Emerging Role of [18F]FLT PET/CT in Lymphoid Malignancies: A Review of Clinical Results
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, R.; Xu, B.; Liu, C.; Guan, Z.; Zhang, J.; Li, F.; Sun, L.; Zhu, H. Prognostic value of interim fluorodeoxyglucose and fluorothymidine PET/CT in diffuse large B-cell lymphoma. Br. J. Radiol. 2018, 91, 20180240. [Google Scholar] [CrossRef] [PubMed]
- Buck, A.K.; Bommer, M.; Juweid, M.E.; Glatting, G.; Stilgenbauer, S.; Mottaghy, F.M.; Schulz, M.; Kull, T.; Bunjes, D.; Möller, P.; et al. First demonstration of leukemia imaging with the proliferation marker 18F-fluorodeoxythymidine. J. Nucl. Med. 2008, 49, 1756–1762. [Google Scholar] [CrossRef] [PubMed]
- Al Tabaa, Y.; Bailly, C.; Kanoun, S. FDG-PET/CT in Lymphoma: Where Do We Go Now? Cancers 2021, 13, 5222. [Google Scholar] [CrossRef] [PubMed]
- Dondi, F.; Lazzarato, A.; Gorica, J.; Guglielmo, P.; Borgia, F.; Filice, R.; Vento, A.; Pacella, S.; Camedda, R.; Caracciolo, M.; et al. PET Criteria by Cancer Type from Imaging Interpretation to Treatment Response Assessment: Beyond FDG PET Score. Life 2023, 13, 611. [Google Scholar] [CrossRef] [PubMed]
- Santo, G.; Miceli, A.; Lazzarato, A.; Gorica, J.; Nappi, A.G.; Jonghi-Lavarini, L.; Dondi, F.; La Torre, F.; Filice, A.; De Rimini, M.L.; et al. Clinicians’ perspectives on PET/CT in oncological patients: An Italian National Survey. Clin. Transl. Imaging 2023. [Google Scholar] [CrossRef]
- El-Galaly, T.C.; Villa, D.; Gormsen, L.C.; Baech, J.; Lo, A.; Cheah, C.Y. FDG-PET/CT in the management of lymphomas: Current status and future directions. J. Intern. Med. 2018, 284, 358–376. [Google Scholar] [CrossRef]
- Zanoni, L.; Bezzi, D.; Nanni, C.; Paccagnella, A.; Farina, A.; Broccoli, A.; Casadei, B.; Zinzani, P.L.; Fanti, S. PET/CT in Non-Hodgkin Lymphoma: An Update. Semin. Nucl. Med. 2023, 53, 320–351. [Google Scholar] [CrossRef]
- Mena, E.; Lindenberg, M.L.; Turkbey, B.I.; Shih, J.; Logan, J.; Adler, S.; Wong, K.; Wilson, W.; Choyke, P.L.; Kurdziel, K.A. A pilot study of the value of 18F-fluoro-deoxy-thymidine PET/CT in predicting viable lymphoma in residual 18F-FDG avid masses after completion of therapy. Clin. Nucl. Med. 2014, 39, 874–881. [Google Scholar] [CrossRef]
- Buchmann, I.; Neumaier, B.; Schreckenberger, M.; Reske, S. [18F]3′-deoxy-3′-fluorothymidine-PET in NHL patients: Whole-body biodistribution and imaging of lymphoma manifestations--a pilot study. Cancer Biother. Radiopharm. 2004, 19, 436–442. [Google Scholar] [CrossRef]
- Buck, A.K.; Bommer, M.; Stilgenbauer, S.; Juweid, M.; Glatting, G.; Schirrmeister, H.; Mattfeldt, T.; Tepsic, D.; Bunjes, D.; Mottaghy, F.M.; et al. Molecular imaging of proliferation in malignant lymphoma. Cancer Res. 2006, 66, 11055–11061. [Google Scholar] [CrossRef]
- Herrmann, K.; Wieder, H.A.; Buck, A.K.; Schöffel, M.; Krause, B.J.; Fend, F.; Schuster, T.; Meyerzum Büschenfelde, C.; Wester, H.J.; Duyster, J.; et al. Early response assessment using 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin’s lymphoma. Clin. Cancer Res. 2007, 13, 3552–3558. [Google Scholar] [CrossRef] [PubMed]
- Soloviev, D.; Lewis, D.; Honess, D.; Aboagye, E. [18F]FLT: An imaging biomarker of tumour proliferation for assessment of tumour response to treatment. Eur. J. Cancer. 2012, 48, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, K.; Buck, A.K.; Schuster, T.; Junger, A.; Wieder, H.A.; Graf, N.; Ringshausen, I.; Rudelius, M.; Wester, H.J.; Schwaiger, M.; et al. Predictive value of initial 18F-FLT uptake in patients with aggressive non-Hodgkin lymphoma receiving R-CHOP treatment. J. Nucl. Med. 2011, 52, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Kasper, B.; Egerer, G.; Gronkowski, M.; Haufe, S.; Lehnert, T.; Eisenhut, M.; Mechtersheimer, G.; Ho, A.D.; Haberkorn, U. Functional diagnosis of residual lymphomas after radiochemotherapy with positron emission tomography comparing FDG- and FLT-PET. Leuk. Lymphoma 2007, 48, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Minamimoto, R.; Fayad, L.; Vose, J.; Meza, J.; Advani, R.; Hankins, J.; Mottaghy, F.; Macapinlac, H.; Heinzel, A.; Juweid, M.E.; et al. 18F-Fluorothymidine PET is an early and superior predictor of progression-free survival following chemoimmunotherapy of diffuse large B cell lymphoma: A multicenter study. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2883–2893. [Google Scholar] [CrossRef] [PubMed]
- Vanderhoek, M.; Juckett, M.B.; Perlman, S.B.; Nickles, R.J.; Jeraj, R. Early assessment of treatment response in patients with AML using [18F]FLT PET imaging. Leuk. Res. 2011, 35, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, K.; Buck, A.K.; Schuster, T.; Abbrederis, K.; Blümel, C.; Santi, I.; Rudelius, M.; Wester, H.J.; Peschel, C.; Schwaiger, M.; et al. Week one FLT-PET response predicts complete remission to R-CHOP and survival in DLBCL. Oncotarget 2014, 5, 4050–4059. [Google Scholar] [CrossRef]
- Lee, H.; Kim, S.K.; Kim, Y.I.; Kim, T.S.; Kang, S.H.; Park, W.S.; Yun, T.; Eom, H.S. Early determination of prognosis by interim 3′-deoxy-3′-18F-fluorothymidine PET in patients with non-Hodgkin lymphoma. J. Nucl. Med. 2014, 55, 216–222. [Google Scholar] [CrossRef]
- Schöder, H.; Zelenetz, A.D.; Hamlin, P.; Gavane, S.; Horwitz, S.; Matasar, M.; Moskowitz, A.; Noy, A.; Palomba, L.; Portlock, C.; et al. Prospective Study of 3′-Deoxy-3′-18F-Fluorothymidine PET for Early Interim Response Assessment in Advanced-Stage B-Cell Lymphoma. J. Nucl. Med. 2016, 57, 728–734. [Google Scholar] [CrossRef]
- Minamimoto, R.; Fayad, L.; Advani, R.; Vose, J.; Macapinlac, H.; Meza, J.; Hankins, J.; Mottaghy, F.; Juweid, M.; Quon, A. Diffuse Large B-Cell Lymphoma: Prospective Multicenter Comparison of Early Interim FLT PET/CT versus FDG PET/CT with IHP, EORTC, Deauville, and PERCIST Criteria for Early Therapeutic Monitoring. Radiology 2016, 280, 220–229. [Google Scholar] [CrossRef]
- Han, E.J.; Lee, B.H.; Kim, J.A.; Park, Y.H.; Choi, W.H. Early assessment of response to induction therapy in acute myeloid leukemia using 18F-FLT PET/CT. EJNMMI Res. 2017, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Brepoels, L.; Stroobants, S.; Verhoef, G.; De Groot, T.; Mortelmans, L.; De Wolf-Peeters, C. 18F-FDG and 18F-FLT uptake early after cyclophosphamide and mTOR inhibition in an experimental lymphoma model. J. Nucl. Med. 2009, 50, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- van Waarde, A.; Cobben, D.C.; Suurmeijer, A.J.; Maas, B.; Vaalburg, W.; de Vries, E.F.; Jager, P.L.; Hoekstra, H.J.; Elsinga, P.H. Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J. Nucl. Med. 2004, 45, 695–700. [Google Scholar] [PubMed]
- Buck, A.K.; Halter, G.; Schirrmeister, H.; Kotzerke, J.; Wurziger, I.; Glatting, G.; Mattfeldt, T.; Neumaier, B.; Reske, S.N.; Hetzel, M. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J. Nucl. Med. 2003, 44, 1426–1431. [Google Scholar]
Author, Year [Reference] | Type of Disease (No Patients) | Age (Mean ± SD or Median (Range)) | Clinical Setting | Parameters | Main Findings |
---|---|---|---|---|---|
Wang et al., 2018 [1] | DLBCL (44 pts) | 52 ± 16 | Baseline, iPET (after 2 cycle), end of treatment (rituximab-based CHT) vs. [18F]FDG | SUVmax | iFLT PET/CT had higher accuracy than standardized [18F]FDG-based interpretation for therapeutic response assessment in DLBCL, reducing the number of false positive results. |
Buck et al., 2008 [2] | AML (10 patients) | 47 ± 13 | Baseline | SUVmax | [18F]FLT is able to visualize extramedullary manifestation sites of AML. [18F]FLT uptake is also present in bone marrow, caused by both neoplastic and normal hematopoietic cells. Therefore, the correlation between [18F]FLT uptake in this tissue and leukemic blast infiltration did not reach statistical significance. |
Mena et al., 2014 [8] | HL and NHL stage II to IV (21 pts) | 46 ± 15 | Therapeutic response assessment vs. [18F]FDG | SUVest.max; time activity curves generated from dynamic data | [18F]FLT PET shows improved specificity over [18F]FDG in distinguishing residual lymphoma from post- treatment inflammation after completing therapy. |
Buchmann et al., 2004 [9] | NHL (7 pts) | 48 ± 12 | Radiopharmaceuticals biodistribution | SUVmax | [18F]FLT accumulated more intensively in aggressive NHL and NHL in transformation than in the indolent one. Organs with highest physiological uptake: bone marrow and liver. |
Buck et al., 2006 [10] | Malignant lymphoma (34 pts) | 51 ± 12 | Staging Restaging | SUVmax SUVmean | [18F]FLT PET was suitable for noninvasive assessment of tumor grading. [18F]FLT may be a superior PET tracer for detection of malignant lymphoma in organs with high physiologic [18F]FDG uptake and early detection of progression to a more aggressive histology or potential transformation. |
Hermann et al., 2007 [11] | High-grade NHL (22 pts) | 59 ± 14 | Baseline, interim, and end-of-treatment response evaluation (R-CHOP/CHOP) | SUVmax | Administration of R-CHOP/CHOP is associated with an early decrease in lymphoma [18F]FLT uptake. There was no reduction of [18F]FLT uptake after rituximab alone, indicating no early antiproliferative effect of immunotherapy. |
Hermann et al., 2011 [13] | DLBCL, follicular lymphoma grade I and grade IIIB, large cell anaplastic T-cell lymphoma (66 pts) | 59 ± 15 | Baseline Response to R-CHOP | SUVmean SUVmax | High [18F]FLT uptake at baseline is a negative predictor of response to R-CHOP treatment in aggressive B-NHL and correlates with the IPI score. |
Kasper et al., 2007 [14] | HL and NHL with residual m asses >2 cm (48 pts) | 46 (17–76) | Therapy response assessment | SUVmax | Although [18F]FDG detected more lesions than [18F]FLT, the additional biological characterization of tumor tissue with respect to proliferation by [18F]FLT might be useful by providing complementary information for the iden tification of recurrence. |
Minamimoto et al., 2021 [15] | DLBCL (92 pts) | 59 ± 15 | Interim response evaluation after two cycles R- CHOP or R-EPOCH vs. [18F]F-FDG | SUVmax | In patients with DLBCL given R-CHOP/R-EPOCH, iFLT PET/CT is a superior independent predictor of outcome compared to iFDG PET/CT. |
Vanderhoek et al., 2011 [16] | AML (8 pts) | 48 ± 19 | Different time points during therapy | None | [18F]FLT PET imaging during induction chemotherapy may serve as an early biomarker of treatment response in AML. |
Hermann et al., 2014 [17] | DLBCL (54 pts) | 62 (26–80) | Baseline and interim evaluation (one week after the start of R-CHOP) | SUVmax, SUVmean | iFLT showed relevant discriminative ability in predicting CR. Very early [18F]FLT PET in the course of R-CHOP is feasible and enables identification of patients at risk for treatment failure. |
Lee et al., 2014 [18] | High-grade NHL (61 pts) | 57 (29–80) | Baseline, interim PET (after 1 cycle), end of treatment evaluation | SUVmax, SUVmean | iFLT PET is a predictor of PFS and OS. Early [18F]FLT PET imaging also has a potential to identify patients with delayed response and non-favorable prognosis. |
Schöder et al., 2016 [19] | Advanced-stage B-cell lymphoma (65 pts) | 55 (21–71) | Baseline, interim (after 1 or 2 cycle), end of treatment (R-CHOP based chemotherapy) | Visually (using a 5- point score) or semi-quantitatively (using TPV, SUVmax and ΔSUV) | [18F]FLT PET after 1–2 cycles of chem- otherapy predicts PFS and OS, and a negative iFLT may potentially help design risk-adapted therapies in patients with aggressive lymphomas. In contrast, PPV of iFLT PET remains too low to justify changes in patient management. |
Minamimoto et al., 2016 [20] | DLBCL (60 patients) | 59 ± 13 | Interim and end of treatment vs. [18F]F-FDG | Visual interpretation | Early iFLT PET/CT had a significantly higher PPV than standardized [18F]FDG PET/CT-based interpretation for therapeutic response assessment in DLBCL |
Han et al., 2017 [21] | AML (10 patients) | 53 ± 17 | Post-induction therapy assessment | SUV | [18F]FLT PET/CT after induction therapy showed good sensitivity and NPV for evaluating resistant disease in patients with AML. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nappi, A.G.; Santo, G.; Jonghi-Lavarini, L.; Miceli, A.; Lazzarato, A.; La Torre, F.; Dondi, F.; Gorica, J. Emerging Role of [18F]FLT PET/CT in Lymphoid Malignancies: A Review of Clinical Results. Hematol. Rep. 2024, 16, 32-41. https://doi.org/10.3390/hematolrep16010004
Nappi AG, Santo G, Jonghi-Lavarini L, Miceli A, Lazzarato A, La Torre F, Dondi F, Gorica J. Emerging Role of [18F]FLT PET/CT in Lymphoid Malignancies: A Review of Clinical Results. Hematology Reports. 2024; 16(1):32-41. https://doi.org/10.3390/hematolrep16010004
Chicago/Turabian StyleNappi, Anna Giulia, Giulia Santo, Lorenzo Jonghi-Lavarini, Alberto Miceli, Achille Lazzarato, Flavia La Torre, Francesco Dondi, and Joana Gorica. 2024. "Emerging Role of [18F]FLT PET/CT in Lymphoid Malignancies: A Review of Clinical Results" Hematology Reports 16, no. 1: 32-41. https://doi.org/10.3390/hematolrep16010004
APA StyleNappi, A. G., Santo, G., Jonghi-Lavarini, L., Miceli, A., Lazzarato, A., La Torre, F., Dondi, F., & Gorica, J. (2024). Emerging Role of [18F]FLT PET/CT in Lymphoid Malignancies: A Review of Clinical Results. Hematology Reports, 16(1), 32-41. https://doi.org/10.3390/hematolrep16010004