Analysing Pre-Operative Gait Patterns Using Inertial Wearable Sensors: An Observational Study of Participants Undergoing Total Hip and Knee Replacement
Abstract
:1. Background
2. Methods
2.1. Objectives
2.2. Ethics
2.3. Study Participants
2.4. Controls
2.5. Procedure
2.6. Wearable Device
2.7. Data Processing
2.8. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Pathological Gait Signatures
4. Discussion
4.1. Strengths
4.2. Limitations
4.3. Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OA | Osteoarthritis |
BMI | Body mass index |
SD | Standard deviation |
CI | Confidence interval |
IMU | Inertial measurement unit |
MMC | MetaMotion© wearable sensor |
IMUPY | Modified IMUGaitPy program |
WOMAC | Western Ontario McMaster Universities Osteoarthritis Index |
KFM | Knee flexion moment |
KFA | Knee flexion angle |
KAM | Knee adduction moment |
HAM | Hip adductor moment impulse |
HKA | Hip-knee angle |
RoM | Range of motion |
Appendix A
THR (n = 28) | Controls (n = 33) | Group Difference (Controls—THR) | |||
---|---|---|---|---|---|
Mean ± SD | 95% CI | % | p | ||
Spatial Gait Metrics | |||||
Gait Velocity (m/s) | 1.05 ± 0.212 | 1.35 ± 0.177 | −0.400; −0.189 | 22.2 | <0.001 |
Step Length (m) | 0.624 ± 0.0990 | 0.694 ± 0.694 | −0.123; −0.0163 | 10.1 | 0.0115 |
Temporal Gait Metrics | |||||
Step Time (s) | 0.609 ± 0.0965 | 0.519 ± 0.519 | 0.0513; 0.128 | 17.3 | <0.001 |
Stance Time (s) | 0.754 ± 0.116 | 0.649 ± 0.0323 | 0.0595; 0.152 | 16.2 | <0.001 |
Swing Time (s) | 0.456 ± 0.0667 | 0.389 ± 0.0200 | 0.0405; 0.0942 | 17.2 | <0.001 |
Single Support Time (s) | 0.472 ± 0.102 | 0.395 ± 0.0223 | 0.0364; 0.117 | 19.5 | <0001 |
Double Support Time (s) | 0.292 ± 0.0510 | 0.260 ± 0.0130 | 0.0119; 0.0524 | 10.8 | 0.0024 |
Gait Asymmetry | |||||
Step Length Asymmetry (m) | 0.148 ± 0.101 | 0.0529 ± 0.0168 | 0.0556; 0.135 | 180 | <0.001 |
Step Time Asymmetry (s) | 0.0906 ± 0.0785 | 0.0374 ± 0.0166 | 0.0223; 0.0841 | 142 | 0.0011 |
Stance Time Asymmetry (s) | 0.0742 ± 0.0635 | 0.0330 ± 0.0152 | 0.0160; 0.0663 | 125 | 0.0018 |
Swing Time Asymmetry (s) | 0.0764 ± 0.0671 | 0.0334 ± 0.0169 | 0.0163; 0.0696 | 129 | 0.0021 |
Single Support Time Asymmetry (s) | 0.0864 ± 0.0869 | 0.0383 ± 0.0175 | 0.0140; 0.0823 | 126 | 0.0066 |
Double Support Time Asymmetry (s) | 0.0272 ± 0.0519 | 0.0116 ± 0.00414 | −0.00440; 0.0357 | 134 | 0.123 |
Gait Variability | |||||
Gait Velocity Variability (CoV) | 9.62 ± 2.91 | 10.5 ± 3.08 | −2.46; 0.783 | 9.15 | 0.305 |
Step Length Variability (CoV) | 17.0 ± 9.75 | 9.28 ± 2.26 | 3.86; 11.6 | 83.2 | <0.001 |
Step Time Variability (CoV) | 12.77 ± 7.31 | 11.03 ± 4.44 | −1.54; 5.02 | 15.8 | 0.293 |
Stance Time Variation (CoV) | 8.74 ± 4.74 | 8.38 ± 3.15 | −1.81; 2.55 | 4.30 | 0.0018 |
Swing Time Variation (CoV) | 17.21 ± 16.7 | 13.88 ± 7.16 | −3.67; 10.3 | 24.0 | 0.0021 |
Single Support Time Variation (CoV) | 25.5 ± 22.9 | 27.7 ± 19.3 | −13.7; 9.19 | 7.94 | 0.694 |
Double Support Time Variation (CoV) | 14.3 ± 19.3 | 12.0 ± 7.32 | −5.59; 10.3 | 19.2 | 0.553 |
Appendix B
TKR (n = 28) | Controls (n = 33) | Group Difference (Controls—TKR) | |||
---|---|---|---|---|---|
Mean ± SD | 95% CI | % | p | ||
Spatial Gait Metrics | |||||
Gait Velocity (m/s) | 1.06 ± 0.264 | 1.35 ± 0.180 | 0.163; 0.405 | 21.5 | <0.001 |
Step Length (m) | 0.616 ± 0.106 | 0.694 ± 0.101 | 0.0231; 0.134 | 12.7 | 0.006 |
Temporal Gait Metrics | |||||
Step Time (s) | 0.598 ± 0.0867 | 0.519 ± 0.0266 | −0.114; −0.0443 | 15.2 | <0.001 |
Stance Time (s) | 0.745 ± 0.105 | 0.649 ± 0.0329 | −0.139; −0.0541 | 14.8 | <0.001 |
Swing Time (s) | 0.450 ± 0.0683 | 0.389 ± 0.0203 | −0.0885; −0.0336 | 13.6 | <0.001 |
Single Support Time (s) | 0.459 ±0.0797 | 0.395 ± 0.0227 | −0.0958; −0.0320 | 13.9 | <0.001 |
Double Support Time (s) | 0.296 ± 0.0387 | 0.260 ± 0.0132 | −0.0517; −0.0203 | 13.8 | <0.001 |
Gait Asymmetry | |||||
Step Length Asymmetry (m) | 0.121 ± 0.0936 | 0.0529 ± 0.0171 | −0.105; −0.0318 | 129 | 0.001 |
Step Time Asymmetry (s) | 0.0828 ± 0.0738 | 0.0374 ± 0.0167 | −0.0746; −0.0162 | 121 | 0.003 |
Stance Time Asymmetry (s) | 0.0710 ± 0.0583 | 0.0330 ± 0.0155 | −0.0613; −0.0147 | 151 | 0.002 |
Swing Time Asymmetry (s) | 0.0714 ± 0.0660 | 0.0334 ± 0.0172 | −0.0643; −0.0117 | 138 | 0.006 |
Single Support Time Asymmetry (s) | 0.0781 ± 0.0679 | 0.0383 ± 0.0178 | −0.0668; −0.0127 | 104 | 0.005 |
Double Support Time Asymmetry (s) | 0.0189 ± 0.0202 | 0.0116 ± 0.00421 | −0.0153; 0.00700 | 62.9 | 0.072 |
Gait Variability | |||||
Gait Velocity Variability (CoV) | 10.2 ± 3.02 | 10.5 ± 3.14 | −1.41; 1.90 | 2.86 | 0.766 |
Step Length Variability (CoV) | 14.8 ± 7.54 | 9.28 ± 2.30 | −8.53; −2.46 | 59.5 | 0.001 |
Step Time Variability (CoV) | 12.0 ± 7.21 | 11.0 ± 4.52 | −4.19; 2.28 | 9.09 | 0.554 |
Stance Time Variation (CoV) | 8.59 ± 4.51 | 8.37 ± 3.20 | −2.31; 1.88 | 2.63 | 0.835 |
Swing Time Variation (CoV) | 14.2 ± 10.4 | 13.9 ± 7.29 | −5.17; 4.47 | 2.16 | 0.885 |
Single Support Time Variation (CoV) | 24.1 ± 21.7 | 27.7 ± 19.7 | −7.51; 14.7 | 13.0 | 0.519 |
Double Support Time Variation (CoV) | 12.6 ± 11.4 | 12.0 ± 7.45 | −5.82; 4.55 | 5.00 | 0.807 |
References
- Mandeville, D.; Osternig, L.R.; Chou, L.-S. The effect of total knee replacement surgery on gait stability. Gait Posture 2008, 27, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Higgs, J.P.; Diamond, L.E.; Saxby, D.J.; Constantinou, M.; Barrett, R.S. Individuals with Unilateral Mild-to-Moderate Hip Osteo-arthritis Exhibit Lower Limb Kinematic Asymmetry during Walking But Not Sit-to-Stand. Symmetry 2021, 13, 768. [Google Scholar] [CrossRef]
- Safiri, S.; Kolahi, A.-A.; Smith, E.; Hill, C.; Bettampadi, D.; Mansournia, M.A.; Hoy, D.; Ashrafi-Asgarabad, A.; Sepidarkish, M.; Almasi-Hashiani, A.; et al. Global, regional and national burden of osteoarthritis 1990-2017: A systematic analysis of the Global Burden of Disease Study 2017. Ann. Rheum. Dis. 2020, 79, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Rahman, J.; Tang, Q.; Monda, M.; Miles, J.; McCarthy, I. Gait assessment as a functional outcome measure in total knee arthroplasty: A cross-sectional study. BMC Musculoskelet. Disord. 2015, 16, 66. [Google Scholar] [CrossRef] [PubMed]
- Hyodo, K.; Kanamori, A.; Kadone, H.; Takahashi, T.; Kajiwara, M.; Yamazaki, M. Gait Analysis Comparing Kinematic, Kinetic, and Muscle Activation Data of Modern and Conventional Total Knee Arthroplasty. Arthroplast. Today 2020, 6, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Mizner, R.L.; Snyder-Mackler, L. Association between long-term quadriceps weakness and early walking muscle co-contraction after total knee arthroplasty. Knee 2013, 20, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Biggs, P.R.; Whatling, G.M.; Wilson, C.; Metcalfe, A.J.; Holt, C.A. Which osteoarthritic gait features recover following total knee re-placement surgery? PLoS ONE 2019, 14, e0203417. [Google Scholar] [CrossRef] [PubMed]
- Sagawa, Y.; Armand, S.; Lubbeke, A.; Hoffmeyer, P.; Fritschy, D.; Suva, D.; Turcot, K. Associations between gait and clinical parameters in patients with severe knee osteoarthritis: A multiple correspondence analysis. Clin. Biomech. 2013, 28, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Kobsar, D.; Masood, Z.; Khan, H.; Khalil, N.; Kiwan, M.Y.; Ridd, S.; Tobis, M. Wearable Inertial Sensors for Gait Analysis in Adults with Osteoarthritis—A Scoping Review. Sensors 2020, 20, 7143. [Google Scholar] [CrossRef]
- Natarajan, P.; Fonseka, R.D.; Sy, L.; Maharaj, M.; Mobbs, R. Analysing gait patterns in degenerative lumbar spine disease using inertial wearable sensors—An observational study. World Neurosurg. 2022, 163, e501–e515. [Google Scholar] [CrossRef]
- Shull, P.B.; Jirattigalachote, W.; Hunt, M.A.; Cutkosky, M.R.; Delp, S.L. Quantified self and human movement: A review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait Posture 2014, 40, 11–19. [Google Scholar] [CrossRef]
- Tao, W.; Liu, T.; Zheng, R.; Feng, H. Gait Analysis Using Wearable Sensors. Sensors 2012, 12, 2255–2283. [Google Scholar] [CrossRef] [PubMed]
- Tarniţă, D. Wearable sensors used for human gait analysis. Rom. J. Morphol. Embryol. 2016, 57, 373–382. [Google Scholar] [PubMed]
- Caldas, R.; Mundt, M.; Potthast, W.; de Lima Neto, F.B.; Markert, B. A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms. Gait Posture 2017, 57, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.C.Y.; Natarajan, P.; Fonseka, R.D.; Maharaj, M.; Mobbs, R.J. The application of artificial intelligence and custom algorithms with inertial wearable devices for gait analysis and detection of gait-altering pathologies in adults: A scoping review of literature. Digit. Health 2022, 8, 20552076221074128. [Google Scholar] [CrossRef] [PubMed]
- Takeda, R.; Tadano, S.; Todoh, M.; Morikawa, M.; Nakayasu, M.; Yoshinari, S. Gait analysis using gravitational acceleration measured by wearable sensors. J. Biomech. 2009, 42, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-H.; Chen, P.-C.; Liu, K.-C.; Chan, C.-T. Wearable sensor-based rehabilitation exercise assessment for knee osteoarthritis. Sensors 2015, 15, 4193–4211. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-P.; Liu, Y.-Y.; Hsu, W.-H.; Lai, L.-J.; Lee, M.S. Monitoring and Assessment of Rehabilitation Progress on Range of Motion After Total Knee Replacement by Sensor-Based System. Sensors 2020, 20, 1703. [Google Scholar] [CrossRef] [PubMed]
- Lofterød, B.; Terjesen, T.; Skaaret, I.; Huse, A.-B.; Jahnsen, R. Preoperative gait analysis has a substantial effect on orthopedic decision making in children with cerebral palsy: Comparison between clinical evaluation and gait analysis in 60 patients. Acta Orthop. 2007, 78, 74–80. [Google Scholar] [CrossRef]
- Small, S.R.; Bullock, G.S.; Khalid, S.; Barker, K.; Trivella, M.; Price, A.J. Current clinical utilisation of wearable motion sensors for the assessment of outcome following knee arthroplasty: A scoping review. BMJ Open 2019, 9, e033832. [Google Scholar] [CrossRef]
- Betteridge, C.; Mobbs, R.J.; Fonseka, R.D.; Natarajan, P.; Ho, D.; Choy, W.J.; Sy, L.W.; Pell, N. Objectifying clinical gait assessment: Using a sin-gle-point wearable sensor to quantify the spatiotemporal gait metrics of people with lumbar spinal stenosis. J. Spine Surg. 2021, 7, 254–268. [Google Scholar] [CrossRef] [PubMed]
- Galna, B.; Lord, S.; Rochester, L. Is gait variability reliable in older adults and Parkinson’s disease? Towards an optimal testing protocol. Gait Posture 2013, 37, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Duffell, L.D.; Southgate, D.F.; Gulati, V.; McGregor, A.H. Balance and gait adaptations in patients with early knee osteoarthritis. Gait Posture 2014, 39, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Favre, J.; Jolles, B.M. Gait analysis of patients with knee osteoarthritis highlights a pathological mechanical pathway and provides a basis for therapeutic interventions. EFORT Open Rev. 2016, 1, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Foucher, K.C.; Freels, S. Preoperative factors associated with postoperative gait kinematics and kinetics after total hip arthroplasty. Osteoarthr. Cartil. 2015, 23, 1685–1694. [Google Scholar] [CrossRef] [PubMed]
- Tateuchi, H.; Akiyama, H.; Goto, K.; So, K.; Kuroda, Y.; Ichihashi, N. Gait kinematics of the hip, pelvis, and trunk associated with external hip adduction moment in patients with secondary hip osteoarthritis: Toward determination of the key point in gait modification. BMC Musculoskelet. Disord. 2020, 21, 8. [Google Scholar] [CrossRef] [PubMed]
- Kobsar, D.; Osis, S.T.; Boyd, J.E.; Hettinga, B.A.; Ferber, R. Wearable sensors to predict improvement following an exercise intervention in patients with knee osteoarthritis. J. Neuroeng. Rehabil. 2017, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, M.H.; Berkvens, R.; Weyn, M. Chest-Worn Inertial Sensors: A Survey of Applications and Methods. Sensors 2021, 21, 2875. [Google Scholar] [CrossRef] [PubMed]
- Nazarahari, M.; Rouhani, H. Detection of daily postures and walking modalities using a single chest-mounted tri-axial accel-erometer. Med. Eng. Phys. 2018, 57, 75–81. [Google Scholar] [CrossRef]
- Schwenk, M.; Mohler, J.; Wendel, C.; D’’Huyvetter, K.; Fain, M.; Taylor-Piliae, R.; Najafi, B. Wearable sensor-based in-home assessment of gait, balance, and physical activity for discrimination of frailty status: Baseline results of the arizona frailty cohort study. Gerontology 2014, 61, 258–267. [Google Scholar] [CrossRef]
- Zhang, J.H.; Macfarlane, D.J.; Sobko, T. Feasibility of a Chest-worn accelerometer for physical activity measurement. J. Sci. Med. Sport 2016, 19, 1015–1019. [Google Scholar] [CrossRef] [PubMed]
- Mc Ardle, R.; Galna, B.; Donaghy, P.; Thomas, A.; Rochester, L. Do Alzheimer’s and Lewy body disease have discrete pathological signatures of gait? Alzheimers Dement. 2019, 15, 1367–1377. [Google Scholar] [CrossRef] [PubMed]
- Reininga, I.H.; Stevens, M.; Wagenmakers, R.; Bulstra, S.K.; Groothoff, J.W.; Zijlstra, W. Subjects with hip osteoarthritis show distinctive patterns of trunk movements during gait-a body-fixed-sensor based analysis. J. Neuroeng. Rehabil. 2012, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, C.K.; Bowden, M.G.; Neptune, R.R.; Kautz, S.A. Relationship between step length asymmetry and walking per-formance in subjects with chronic hemiparesis. Arch. Phys. Med. Rehabil. 2007, 88, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Roerdink, M.; Beek, P.J. Understanding inconsistent step-length asymmetries across hemiplegic stroke patients: Impairments and compensatory gait. Neurorehabil. Neural. Repair. 2011, 25, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.; Hunt, M.A.; Ferber, R. Biomechanical deviations during level walking associated with knee osteoarthritis: A systematic review and meta-analysis. Arthritis Rheum. 2013, 65, 1643–1665. [Google Scholar] [CrossRef] [PubMed]
- Boyer, K.A.; Hafer, J.F. Gait mechanics contribute to exercise induced pain flares in knee osteoarthritis. BMC Musculoskelet. Disord. 2019, 20, 107. [Google Scholar] [CrossRef]
- Tadano, S.; Takeda, R.; Sasaki, K.; Fujisawa, T.; Tohyama, H. Gait characterization for osteoarthritis patients using wearable gait sensors (H-Gait systems). J. Biomech. 2016, 49, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, M.; Graven-Nielsen, T.; Aaboe, J.; Andriacchi, T.P.; Bliddal, H. Gait changes in patients with knee osteoarthritis are rep-licated by experimental knee pain. Arthritis Care Res. 2010, 62, 501–509. [Google Scholar] [CrossRef]
- Miyazaki, T.; Wada, M.; Kawahara, H.; Sato, M.; Baba, H.; Shimada, S. Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann. Rheum. Dis. 2002, 61, 617–622. [Google Scholar] [CrossRef]
- Thorstensson, C.; Henriksson, M.; von Porat, A.; Sjödahl, C.; Roos, E. The effect of eight weeks of exercise on knee adduction moment in early knee osteoarthritis—A pilot study. Osteoarthr. Cartil. 2007, 15, 1163–1170. [Google Scholar] [CrossRef] [PubMed]
- Stetter, B.J.; Krafft, F.C.; Ringhof, S.; Stein, T.; Sell, S. A Machine Learning and Wearable Sensor Based Approach to Estimate External Knee Flexion and Adduction Moments During Various Locomotion Tasks. Front. Bioeng. Biotechnol. 2020, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Boekesteijn, R.J.; Smolders, J.M.H.; Busch, V.J.J.F.; Geurts, A.C.H.; Smulders, K. Independent and sensitive gait parameters for objective evaluation in knee and hip osteoarthritis using wearable sensors. BMC Musculoskelet. Disord. 2021, 22, 242. [Google Scholar] [CrossRef] [PubMed]
- Rovini, E.; Maremmani, C.; Moschetti, A.; Esposito, D.; Cavallo, F. Comparative Motor Pre-clinical Assessment in Parkinson’s Disease Using Supervised Machine Learning Approaches. Ann. Biomed. Eng. 2018, 46, 2057–2068. [Google Scholar] [CrossRef] [PubMed]
THR | Controls | p Value | |
---|---|---|---|
N | 29 | 28 | N/A |
Age | 60.1 ± 10.0 | 57.2 ± 9.77 | 9.578 |
Female (%) | 18 (62) | 18 (64) | N/A |
Height (m) | 1.69 ± 10.0 | 1.65 ± 9.34 | 0.143 |
Body Mass (kg) | 80.2 ± 18.2 | 71.4 ± 12.1 | 0.071 |
BMI | 27.8 ± 4.46 | 26.2 ± 4.15 | 0.238 |
Smoking (%) | 0 (0) | 3 (11) | N/A |
Diabetes (%) | 3 (10) | 0 (0) | N/A |
Daily Step Count | 3500 ± 2200 | N/A | N/A |
TKR | Controls | p Value | |
---|---|---|---|
N | 28 | 28 | N/A |
Age | 62.5 ± 15.2 | 57.2 ± 9.77 | 0.050 |
Female (%) | 15 (54) | 18 (64) | N/A |
Height (m) | 1.71 ± 9.48 | 1.65 ± 9.34 | 0.024 |
Body Mass (kg) | 82.9 ± 17.8 | 71.4 ± 12.1 | 0.009 |
BMI | 28.2 ± 5.4 | 26.2 ± 4.15 | 0.147 |
Smoking (%) | 1 (7.1) | 3 (11) | N/A |
Diabetes (%) | 2 (3.6) | 0 (0) | N/A |
Daily Step Count | 5800 ± 3000 | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natarajan, P.; Yin, A.L.C.; Fonseka, R.D.; Abi-Hanna, D.; Rooke, K.; Sy, L.; Maharaj, M.; Broe, D.; Koinis, L.; Mobbs, R.J. Analysing Pre-Operative Gait Patterns Using Inertial Wearable Sensors: An Observational Study of Participants Undergoing Total Hip and Knee Replacement. Surg. Tech. Dev. 2024, 13, 178-191. https://doi.org/10.3390/std13020011
Natarajan P, Yin ALC, Fonseka RD, Abi-Hanna D, Rooke K, Sy L, Maharaj M, Broe D, Koinis L, Mobbs RJ. Analysing Pre-Operative Gait Patterns Using Inertial Wearable Sensors: An Observational Study of Participants Undergoing Total Hip and Knee Replacement. Surgical Techniques Development. 2024; 13(2):178-191. https://doi.org/10.3390/std13020011
Chicago/Turabian StyleNatarajan, Pragadesh, Ashley Lim Cha Yin, R. Dineth Fonseka, David Abi-Hanna, Kaitlin Rooke, Luke Sy, Monish Maharaj, David Broe, Lianne Koinis, and Ralph Jasper Mobbs. 2024. "Analysing Pre-Operative Gait Patterns Using Inertial Wearable Sensors: An Observational Study of Participants Undergoing Total Hip and Knee Replacement" Surgical Techniques Development 13, no. 2: 178-191. https://doi.org/10.3390/std13020011
APA StyleNatarajan, P., Yin, A. L. C., Fonseka, R. D., Abi-Hanna, D., Rooke, K., Sy, L., Maharaj, M., Broe, D., Koinis, L., & Mobbs, R. J. (2024). Analysing Pre-Operative Gait Patterns Using Inertial Wearable Sensors: An Observational Study of Participants Undergoing Total Hip and Knee Replacement. Surgical Techniques Development, 13(2), 178-191. https://doi.org/10.3390/std13020011