Pharmaceutical Pollution and Disposal of Expired, Unused, and Unwanted Medicines in the Brazilian Context
Abstract
:1. The Pharmaceutical and Healthcare Market and Industry in Brazil
2. Pharmaceutical (Drug) Pollution
2.1. Contamination of Soil and Water by Pharmaceuticals
2.2. Harmful Effects of Pharmaceutical Pollutants in Water Bodies
3. Disposal of Expired, Unused, or Unwanted Medicines
3.1. Collecting Schemes and Regulation on Drug Disposal Around the World
3.2. The Governmental Regulation about the Disposal of Drugs in Brazil
4. Conclusions
5. Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- SINDUSFARMA. Profile of the Pharmaceutical Industry and Relevant Sector Aspects. 2020. Available online: https://sindusfarma.org.br/uploads/Publicacoes/Perfil_IF2020_ING.pdf (accessed on 17 May 2020).
- INTERFARMA The Association of the Pharmaceutical Research Industry. Guide 2019 (Guia INTERFARMA 2019); Interfarma: Miami, FL, USA, 2019; p. 38. [Google Scholar]
- De Andrade Aragão, R.B.; Semensatto, D.; Calixto, L.A.; Labuto, G. Pharmaceutical market, environmental public policies and water quality: The case of the São Paulo Metropolitan Region, Brazil. Cad. Saúde Pública 2020, 36, e00192319. [Google Scholar] [CrossRef]
- Owens, B. Pharmaceuticals in the environment: A growing problem. Pharm. J. 2015, 294, 7850. [Google Scholar]
- Changing Markets Foundation. Hyderabad’s Pharmaceutical Pollution Crisis: Heavy Metal and Solvent Contamination at Factories in a Major Indian Drug Manufufacturing Hub; Nordea: Helsinki, Finland, 2018. [Google Scholar]
- Fatta-Kassinos, D.; Meric, S.; Nikolaou, A. Pharmaceutical residues in environmental waters and wastewater: Current state of knowledge and future research. Anal. Bioanal. Chem. 2011, 399, 251–275. [Google Scholar] [CrossRef]
- Deng, Y.; Guo, C.; Zhang, H.; Yin, X.; Chen, L.; Wu, D.; Xu, J. Occurrence and removal of illicit drugs in different wastewater treatment plants with different treatment techniques. Environ. Sci. Eur. 2020, 32, 28. [Google Scholar] [CrossRef]
- Zuccato, E.; Castiglioni, S. Illicit drugs in the environment. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 2009, 367, 3965–3978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khetan, S.K.; Collins, T.J. Human pharmaceuticals in the aquatic environment: A challenge to Green Chemistry. Chem. Rev. 2007, 107, 2319–2364. [Google Scholar] [CrossRef]
- Kümmerer, K. Pharmaceuticals in the Environment. Annu. Rev. Environ. Resour. 2010, 35, 57–75. [Google Scholar] [CrossRef] [Green Version]
- Alnahas, F.; Yeboah, P.; Fliedel, L.; Abdin, A.Y.; Alhareth, K. Expired Medication: Societal, Regulatory and Ethical Aspects of a Wasted Opportunity. Int. J. Environ. Res. Public Health 2020, 17, 787. [Google Scholar] [CrossRef] [Green Version]
- Montes-Grajales, D.; Fennix-Agudelo, M.; Miranda, W. Occurrence of personal care products as emerging chemicals of concern in water resources: A review. Sci. Total Environ. 2017, 595, 601–614. [Google Scholar] [CrossRef]
- Loper, C.A.; Crawford, J.K.; Otto, K.L.; Manning, R.L.; Meyer, M.T.; Furlong, E.T. Concentrations of Selected Pharmaceuticals and Antibiotics in South-Central Pennsylvania Waters, March through September 2006; Data Series 300U; U.S. Geological Survey: Reston, VA, USA, 2007. [Google Scholar]
- Phillips, P.J.; Smith, S.G.; Kolpin, D.W.; Zaugg, S.D.; Buxton, H.T.; Furlong, E.T.; Esposito, K.; Stinson, B. Pharmaceutical Formulation Facilities as Sources of Opioids and Other Pharmaceuticals to Wastewater Treatment Plant Effluents. Environ. Sci. Technol. 2010, 44, 4910–4916. [Google Scholar] [CrossRef]
- Ankley, G.T.; Erickson, R.J.; Hoff, D.J.; Mount, D.R.; Lazorchak, J.; Beaman, J.; Linton, T.K. Aquatic Life Criteria for Contaminants of Emerging Concern (Part I). General Challenges and Recommendations. 2008. Available online: https://www.epa.gov/wqc/contaminants-emerging-concern-including-pharmaceuticals-and-personal-care-products (accessed on 12 October 2020).
- Mudgal, S.; De Toni, A.; Lockwood, S.; Salès, K.; Backhaus, T.; Sorensen, B.H. Study on the Environmental Risks of Medicinal Products; BIO Intelegence Service: Neuilly Sur Seine, France, 2011. [Google Scholar]
- Cranz, H.; Bergström, R.; van den Hoven, A. Drug pollution: Europe responds. Nature 2015, 527, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Comission. Pharmaceuticals and the Environment; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Chander, V.; Sharma, B.; Negi, V.; Aswal, R.S.; Singh, P.; Singh, R.; Dobhal, R. Pharmaceutical Compounds in Drinking Water. J. Xenobiot. 2016, 6, 5774. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Malchi, T.; Carter, L.J.; Li, H.; Gan, J.; Chefetz, B. Pharmaceutical and Personal Care Products: From Wastewater Treatment into Agro-Food Systems. Environ. Sci. Technol. 2019, 53, 14083–14090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emnet, P.; Gaw, S.; Northcott, G.; Storey, B.; Graham, L. Personal care products and steroid hormones in the Antarctic coastal environment associated with two Antarctic research stations, McMurdo Station and Scott Base. Environ. Res. 2015, 136, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Zuccato, E.; Castiglioni, S.; Fanelli, R.; Reitano, G.; Bagnati, R.; Chiabrando, C.; Pomati, F.; Rossetti, C.; Calamari, D. Pharmaceuticals in the environment in Italy: Causes, occurrence, effects and control. Environ. Sci. Pollut. Res. Int. 2006, 13, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Desbiolles, F.; Malleret, L.; Tiliacos, C.; Wong-Wah-Chung, P.; Laffont-Schwob, I. Occurrence and ecotoxicological assessment of pharmaceuticals: Is there a risk for the Mediterranean aquatic environment? Sci. Total Environ. 2018, 639, 1334–1348. [Google Scholar] [CrossRef] [PubMed]
- Li, W.C. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ. Pollut. 2014, 187, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zhou, Y.; Lu, G.; Hu, K.; Yao, J.; Shen, X.; Wei, L. The Occurrence and Risks of Selected Emerging Pollutants in Drinking Water Source Areas in Henan, China. Int. J. Environ. Res. Public Health 2019, 16, 4109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balakrishna, K.; Rath, A.; Praveenkumarreddy, Y.; Guruge, K.S.; Subedi, B. A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol. Environ. Saf. 2017, 137, 113–120. [Google Scholar] [CrossRef] [Green Version]
- McEneff, G.; Schmidt, W.; Quinn, B. Pharmaceuticals in the Aquatic Environment: A Short Summary of Current Knowledge and the Potential Impacts on Aquatic Biota and Humans. EPA Res. Rep. 2015, 142, 52. [Google Scholar]
- Kallenborn, R.; Brorström-Lundén, E.; Reiersen, L.O.; Wilson, S. Pharmaceuticals and personal care products (PPCPs) in Arctic environments: Indicator contaminants for assessing local and remote anthropogenic sources in a pristine ecosystem in change. Environ. Sci. Pollut. Res. Int. 2018, 25, 33001–33013. [Google Scholar] [CrossRef]
- Stumpf, M.; Ternes, T.A.; Wilken, R.D.; Rodrigues, S.V.; Baumann, W. Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Sci. Total Environ. 1999, 225, 135–141. [Google Scholar] [CrossRef]
- Do Nascimento, M.T.L.; Santos, A.D.O.; Felix, L.C.; Gomes, G.; de Oliveira, E.S.M.; da Cunha, D.L.; Vieira, N.; Hauser-Davis, R.A.; Baptista Neto, J.A.; Bila, D.M. Determination of water quality, toxicity and estrogenic activity in a nearshore marine environment in Rio de Janeiro, Southeastern Brazil. Ecotoxicol. Env. Saf. 2018, 149, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Sabino, J.A.; de Sá Salomão, A.L.; de Oliveira Muniz Cunha, P.M.; Coutinho, R.; Marques, M. Occurrence of organic micropollutants in an urbanized sub-basin and ecological risk assessment. Ecotoxicology 2021, 30, 130–141. [Google Scholar] [CrossRef]
- Torres, N.H.; Aguiar, M.M.; Ferreira, L.F.; Américo, J.H.; Machado, Â.M.; Cavalcanti, E.B.; Tornisielo, V.L. Detection of hormones in surface and drinking water in Brazil by LC-ESI-MS/MS and ecotoxicological assessment with Daphnia magna. Environ. Monit. Assess. 2015, 187, 379. [Google Scholar] [CrossRef] [PubMed]
- Quadra, G.R.; Oliveira de Souza, H.; Costa, R.D.; Fernandez, M.A. Do pharmaceuticals reach and affect the aquatic ecosystems in Brazil? A critical review of current studies in a developing country. Environ. Sci. Pollut. Res. Int. 2017, 24, 1200–1218. [Google Scholar] [CrossRef]
- Pacheco Ferreira, A. Environmental Investigation of Psychiatric Pharmaceuticals: Guandu River, Rio De Janeiro State, Southeast Brazil. J. Chem. Health Risks 2018, 4. [Google Scholar] [CrossRef]
- De Almeida, C.A.A.; Brenner, C.G.B.; Minetto, L.; Mallmann, C.A.; Martins, A.F. Determination of anti-anxiety and anti-epileptic drugs in hospital effluent and a preliminary risk assessment. Chemosphere 2013, 93, 2349–2355. [Google Scholar] [CrossRef]
- Roveri, V.; Guimarães, L.L.; Toma, W.; Correia, A.T. Occurrence and risk assessment of pharmaceuticals and cocaine around the coastal submarine sewage outfall in Guarujá, São Paulo State, Brazil. Environ. Sci. Pollut. Res. Int. 2021, 28, 11384–11400. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.V.; Couto, C.F.; Lebron, Y.A.R.; Moreira, V.R.; Foureaux, A.F.S.; Reis, E.O.; Santos, L.V.S.; de Andrade, L.H.; Amaral, M.C.S.; Lange, L.C. Occurrence and risk assessment of pharmaceutically active compounds in water supply systems in Brazil. Sci. Total Environ. 2020, 746, 141011. [Google Scholar] [CrossRef] [PubMed]
- Cortez, F.S.; da Silva Souza, L.; Guimarães, L.L.; Almeida, J.E.; Pusceddu, F.H.; Maranho, L.A.; Mota, L.G.; Nobre, C.R.; Moreno, B.B.; de Souza Abessa, D.M.; et al. Ecotoxicological effects of losartan on the brown mussel Perna perna and its occurrence in seawater from Santos Bay (Brazil). Sci. Total Environ. 2018, 637–638, 1363–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sposito, J.C.V.; Montagner, C.C.; Casado, M.; Navarro-Martín, L.; Jut Solórzano, J.C.; Piña, B.; Grisolia, A.B. Emerging contaminants in Brazilian rivers: Occurrence and effects on gene expression in zebrafish (Danio rerio) embryos. Chemosphere 2018, 209, 696–704. [Google Scholar] [CrossRef]
- Fontes, M.K.; de Campos, B.G.; Cortez, F.S.; Pusceddu, F.H.; Nobre, C.R.; Moreno, B.B.; Lebre, D.T.; Maranho, L.A.; Pereira, C.D.S. Mussels get higher: A study on the occurrence of cocaine and benzoylecgonine in seawater, sediment and mussels from a subtropical ecosystem (Santos Bay, Brazil). Sci. Total Environ. 2021, 757, 143808. [Google Scholar] [CrossRef]
- Bisognin, R.P.; Wolff, D.B.; Carissimi, E.; Prestes, O.D.; Zanella, R.; Storck, T.R.; Clasen, B. Potential environmental toxicity of sewage effluent with pharmaceuticals. Ecotoxicology 2020, 29, 1315–1326. [Google Scholar] [CrossRef]
- Pompei, C.M.E.; Campos, L.C.; da Silva, B.F.; Fogo, J.C.; Vieira, E.M. Occurrence of PPCPs in a Brazilian water reservoir and their removal efficiency by ecological filtration. Chemosphere 2019, 226, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Torres, N.H.; de Salles Pupo, M.M.; Ferreira, L.F.R.; Maranho, L.A.; Américo-Pinheiro, J.H.P.; Vilca, F.Z.; de Hollanda, L.M.; Tornisielo, V.L. Spatial and seasonal analysis of antimicrobials and toxicity tests with Daphnia magna, on the sub-basin of Piracicaba river, SP, Brazil. J. Environ. Chem. Eng. 2017, 5, 6070–6076. [Google Scholar] [CrossRef] [Green Version]
- Lopes, V.S.A.; Riente, R.R.; da Silva, A.A.; Torquilho, D.F.; da Silva Carreira, R.; da Costa Marques, M.R. Development of a solid-phase extraction system modified for preconcentration of emerging contaminants in large sample volumes from rivers of the lagoon system in the city of Rio de Janeiro, Brazil. Mar. Pollut. Bull. 2016, 110, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Campanha, M.B.; Awan, A.T.; de Sousa, D.N.; Grosseli, G.M.; Mozeto, A.A.; Fadini, P.S. A 3-year study on occurrence of emerging contaminants in an urban stream of São Paulo State of Southeast Brazil. Environ. Sci. Pollut. Res. Int. 2015, 22, 7936–7947. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.; Aquino, S.; Coutrim, M.; Silva, J.; Afonso, R. Determination of endocrine-disrupting compounds in waters from Rio das Velhas, Brazil, by liquid chromatography/high resolution mass spectrometry (ESI-LC-IT-TOF/MS). Environ. Technol. 2011, 32, 1409–1417. [Google Scholar] [CrossRef]
- Campestrini, I.; Jardim, W.F. occurrence of cocaine and benzoylecgonine in drinking and source water in the São Paulo State region, Brazil. Sci. Total Environ. 2017, 576, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Roveri, V.; Guimarães, L.L.; Toma, W.; Correia, A.T. Occurrence and ecological risk assessment of pharmaceuticals and cocaine in a beach area of Guarujá, São Paulo State, Brazil, under the influence of urban surface runoff. Environ. Sci. Pollut. Res. Int. 2020, 27, 45063–45075. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.J.S.; Barbosa, S.C.; Malinowski, M.M.; Volpato, D.; Castro, Í.B.; Franco, T.; Primel, E.G. Pharmaceuticals and personal care products in a Brazilian wetland of international importance: Occurrence and environmental risk assessment. Sci. Total Environ. 2020, 734, 139374. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, D.M.; Buruaem, L.; Gonçalves, R.M.; Williams, M.; Abessa, D.M.S.; Kookana, R.; de Marchi, M.R.R. Multiresidue determination and predicted risk assessment of contaminants of emerging concern in marine sediments from the vicinities of submarine sewage outfalls. Mar. Pollut. Bull. 2018, 129, 299–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beretta, M.; Britto, V.; Tavares, T.M.; da Silva, S.M.T.; Pletsch, A.L. Occurrence of pharmaceutical and personal care products (PPCPs) in marine sediments in the Todos os Santos Bay and the north coast of Salvador, Bahia, Brazil. J. Soils Sediments 2014, 14, 1278–1286. [Google Scholar] [CrossRef]
- Ghesti Pivetta, G.; do Carmo Cauduro Gastaldini, M. Presence of emerging contaminants in urban water bodies in southern Brazil. J. Water Health 2019, 17, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Komolafe, O.; Mrozik, W.; Dolfing, J.; Acharya, K.; Vassalle, L.; Mota, C.R.; Davenport, R. Occurrence and removal of micropollutants in full-scale aerobic, anaerobic and facultative wastewater treatment plants in Brazil. J. Environ. Manag. 2021, 287, 112286. [Google Scholar] [CrossRef]
- Queiroz, F.B.; Brandt, E.M.; Aquino, S.F.; Chernicharo, C.A.; Afonso, R.J. Occurrence of pharmaceuticals and endocrine disruptors in raw sewage and their behavior in UASB reactors operated at different hydraulic retention times. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2012, 66, 2562–2569. [Google Scholar] [CrossRef]
- Van Sperling, M. Urban Wastewater Treatment in Brazil; Technical Note IDB-TN-970; Inter-American Development Bank: New York, NY, USA, 2016. [Google Scholar]
- Stepping, K. Urban Sewage in Brazil: Drivers of and Obstacles to Wastewater Treatment and Reuse; Deutsches Institut für Entwicklungspolitik: Bonn, Germany, 2016. [Google Scholar]
- Yang, O.; Kim, H.L.; Weon, J.-I.; Seo, Y.R. Endocrine-disrupting Chemicals: Review of Toxicological Mechanisms Using Molecular Pathway Analysis. J Cancer Prev. 2015, 20, 12–24. [Google Scholar] [CrossRef]
- Matthiessen, P.; Wheeler, J.R.; Weltje, L. A review of the evidence for endocrine disrupting effects of current-use chemicals on wildlife populations. Crit. Rev. Toxicol. 2018, 48, 195–216. [Google Scholar] [CrossRef] [Green Version]
- Adeel, M.; Song, X.; Wang, Y.; Francis, D.; Yang, Y. Environmental impact of estrogens on human, animal and plant life: A critical review. Environ. Int. 2017, 99, 107–119. [Google Scholar] [CrossRef]
- Center of Disease Control. Antibiotic Resistance Threats in the United States, 2019; CDC: Washington, DC, USA, 2019. [Google Scholar] [CrossRef] [Green Version]
- Singer, A.C.; Shaw, H.; Rhodes, V.; Hart, A. Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef] [Green Version]
- Felis, E.; Kalka, J.; Sochacki, A.; Kowalska, K.; Bajkacz, S.; Harnisz, M.; Korzeniewska, E. Antimicrobial pharmaceuticals in the aquatic environment—Occurrence and environmental implications. Eur. J. Pharmacol. 2020, 866, 172813. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, K.; McLellan, I.; Peshkur, T.; Williams, R.; Tonner, R.; Hursthouse, A.S.; Knapp, C.W.; Henriquez, F.L. Can the legacy of industrial pollution influence antimicrobial resistance in estuarine sediments? Environ. Chem. Lett. 2019, 17, 595–607. [Google Scholar] [CrossRef] [Green Version]
- Del Fiol, F.S.; Balcão, V.M.; Barberato-Fillho, S.; Lopes, L.C.; Bergamaschi, C.C. Obesity: A New Adverse Effect of Antibiotics? Front Pharm. 2018, 9, 1408. [Google Scholar] [CrossRef] [PubMed]
- Swan, G.; Naidoo, V.; Cuthbert, R.; Green, R.E.; Pain, D.J.; Swarup, D.; Prakash, V.; Taggart, M.; Bekker, L.; Das, D.; et al. Removing the Threat of Diclofenac to Critically Endangered Asian Vultures. PLoS Biol. 2006, 4, e66. [Google Scholar] [CrossRef] [Green Version]
- Cuthbert, R.J.; Taggart, M.A.; Prakash, V.; Chakraborty, S.S.; Deori, P.; Galligan, T.; Kulkarni, M.; Ranade, S.; Saini, M.; Sharma, A.K.; et al. Avian scavengers and the threat from veterinary pharmaceuticals. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodin, T.; Piovano, S.; Fick, J.; Klaminder, J.; Heynen, M.; Jonsson, M. Ecological effects of pharmaceuticals in aquatic systems--impacts through behavioural alterations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130580. [Google Scholar] [CrossRef] [Green Version]
- Kümmerer, K. Pharmaceuticals in the Environment. Sources, Fate, Effects and Risks; Springer: Berlin/Heidelberg, Germany, 2008; p. 521. [Google Scholar] [CrossRef] [Green Version]
- Constantino, V.M.; Fregonesi, B.M.; de Abreu Tonani, K.A.; Zagui, G.S.; Toninato, A.P.C.; dos Santos Nonose, E.R.; Fabriz, L.A.; Segura-Muñoz, S.I. Estoque e descarte de medicamentos no domicílio: Uma revisão sistemática. Ciência Saúde Coletiva 2020, 25, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.L.; de Vasconcelos Barros, R.T.; Pereira, S.R. Pharmacopollution and Household Waste Medicine (HWM): How reverse logistics is environmentally important to Brazil. Environ. Sci. Pollut. Res. 2017, 24, 24061–24075. [Google Scholar] [CrossRef] [PubMed]
- Küster, A.; Adler, N. Pharmaceuticals in the environment: Scientific evidence of risks and its regulation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deputies, H. Projetos de Lei e Outras Proposições/Law Projects and other Dispositions. 2011. Available online: https://www.camara.leg.br/proposicoesWeb/fichadetramitacao?idProposicao=517210 (accessed on 13 March 2020).
- U.S. FDA. Drug Disposal: Drug Take Back Locations; FDA: Silver Spring, MD, USA, 2018. [Google Scholar]
- Amaral, M.J.; Fop, L. Unused Pharmaceuticals Where Do They End Up? A Snapshot of European Collection Schemes. 2013. Available online: https://noharm-europe.org/sites/default/files/documents-files/2616/Pharm%20report_Web.Pdf (accessed on 13 March 2020).
- Cook, S.M.; VanDuinen, B.J.; Love, N.G.; Skerlos, S.J. Life cycle comparison of environmental emissions from three disposal options for unused pharmaceuticals. Environ. Sci. Technol. 2012, 46, 5535–5541. [Google Scholar] [CrossRef] [PubMed]
- Khan, U.; Bloom, R.A.; Nicell, J.A.; Laurenson, J.P. Risks associated with the environmental release of pharmaceuticals on the U.S. Food and Drug Administration “flush list”. Sci. Total Environ. 2017, 609, 1023–1040. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, N.R.; de Lacerda, P.S.B.; Kligerman, D.C.; da Mota Oliveira, J.L. Review of national and international legal and regulatory mechanisms on the management of drugs and the residues thereof. Ciência Saúde Coletiva 2019, 24, 2939–2950. [Google Scholar]
Ranking | Pharmaceuticals Products | Therapeutic Indication |
---|---|---|
1 | Dorflex® (dipyrone monohydrate, orphenadrine citrate, and caffeine) | To relieve pain associated with muscle contractures, including tension headache |
2 | Xarelto® (rivaroxaban) | To prevent venous thromboembolism in adult patients undergoing elective knee or hip arthroplasty surgery |
3 | Saxenda® (liraglutide) | Chronic weight control in adults with a Body Mass Index of 27 kg/m2 or more |
4 | Neosaldina® (dipyrone, isometheptene mucate, and anhydrous caffeine) | To treat various types of headache, including migraines, or for the treatment of colic |
5 | Addera D3® (cholecalciferol) | Auxiliary treatment of bone demineralization (removal of minerals) before and after menopause, rickets, osteomalacia, osteoporosis and in the prevention of falls and fractures in older adults with vitamin D deficiency |
6 | Glifage XR® (metformin hydrochloride) | To treat type 2 diabetes in adults, alone or in combination with other oral anti-diabetics. Also used to treat type 1 diabetes in addition to insulin therapy and indicated to treat Polycystic Ovary Syndrome |
7 | Torsilax® (caffeine, carisoprodol, diclofenac sodium and paracetamol) | To treat rheumatism in its acute and chronic inflammatory-degenerative forms: acute gout crisis, acute inflammatory, post-traumatic and post-surgical states, acute exacerbations of rheumatoid arthritis or other rheumatic arthropathies, osteoarthritis, and acute states of rheumatism in extra-articular tissues, low back pain or low back pain. Also, an adjunct to severe inflammatory processes resulting from infectious conditions |
8 | Victoza® (liraglutide) | Chronic weight control in adults with a Body Mass Index (BMI) of 27 kg m-2 or more |
9 | Anthelios® (avobenzone, homosalate, octisalate, octocrylene and oxybenzone) | Sun protection |
10 | Puran T-4® (sodium levothyroxine) | In patients with hypothyroidism of any etiology (except for transient hypothyroidism, during the recovery phase of subacute thyroiditis), a replacement therapy or hormonal supplementation. Suppression of pituitary TSH in the treatment or prevention of various euthyroid goiter types, including thyroid nodules, subacute or chronic lymphocytic thyroiditis (Hashimoto’s thyroiditis), thyroid-dependent follicular and papillary carcinomas. Upon diagnosis in suppression tests, aiding in the diagnosis of suspected mild hyperthyroidism or an autonomous thyroid gland. |
11 | Selozok® (metoprolol succinate) | Arterial hypertension: reduction in blood pressure, morbidity, and risk of mortality from the cardiovascular and coronary origin (including sudden death); Angina pectoris; Adjuvant in the therapy of symptomatic chronic heart failure, mild to severe; Changes in heart rhythm, including especially supraventricular tachycardia; Maintenance treatment after myocardial infarction; Functional cardiac changes with palpitations; Migraine prophylaxis |
12 | Aradois® (losartan potassium) | To treat hypertension and the treatment of heart failure when therapy with ACE inhibitors is no longer adequate. |
13 | Sal de Eno® (sodium bicarbonate, sodium carbonate and citric acid) | Relief from heartburn, poor digestion, and other stomach disorders, such as excess stomach acid and acid indigestion |
14 | Novalgina® (dipyrone monohydrate) | Analgesic and antithermic |
15 | Jardiance® (empagliflozin) | Diabetes mellitus type 2 |
16 | Alenia® (budesonide and formoterol) | To improve and control shortness of breath in patients with bronchoconstriction or bronchospasm in patients with bronchial asthma. |
17 | Prolopa® (levodopa and benserazide) | Parkinson’s disease |
18 | Galvus Met® (vildagliptin and metformin) | Diabetes mellitus type 2 |
19 | Ninho Fases 1+® (milk infant formula) | Food supplement |
20 | Venvanse® (tablisdexanfetamine) | Attention deficit hyperactivity disorder. |
Environment Compartment | Sampling Locality (Brazilian State) | API/PCPP Pollutants (Mean or Range of Concentration) | Refs. |
---|---|---|---|
Water Reservoir | Water source (SP) | acetominophen (0.03 μg L−1), benzophenone-3 (170.87 μg L−1), diclofenac (0.02 μg L−1), ibuprofen (0.01 μg L−1), methylparaben (1.14 μg L−1), naproxen (0.01 μg L−1), | [42] |
River (Surface Water) | Urban water (SP) | norfloxacin (8–18 ng L−1) | [43] |
River (Surface Water) | Lagoon Complex (RJ) | acetaminophen (0.09–0.14 μg L−1), bisphenol a (0.22 μg L−1), diclofenac (1.37–39.86 μg L−1), salycilic acid (1.65–4.81 μg L−1) | [44] |
River (Surface water) | Urban stream (SP) | atenolol (1182 ng L−1), caffeine (14955 ng L-1), carbamazepine (71.9 ng L−1), diclofenac (92.6 ng L−1), 17-α-ethinylestradiol (<0.16 ng L−1), 17-β-estradiol (1.85 ng L−1), estrone (6.90 ng L−1), ibuprofen (185.3 ng L−1), naproxen (103.7 ng L−1), paracetamol (3702 ng L−1), propranolol (15.2 ng L−1), triclosan (35.2 ng L−1) | [45] |
River (Surface Water) | Suburban water (MG) | bisphenol A (8.6–168.3 ng L−1), diethyl phthalate (5.0–410.9 ng L−1), 17-α-ethynylestradiol (5.6–63.8 ng L−1), 17-β-estradiol (5.6–63.8 ng L−1), nonylphenol (25.9–1435.3 ng L−1) | [46] |
Tap water | Source/drinking water (SP) | Cocaine (6–62 ng L−1), benzoylecgonine (10–1019 ng L−1) | [47] |
Coastal water | Urban surface runoff (SP) | acetaminophen (18.3–391.0 ng L−1), atenolol (0.1–140.0 ng L−1), benzoylecgonine (0.9–278.0 ng L−1), carbamazepine (0.1–8.0 ng L−1), chlortalidone (0.1–0.4 ng L−1), citalopram (0.2–0.4 ng L−1), clopidogrel (0.1–0.2 ng L−1), cocaine (0.2–30.3 ng L−1), diclofenac(0.9–79.8 ng L−1), enalapril (2.2–3.8 ng L−1), losartan (3.6–548.0 ng L−1), orphenadrine (0.2–1.5 ng L−1), rosuvastatin (2.5–38.5 ng L−1), valsartan (19.8–798.0 ng L−1) | [48] |
Amazon wetland | Surface water and sediment (MA) | Surface water: acetaminophen (455–1716 ng L−1), albendazole (<4–22 ng L−1), caffeine (29–7940 ng L−1), carbamazepine (7–3 ng L−1), diclofenac (<100–463 ng L−1), ethylparaben (<52 ng L−1), furosemide (<52–112 ng L−1), ibuprofen (<100–320 ng L−1), lidocaine (<20–41 ng L−1), mebendazole (4–18 ng L−1), methylparaben (<20–660 ng L−1), sulfamethoxazole (<20–120 ng L−1)Sediment: albendazole (1–13 ng g−1), avobenzone (51 ng g−1), benzophenone-3 (<3–17 ng g−1), caffeine (6–20 ng g−1), enalapril maleate (1 ng g−1), ketoconazole (<5–277 ng g−1), mebendazole (<1–4 ng g−1), methylparaben (<5–14 ng g−1), nifedipine (75–105 ng g−1), propranolol (2–2 ng g−1), triclocarban (<1–1318 ng g−1), triclosan (50–137 ng g−1) | [49] |
Marine sediment | Submarine sewage outfalls (SP) | nonylphenol (13.3 to 72.5 ng g−1), octylphenol (49.2 ng g−1), triclosan (3.3 ng g−1) | [50] |
Marine sediment | Watershed, Bay (BA) | atenolol (0.48–9.84 ng g−1), carbamazepine (<0.10–4.81 ng g−1), diazepam (<0.10–0.71 ng g−1), diclofenac (<0.10 to 1.06 ng g−1), erythromycin (<0.10–2.29 ng g−1), ibuprofen (0.77–18.8 ng g−1), | [51] |
Wastewater Effluent | Urban catchments (RS) | ibuprofen (0.5 μg L−1–1.26 μg L−1), paracetamol (0.4 μg L−1–3.0 μg L−1) | [52] |
Hospital Effluent | University Hospital (RS) | bromazepam (137–195 ng L−1), carbamazepine (461 ng L−1–590 ng L−1), clonazepam (57 ng L−1–134 ng L−1), diazepam (571 ng L−1–641 ng L−1), lorazepam (42 ng L−1–96 ng L−1), | [35] |
WWTPs (Influent) | Metropolitan area (MG) | estriol (17.1 μg L−1–148.8 μg L−1), estrone (3.3 μg L−1–5.4 μg L−1), triclosan (0.72 μg L−1–7,42 μg L−1), | [53] |
WWTPs (influent) | Raw sewage (MG) | bezafibrate (94.4 ng L−1), diclofenac (99.9 ng L−1), sulfamethoxazole (13.0 ng L−1), trimethoprim (61.5 ng L−1) | [54] |
Active Pharmaceutical Ingredient |
---|
Fentanyl and Fentanyl citrate |
Morphine Sulfate |
Buprenorphine Hydrochloride (+Naloxone Hydrochloride) |
Buprenorphine |
Methylphenidate and Meperidine Hydrochloride |
Diazepam |
HydromorphoneHydrochloride |
Methadone Hydrochloride |
Morphine sulfate |
Tapentadol |
Oxymorphone Hydrochloride |
Oxycodone Hydrochloride |
Acetaminophen (+Oxycodone Hydrochloride) |
Aspirin (+Oxycodone Hydrochloride) |
Sodium Oxybate |
Hydrocodone Bitartrate |
Main concerns
|
Recommendations
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, L.d.A.A.; Radis-Baptista, G. Pharmaceutical Pollution and Disposal of Expired, Unused, and Unwanted Medicines in the Brazilian Context. J. Xenobiot. 2021, 11, 61-76. https://doi.org/10.3390/jox11020005
Freitas LdAA, Radis-Baptista G. Pharmaceutical Pollution and Disposal of Expired, Unused, and Unwanted Medicines in the Brazilian Context. Journal of Xenobiotics. 2021; 11(2):61-76. https://doi.org/10.3390/jox11020005
Chicago/Turabian StyleFreitas, Letícia de Araújo Almeida, and Gandhi Radis-Baptista. 2021. "Pharmaceutical Pollution and Disposal of Expired, Unused, and Unwanted Medicines in the Brazilian Context" Journal of Xenobiotics 11, no. 2: 61-76. https://doi.org/10.3390/jox11020005
APA StyleFreitas, L. d. A. A., & Radis-Baptista, G. (2021). Pharmaceutical Pollution and Disposal of Expired, Unused, and Unwanted Medicines in the Brazilian Context. Journal of Xenobiotics, 11(2), 61-76. https://doi.org/10.3390/jox11020005