Association of Bone Disorder and Gene Polymorphism of PPAR-γ Pro12 Ala in Egyptian Children with β-Thalassemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Design
2.2. Inclusion Criteria
- Patients with β-thalassemia major ranging from 8 to 18 years old.
- Patients who were diagnosed at an early age based on Hemoglobin electrophoresis.
- Patients who were given blood transfusions.
- Children on iron chelation therapy, whether oral or subcutaneous.
2.3. Exclusion Criteria
- (I)
- Routine hematological investigations:
- (II)
- Radiological investigation:
- (III)
- Genotyping identification:
- (IV)
- Statistical studies to assess the obtained data:
3. Results
3.1. The Demographic Data, Laboratory Data, and the Z-Score of BMD Levels of the Patient and Control Groups
3.2. Frequency of PPAR-γ Gene Polymorphism of Patient Group and Control Group and Comparison between Them Regarding PPAR Allele Frequencies
3.3. Comparison between Males and Females Regarding PPARγ Gene Polymorphism
3.4. Comparison between PPARγ Homozygous and PPARγ Heterozygous Gene Groups Regarding the BMD Levels and the Laboratory Data in Patient Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deo, M.G.; Pawar, P.V. Alpha thalassaemia in tribal communities of coastal Maharashtra, India. Indian J. Med. Res. 2014, 140, 231. [Google Scholar] [PubMed]
- Zaki, A.; Elgendy, M.O.; Abdelrahman, M.A.; Ali, H.A.; Khalil, E.M.; Hassan, M.; Fahmy, A.M.; Gad, R.A.; Salem, H.F. The Efficacy of Using Different Antibiotics to Prevent Maternal Surgical Site Infections in COVID-19-Infected Cases. Eur. Chem. Bull. 2023, 6, 1342–1348. [Google Scholar]
- Floris, F.; Comitini, F.; Leoni, G.; Moi, P.; Morittu, M.; Orecchia, V.; Perra, M.; Pilia, M.P.; Zappu, A.; Casini, M.R.; et al. Quality of life in Sardinian patients with transfusion-dependent Thalassemia: A cross-sectional study. Qual. Life Res. 2018, 27, 2533–2539. [Google Scholar] [CrossRef] [PubMed]
- Das, D.S. Comparative Study to Assess the Relationship between Renal Calculi, Thyroid and Parathyroid Hormones and Urinary Infections at Tertiary Care Centre. Ph.D. Thesis, Sree Mookambika Institute of Medical Sciences, Kanyakumari, India, 2019. [Google Scholar]
- Tharwat, R.J.; Balilah, S.; Habib, H.M.; Mahmoud, N.H.; Beek, F.S.; Almadani, F.K.; Elmaghraby, S.; Al-Loqmani, D.D.; Al-Mahdi, H. Ferritin and Vitamin D levels and its relation to bone diseases in thalassemic adults: A hospital-based retrospective cohort study. J. Appl. Hematol. 2019, 10, 15. [Google Scholar] [CrossRef]
- Wagner, N.; Wagner, K.D. The role of PPARs in disease. Cells 2020, 9, 2367. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Rouault, C.; Clément, K.; Zhu, W.; Degrelle, S.A.; Charles, M.-A.; Heude, B.; Fournier, T. C1431T Variant of PPARγ Is Associated with Preeclampsia in Pregnant Women. Life 2021, 11, 1052. [Google Scholar] [CrossRef] [PubMed]
- Minge, C.E.; Robker, R.L.; Norman, R.J. PPAR gamma: Coordinating metabolic and immune contributions to female fertility. PPAR Res. 2008, 2008, 243791. [Google Scholar] [CrossRef]
- Elgendy, M.O.; Saeed, H.; Abou-Taleb, H.A. Assessment of educated people awareness level and sources about COVID-19. IJCMR 2023, 1, 19–27. [Google Scholar] [CrossRef]
- Lecka-Czernik, B.; Moerman, E.J.; Grant, D.F.; Lehmann, J.M.; Manolagas, S.C.; Jilka, R.L. Divergent effects of selective peroxisome proliferator-activated receptor-γ2 ligands on adipocyte versus osteoblast differentiation. Endocrinology 2002, 143, 2376–2384. [Google Scholar] [CrossRef]
- Li, Y.; Jin, D.; Xie, W.; Wen, L.; Chen, W.; Xu, J.; Ding, J.; Ren, D. PPAR-γ and Wnt regulate the differentiation of MSCs into adipocytes and osteoblasts respectively. Curr. Stem Cell Res. Ther. 2018, 13, 185–192. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, M.; Song, N.-J.; Kim, J.-H.; Seo, D.; Lee, J.-H.; Jung, S.M.; Lee, J.Y.; Lee, J.; Lee, Y.S.; et al. A reciprocal role of the Smad4-Taz axis in osteogenesis and adipogenesis of mesenchymal stem cells. Stem Cells 2019, 37, 368–381. [Google Scholar] [CrossRef] [PubMed]
- Karadeniz, F.; Oh, J.H.; Jo, H.J.; Seo, Y.; Kong, C.-S. Myricetin 3-O-β-D-Galactopyranoside Exhibits Potential Anti-Osteoporotic Properties in Human Bone Marrow-Derived Mesenchymal Stromal Cells via Stimulation of Osteoblastogenesis and Suppression of Adipogenesis. Cells 2021, 10, 2690. [Google Scholar] [CrossRef] [PubMed]
- Arat, A.; Yılmaz, Ü.; Yılmaz, N.; Fazlıoğulları, O.; Çelik, F.; Başaran, C.; Zeybek, Ü. Effects of Leptin, Resistin, and PPAR-Gama Gene Variants on Obese Patients with Acute Coronary Syndrome in the Turkish Population. JAREM. J. Acad. Res. Med. 2020, 10, 166. [Google Scholar] [CrossRef]
- Hashemi, A.; Ghilian, R.; Golestan, M.; Akhavan, G.M.; Zare, Z.; Dehghani, M.A. The study of growth in thalassemic patients and its correlation with serum ferritin level. Iran. J. Pediatr. Hematol. Oncol. 2011, 1, 147–151. [Google Scholar]
- Sahmani, M.; Gholami, A.; Azarkeivan, A.; Darabi, M.; Ahmadi, M.H.; Sabet, M.S.; Najafipour, R. Peroxisome proliferator-activated receptor-γ Pro12Ala polymorphism and risk of osteopenia in β-thalassemia major patients. Hemoglobin 2013, 37, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Contreras, A.V.; Torres, N.; Tovar, A.R. PPAR-α as a key nutritional and environmental sensor for metabolic adaptation. Adv. Nutr. 2013, 4, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Al-Salehe, Q.A.A.; Al-Awady, M.S.; Abbass, S.K. Growth retardation in β-thalassemia major. Iraqi Postgrad. Med. J. 2015, 14, 267–273. [Google Scholar]
- Ali, M.; Yassin, M.A.; Aldeeb, M. Iron Overload in a Patient with Non-Transfusion-Dependent Hemoglobin H Disease and Borderline Serum Ferritin: Can We Rely on Serum Ferritin for Monitoring in This Group of Patients? Case Rep. Oncol. 2020, 13, 668–673. [Google Scholar] [CrossRef]
- Mirhosseini, N.Z.; Shahar, S.; Ghayour-Mobarhan, M.; Banihashem, A.; Kamaruddin, N.A.; Hatef, M.R.; Esmaili, H.A. Bone-related complications of transfusion-dependent beta thalassemia among children and adolescents. J. Bone Miner. Metab. 2013, 31, 468–476. [Google Scholar] [CrossRef]
- Saboor, M.; Qudsia, F.; Qamar, K.; Moinuddin, M. Levels of calcium, corrected calcium, alkaline phosphatase and inorganic phosphorus in patients’ serum with β-thalassemia major on subcutaneous deferoxamine. J. Hematol. Thromboembolic Dis. 2014, 2, 130. [Google Scholar] [CrossRef]
- Huang, Y.-L.; Liu, S.; Xia, T.; Hao, W.-G.; Liang, W.; Sun, X. Relationship between growth disorders and iron overload in children with beta-thalassemia major. Chin. J. Contemp. Pediatr. 2008, 10, 603–606. [Google Scholar]
- Abdelmotaleb, G.S.; Behairy, O.G.; El Azim, K.E.A.; El-Hassib, D.M.A.; Hemeda, T.M. Assessment of serum vitamin D levels in Egyptian children with beta-thalassemia major. Egypt. Pediatr. Assoc. Gaz. 2021, 69, 20. [Google Scholar] [CrossRef]
- Karim, M.F.; Ismail, M.; Hasan, A.M.; Shekhar, H.U. Hematological and biochemical status of beta-thalassemia major patients in Bangladesh: A comparative analysis. Int. J. Hematol. Oncol. Stem Cell Res. 2016, 10, 7–12. [Google Scholar] [PubMed]
- Hagag, A.A.; El-Shanshory, M.R.; Abo El-Enein, A.M. Parathyroid function in children with beta-thalassemia and correlation with iron load. Adv. Pediatr. Res. 2015, 2, 98–105. [Google Scholar]
- Sultan, S.; Irfan, S.M.; Ahmed, S.I. Biochemical markers of bone turnover in patients with β-thalassemia major: A single-center study from southern Pakistan. Adv. Hematol. 2016, 2016, 5437609. [Google Scholar] [CrossRef] [PubMed]
- Izzah, A.Z.; Rofinda, Z.D.; Arbi, F. Vitamin D and parathyroid hormone levels and their relation to serum ferritin levels in children with thalassemia major: One-Center Study in Western Indonesia. J. Adv. Med. Pharm. Sci. 2017, 15, 1–5. [Google Scholar] [CrossRef]
- Salama, O.S.; Al-Tonbary, Y.A.; Shahin, R.A.; Eldeen, O.A.S. Unbalanced bone turnover in children with beta-thalassemia. Hematology 2006, 11, 197–202. [Google Scholar] [CrossRef]
- Uma Rani, R.; Ganesh, T. Study of serum calcium, phosphorus and alkaline phosphatase during fracture healing of femur in goats. Indian Vet. J. 2003, 80, 377–378. [Google Scholar]
- Yıldız, M.; Canatan, D. Soft tissue density variations in thalassemia major: A possible pitfall in lumbar bone mineral density measurements by dual-energy X-ray absorptiometry. Pediatr. Hematol. Oncol. 2005, 22, 723–726. [Google Scholar] [CrossRef]
- Fung, E.B. Nutritional deficiencies in patients with thalassemia. Ann. N. Y. Acad. Sci. 2010, 1202, 188–196. [Google Scholar] [CrossRef]
- Ehlers, K.H.; Giardina, P.J.; Lesser, M.L.; Engle, M.A.; Hilgartner, M.W. Prolonged survival in patients with beta-thalassemia major treated with deferoxamine. J. Pediatr. 1991, 118, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Vogiatzi, M.G.; Macklin, E.A.; Fung, E.B.; Cheung, A.M.; Vichinsky, E.; Olivieri, N.; Kirby, M.; Kwiatkowski, J.L.; Cunningham, M.; A Holm, I.; et al. Bone disease in thalassemia: A frequent and still unresolved problem. J. Bone Miner. Res. 2009, 24, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Perrotta, S.; Cappellini, M.D.; Bertoldo, F.; Servedio, V.; Iolascon, G.; D’Agruma, L.; Gasparini, P.; Siciliani, M.C.; Iolascon, A. Osteoporosis in β-thalassaemia major patients: Analysis of the genetic background. Br. J. Haematol. 2000, 111, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, P.; Pizzarelli, G.; Spina, M.; Riccobene, S.; Fiore, C.E. Quantitative ultrasound of bone and clodronate effects in thalassemia-induced osteoporosis. J. Bone Miner. Metab. 2003, 21, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Coakley, K.E. Translating Evidence to Practice: A Systematic and Clinical Analysis of Bone Health in Phenylketonuria. Ph.D. Thesis, Emory University, Atlanta, Georgia, 2015. [Google Scholar]
- Coppola, G.; Fortunato, D.; Auricchio, G.; Mainolfi, C.; Operto, F.F.; Signoriello, G.; Pascotto, A.; Salvatore, M. Bone mineral density in children, adolescents, and young adults with epilepsy. Epilepsia 2009, 50, 2140–2146. [Google Scholar] [CrossRef]
- Jensen, C. High incidence of osteoporosis in thalassemia major. J. Pediatr. Endocrinol. Metab. 1998, 11, 975–977. [Google Scholar] [PubMed]
- Chinetti-Gbaguidi, G.; Fruchart, J.-C.; Staels, B. Role of the PPAR family of nuclear receptors in the regulation of metabolic and cardiovascular homeostasis: New approaches to therapy. Curr. Opin. Pharmacol. 2005, 5, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Fournier, T.; Handschuh, K.; Tsatsaris, V.; Evain-Brion, D. Involvement of PPARγ in human trophoblast invasion. Placenta 2007, 28, S76–S81. [Google Scholar] [CrossRef]
- Mbalaviele, G.; Abu-Amer, Y.; Meng, A.; Jaiswal, R.; Beck, S.; Pittenger, M.F.; Thiede, M.A.; Marshak, D.R. Activation of peroxisome proliferator-activated receptor-γ pathway inhibits osteoclast differentiation. J. Biol. Chem. 2000, 275, 14388–14393. [Google Scholar] [CrossRef]
- El-Dafrawy, M.; Hamed, N.A.M.; Ghallab, O.; Elneely, D.; Khalifa, M. Preliminary Report on the Frequency of Pro12Ala Polymorphism of the Peroxisome Proliferator-Activated Receptor-gamma Gene in Egyptian β-Thalassemia Major Patients. Int. Blood Res. Rev. 2016, 6, 1–7. [Google Scholar] [CrossRef]
Patient (Median) | Control (Median) | p-Value | |
---|---|---|---|
Age (years) | 11 (8–18) | 11.5 (8–18) | 0.85 |
Weight (kg) | 23.5 (14–54) | 35.5 (21–62) | 0.01 |
Height (cm) | 127 (106–168) | 141 (119–173) | 0.01 |
BMI (kg/m2) | 14.95 (11.6–20) | 17.65 (13.4–21) | 0.003 |
Male n (%) | 27 (54) | 29 (58.0) | 0.6 |
Female n (%) | 23 (46) | 21 (42) | |
Hemoglobin (gm/dL) | 8 (6–9.2) | 1 (10–13) | 0.01 * |
Ferritin (ng/mL) | 1674 (474–7048) | 50 (20–90) | 0.01 * |
Calcium (mg/dL) | 9 (7–9.8) | 9.2 (8.5–9.8) | 0.07 |
Phosphorous (mg/dL) | 3.1 (2–3.8) | 3 (2.4–4) | 0.06 |
ALP (U/L) | 135 (80–400) | 130 (80–180) | 0.69 |
Z-score | −0.7 (−1.5–1.2) | 0.7 (0.6–1.2) | 0.01 * |
Normal BMD measures | 32 (64%) | 50 (100%) | 0.01 * |
Low BMD measures | 18 (36%) | 0 (0%) |
Genotype | Patients | Controls | OR (95% CI) | p-Value |
---|---|---|---|---|
C/C | 45 (90%) | 44 (88%) | 1.00 | 0.95 |
C/G | 5 (10%) | 6 (12%) | 1.06 (0.21–5.35) | |
G/G | 0 (0%) | 0 (0%) | 0 |
PPAR Genotypes | p-Value | ||
---|---|---|---|
Sex | C/C | C/G | |
Male (No) | 51 | 6 | 0.88 |
Female (No) | 38 | 5 |
PPAR-γ Polymorphism | Low BMD Median (IOR) | Normal BMD Median (IOR) | p-Value | |
---|---|---|---|---|
Homozygous (C/C) | Valid | 16 (35.6) | 29 (64.4) | 0.90 |
Heterozygous (C/G) | 2 (40) | 3 (60) |
Homozygous (CC) (n = 45) | Heterozygous (CG) (n = 5) | p-Value | |
---|---|---|---|
Z-score | 0.7 (−1.50–1.20) | 0.7 (−1.50–90) | 0.70 |
Hb (gm/dL) | 8 (6.90–9.20) | 8 (7.00–8.20) | 0.91 |
Ferritin (ng/mL) | 1635 (474–7048) | 2220 (684–2420) | 0.35 |
Calcium (mg/dL) | 9 (7.00–9.80) | 9 (8–9.2) | 0.63 |
Phosphorous (mg/dL) | 3.2 (2–3.8) | 3 (2.9–3) | 0.05 |
ALP (U/L) | 135 (80–385) | 130 (100–400) | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamied, A.M.A.; Ahmed, H.M.; Eldahshan, D.H.; Morgan, D.S.; Meged, A.M.A.A.; Elgendy, M.O.; Imam, M.S.; Alotaibi, T.A.H.; Alotaibi, M.M.S.; Alotaibi, M.T.N.; et al. Association of Bone Disorder and Gene Polymorphism of PPAR-γ Pro12 Ala in Egyptian Children with β-Thalassemia. Thalass. Rep. 2023, 13, 230-240. https://doi.org/10.3390/thalassrep13040020
Hamied AMA, Ahmed HM, Eldahshan DH, Morgan DS, Meged AMAA, Elgendy MO, Imam MS, Alotaibi TAH, Alotaibi MMS, Alotaibi MTN, et al. Association of Bone Disorder and Gene Polymorphism of PPAR-γ Pro12 Ala in Egyptian Children with β-Thalassemia. Thalassemia Reports. 2023; 13(4):230-240. https://doi.org/10.3390/thalassrep13040020
Chicago/Turabian StyleHamied, Ahmed M. Abdel, Heba Mostafa Ahmed, Dina H. Eldahshan, Dalia S. Morgan, Abdel Meged A. Abdel Meged, Marwa O. Elgendy, Mohamed S. Imam, Turki A. H. Alotaibi, Majed M. S. Alotaibi, Manal T. N. Alotaibi, and et al. 2023. "Association of Bone Disorder and Gene Polymorphism of PPAR-γ Pro12 Ala in Egyptian Children with β-Thalassemia" Thalassemia Reports 13, no. 4: 230-240. https://doi.org/10.3390/thalassrep13040020
APA StyleHamied, A. M. A., Ahmed, H. M., Eldahshan, D. H., Morgan, D. S., Meged, A. M. A. A., Elgendy, M. O., Imam, M. S., Alotaibi, T. A. H., Alotaibi, M. M. S., Alotaibi, M. T. N., Alshalan, S. S. S., & Elgendy, S. O. (2023). Association of Bone Disorder and Gene Polymorphism of PPAR-γ Pro12 Ala in Egyptian Children with β-Thalassemia. Thalassemia Reports, 13(4), 230-240. https://doi.org/10.3390/thalassrep13040020