistance Genes and Class 1 Integron Gene Cassette Arrays in Motile Aeromonas spp. Isolated from Goldfish (Carassius auratus). Microb. Drug Resist. 2018, 24, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- De Silva, L.A.D.S.; Wickramanayake, M.V.K.S.; Heo, G.J. Virulence and antimicrobial resistance potential of Aeromonas spp. associated with shellfish. Lett. Appl. Microbiol. 2021, 73, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Wickramanayake, M.V.K.S.; Dahanayake, P.S.; Hossain, S.; Heo, G.J. Antimicrobial resistance of pathogenic Aeromonas spp. isolated from marketed Pacific abalone (Haliotis discus hannai) in Korea. J. Appl. Microbiol. 2020, 128, 606–617. [Google Scholar] [CrossRef]
- Dobiasova, H.; Kutilova, I.; Piackova, V.; Vesely, T.; Cizek, A.; Dolejska, M. Ornamental fish as a source of plasmid-mediated quinolone resistance genes and antibiotic resistance plasmids. Vet. Microbiol. 2014, 171, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Sicuro, B.; Pastorino, P.; Barbero, R.; Barisone, S.; Dellerba, D.; Menconi, V.; Righetti, M.; De Vita, V.; Prearo, M. Prevalence and antibiotic sensitivity of bacteria isolated from imported ornamental fish in Italy: A translocation of resistant strains? Prev. Vet. Med. 2020, 175, 104880. [Google Scholar] [CrossRef] [PubMed]
- Levings, R.S.; Lightfoot, D.; Hall, R.M.; Djordjevic, S.P. Aquariums as reservoirs for multidrug-resistant Salmonella Paratyphi B. Emerg. Infect. Dis. 2006, 12, 507–510. [Google Scholar] [CrossRef]
- World Health Organization. Critically Important Antimicrobials for Human Medicine; World Health Organization: Geneva, Switzerland, 2018.
- González-Candelas, F.; Comas, I.; Martínez, J.L.; Galán, J.C.; Baquero, F. The Evolution of Antibiotic Resistance; Elsevier: Amsterdam, The Netherlands, 2017; pp. 257–284. [Google Scholar]
- Lowry, T.; Smith, A.S. Aquatic zoonoses associated with food, bait, ornamental, and tropical fish. J. Am. Vet. Med. Assos. 2007, 231, 876–880. [Google Scholar] [CrossRef]
- Roberts, H.E.; Palmeiro, B.; Scott, W.E. Bacterial and Parasitic Diseases of Pet Fish. Vet. Clin. N. Am. Exot. Anim. Pract. 2009, 12, 609–638. [Google Scholar] [CrossRef]
- Sigma-Aldrich. GSP Agar. Available online: https://www.sigmaaldrich.com/HK/en/product/sial/50875?gclid=Cj0KCQjwnP-ZBhDiARIsAH3FSRcOqH28PThGc0zQIca2E7wosTqJ3EDHwv8IbntmvIrGcm-sTeV_7CEaApyJEALw_wcB&gclsrc=aw.ds (accessed on 7 October 2022).
- Chen, K.; Zhou, J.L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China. Chemosphere 2014, 95, 604–612. [Google Scholar] [CrossRef]
- CLSI. VET04-A2: Methods for Broth Dilution Susceptibility Testing of Bacteria Isolated From Aquatic Animals; CLSI: Wayne, PA, USA, 2014. [Google Scholar]
- CLSI. M45: Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria; CLSI: Wayne, PA, USA, 2016. [Google Scholar]
- CLSI. VET03/VET04-S2: Performance Standards for Antimicrobial Susceptibility Testing of Bacteria Isolated From Aquatic Animals; Second Informational Supplement; VET03/VET04-S2; CLSI: Wayne, PA, USA, 2014. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for Broth Dilution Susceptibility Testing of Bacteria Isolated From Aquatic Animals; Approved Guideline—Second Edition; CLSI: Wayne, PA, USA, 2014. [Google Scholar]
- CLSI. M100: Performance Standards for Antimicrobial Susceptibility Testing; CLSI: Wayne, PA, USA, 2020. [Google Scholar]
- Baron, S.; Granier, S.A.; Larvor, E.; Jouy, E.; Cineux, M.; Wilhelm, A.; Gassilloud, B.; Bouquin, S.L.; Kempf, I.; Chauvin, C. Aeromonas diversity and antimicrobial susceptibility in freshwater-An attempt to set generic epidemiological cut-off values. Front. Microbiol. 2017, 8, 503. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, J.; Wu, Z.; Zhang, Q.; Wang, S.; Hao, J.; Ouyang, L.; Li, A. Establishment of Epidemiological Resistance Cut-Off Values of Aquatic Aeromonas to Eight Antimicrobial Agents. Microorganisms 2022, 10, 776. [Google Scholar] [CrossRef] [PubMed]
- Cizek, A.; Dolejska, M.; Sochorova, R.; Strachotova, K.; Piackova, V.; Vesely, T. Antimicrobial resistance and its genetic determinants in aeromonads isolated in ornamental (koi) carp (Cyprinus carpio koi) and common carp (Cyprinus carpio). Vet. Microbiol. 2010, 142, 435–439. [Google Scholar] [CrossRef] [PubMed]
- The Government of the Hong Kong Special Administrative Region. Harmful Substances in Food Regulations (Cap. 132 Sub. Leg. AF); The Government of the Hong Kong Special Administrative Region: Hong Kong, China, 2012.
- Gao, P.; Mao, D.; Luo, Y.; Wang, L.; Xu, B.; Xu, L. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Res. 2012, 46, 2355–2364. [Google Scholar] [CrossRef]
- Hossain, S.; Dahanayake, P.S.; De Silva, B.C.J.; Wickramanayake, M.V.K.S.; Wimalasena, S.H.M.P.; Heo, G.J. Multidrug resistant Aeromonas spp. isolated from zebrafish (Danio rerio): Antibiogram, antimicrobial resistance genes and class 1 integron gene cassettes. Lett. Appl. Microbiol. 2019, 68, 370–377. [Google Scholar] [CrossRef]
- Hossain, S.; De Silva, B.C.J.; Dahanayake, P.S.; De Zoysa, M.; Heo, G.-J. Phylogenetic characteristics, virulence properties and antibiogram profile of motile Aeromonas spp. isolated from ornamental guppy (Poecilia reticulata). Arch. Microbiol. 2020, 202, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.; Hill, R.; Bermudez, L.E.; Miller-Morgan, T. Imported ornamental fish are colonized with antibiotic-resistant bacteria. J. Fish Dis. 2013, 36, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Preena, P.G.; Arathi, D.; Raj, N.S.; Arun Kumar, T.V.; Arun Raja, S.; Reshma, R.N.; Raja Swaminathan, T. Diversity of antimicrobial-resistant pathogens from a freshwater ornamental fish farm. Lett. Appl. Microbiol. 2020, 71, 108–116. [Google Scholar] [CrossRef]
- Roberts-Thomson, A.; Barnes, A.; Fielder, D.S.; Lester, R.J.G.; Adlard, R.D. Aerosol dispersal of the fish pathogen, Amyloodinium ocellatum. Aquaculture 2006, 257, 118–123. [Google Scholar] [CrossRef]
- Wooster, G.A.; Bowser, P.R. The Aerobiological Pathway of a Fish Pathogen: Survival and Dissemination of Aeromonas salmonicida in Aerosols and its Implications in Fish Health Management. J. World Aquac. Soc. 1996, 27, 7–14. [Google Scholar] [CrossRef]
- Gołaś, I.; Szmyt, M.; Glińska-Lewczuk, K. Water as a Source of Indoor Air Contamination with Potentially Pathogenic Aeromonas hydrophila in Aquaculture. Int. J. Environ. Res. Public Health 2022, 19, 2379. [Google Scholar] [CrossRef]
Carriage Water Samples | Concentration (µg L−1) of Antibiotic | |||||
---|---|---|---|---|---|---|
Tetracyclines | Fluoroquinolones | |||||
DC | OTC | TC | EFX | OA | ||
S1 | Aug | 0.0834 ± 0.0153 | 0.999 ± 0.262 | 0.0743 ± 0.00153 | 0.247 ± 0.0306 | 0.0443 ± 0.000351 |
Sep | 0.0165 ± 0.00153 | 11.6 ± 1.73 | 0.0676 ± 0.00839 | 0.0883 ± 0.0121 | N.D. | |
S2 | Aug | 0.0836 ± 0.00231 | 4.82 ± 1.86 | 0.0805 ± 0.00379 | 0.0572 ± 0.00551 | 0.440 ± 0.000208 |
Sep | 0.0346 ± 0.00643 | 1.64 ± 1.04 | 0.0476 ± 0.0110 | 0.00107 ± 0.00134 | N.D. | |
S3 | Aug | 0.0808 ± 0.00116 | 0.102 ± 0.00577 | 0.0670 ± 0.00173 | 0.0122 ± 0.00115 | 0.0514 ± 0.000361 |
Sep | 0.0182 ± 0.00153 | 8.42 ± 2.11 | 0.0754 ± 0.0187 | 0.0221 ± 0.00173 | N.D. | |
S4 | Aug | 0.0320 ± 0.00770 | 0.649 ± 0.161 | 0.0630 ± 0.0330 | 0.0212 ± 0.00954 | 0.0182 ± 0.000557 |
Sep | 0.0215 ± 0.00730 | 1.29 ± 0.466 | 0.0350 ± 0.00954 | 0.0247 ± 0.0101 | N.D. | |
S5 | Aug | 0.0155 ± 0.000577 | 29.0 ± 9.10 | 0.244 ± 0.0844 | 0.0184 ± 0.000153 | N.D. |
Sep | 0.0674 ± 0.0104 | 1.28 ± 0.790 | 0.0619 ± 0.0267 | 0.00524 ± 0.00127 | N.D. |
Antibiotics | N (%) | MIC Range (mg L−1) | MIC Breakpoint (mg L−1) | Sampled Shops | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | ||||||||||
N | Mean of MIC (mg L−1) | N | Mean of MIC (mg L−1) | N | Mean of MIC (mg L−1) | N | Mean of MIC (mg L−1) | N | Mean of MIC (mg L−1) | |||||
DC | Aug | 22 (55) | ≤8–≥128 | 8 | 1 | 64 | 4 | 196 | 4 | 132 | 2 | 8 | 3 | 37 |
Sep | 2 | 48 | 2 | 256 | 1 | 16 | 3 | 8 | 0 | 0 | ||||
OTC | Aug | 37 (94.9) | 32–≥256 | 64 | 4 | 336 | 4 | 512 | 3 | 512 | 2 | 96 | 4 | 96 |
Sep | 4 | 352 | 4 | 384 | 4 | 144 | 4 | 256 | 4 | 208 | ||||
TC | Aug | 38 (97.4) | 16–≥256 | 16 | 4 | 280 | 4 | 512 | 3 | 256 | 3 | 59 | 4 | 32 |
Sep | 4 | 80 | 4 | 280 | 4 | 56 | 4 | 80 | 4 | 152 | ||||
EFX | Aug | 28 (70) | ≤0.5–32 | 0.5 | 4 | 13 | 4 | 11 | 3 | 6 | 1 | 8 | 3 | 3 |
Sep | 2 | 4 | 3 | 4 | 4 | 6 | 4 | 8 | 0 | 0 | ||||
OA | Aug | 38 (95) | ≤0.5–≥32 | 0.5 | 4 | 52 | 4 | 36 | 4 | 33 | 3 | 22 | 3 | 35 |
Sep | 4 | 33 | 4 | 21 | 4 | 32 | 4 | 56 | 4 | 3 |
Antibiotics | N | MIC Range (mg L−1) | Sampled Shops | |||||
---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | ||||
Mean of MIC (mg L−1) | ||||||||
DC | Aug | 40 | ≤8–≥128 | 40 | 74 | 4 | 64 | 28 |
Sep | 137 | 22 | 5 | 10 | 14 | |||
OTC | Aug | 40 | 64–≥256 | 512 | 448 | 176 | 512 | 512 |
Sep | 400 | 352 | 512 | 512 | 448 | |||
TC | Aug | 40 | 32–≥256 | 256 | 224 | 88 | 384 | 512 |
Sep | 324 | 160 | 128 | 352 | 120 | |||
EFX | Aug | 40 | ≤0.5–≥64 | 1 | 5 | 49 | 8 | 20 |
Sep | 72 | 12 | 0.25 | 0.25 | 4 | |||
OA | Aug | 40 | ≤0.5–≥32 | 4 | 19 | 26 | 34 | 64 |
Sep | 64 | 48 | 1 | 2 | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Au-Yeung, C.; Lam, K.-L.; Chan, K.-W.; Mo, W.-Y. Uses of Antibiotics in Ornamental Fish in Hong Kong and the Antibiotic Resistance in the Associated Zoonotic Pathogens. J. Xenobiot. 2022, 12, 365-377. https://doi.org/10.3390/jox12040026
Au-Yeung C, Lam K-L, Chan K-W, Mo W-Y. Uses of Antibiotics in Ornamental Fish in Hong Kong and the Antibiotic Resistance in the Associated Zoonotic Pathogens. Journal of Xenobiotics. 2022; 12(4):365-377. https://doi.org/10.3390/jox12040026
Chicago/Turabian StyleAu-Yeung, Chun, Kit-Ling Lam, Ka-Wai Chan, and Wing-Yin Mo. 2022. "Uses of Antibiotics in Ornamental Fish in Hong Kong and the Antibiotic Resistance in the Associated Zoonotic Pathogens" Journal of Xenobiotics 12, no. 4: 365-377. https://doi.org/10.3390/jox12040026
APA StyleAu-Yeung, C., Lam, K. -L., Chan, K. -W., & Mo, W. -Y. (2022). Uses of Antibiotics in Ornamental Fish in Hong Kong and the Antibiotic Resistance in the Associated Zoonotic Pathogens. Journal of Xenobiotics, 12(4), 365-377. https://doi.org/10.3390/jox12040026