Emerging Role of [18F]FLT PET/CT in Lymphoid Malignancies: A Review of Clinical Results
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, R.; Xu, B.; Liu, C.; Guan, Z.; Zhang, J.; Li, F.; Sun, L.; Zhu, H. Prognostic value of interim fluorodeoxyglucose and fluorothymidine PET/CT in diffuse large B-cell lymphoma. Br. J. Radiol. 2018, 91, 20180240. [Google Scholar] [CrossRef] [PubMed]
- Buck, A.K.; Bommer, M.; Juweid, M.E.; Glatting, G.; Stilgenbauer, S.; Mottaghy, F.M.; Schulz, M.; Kull, T.; Bunjes, D.; Möller, P.; et al. First demonstration of leukemia imaging with the proliferation marker 18F-fluorodeoxythymidine. J. Nucl. Med. 2008, 49, 1756–1762. [Google Scholar] [CrossRef] [PubMed]
- Al Tabaa, Y.; Bailly, C.; Kanoun, S. FDG-PET/CT in Lymphoma: Where Do We Go Now? Cancers 2021, 13, 5222. [Google Scholar] [CrossRef] [PubMed]
- Dondi, F.; Lazzarato, A.; Gorica, J.; Guglielmo, P.; Borgia, F.; Filice, R.; Vento, A.; Pacella, S.; Camedda, R.; Caracciolo, M.; et al. PET Criteria by Cancer Type from Imaging Interpretation to Treatment Response Assessment: Beyond FDG PET Score. Life 2023, 13, 611. [Google Scholar] [CrossRef] [PubMed]
- Santo, G.; Miceli, A.; Lazzarato, A.; Gorica, J.; Nappi, A.G.; Jonghi-Lavarini, L.; Dondi, F.; La Torre, F.; Filice, A.; De Rimini, M.L.; et al. Clinicians’ perspectives on PET/CT in oncological patients: An Italian National Survey. Clin. Transl. Imaging 2023. [Google Scholar] [CrossRef]
- El-Galaly, T.C.; Villa, D.; Gormsen, L.C.; Baech, J.; Lo, A.; Cheah, C.Y. FDG-PET/CT in the management of lymphomas: Current status and future directions. J. Intern. Med. 2018, 284, 358–376. [Google Scholar] [CrossRef]
- Zanoni, L.; Bezzi, D.; Nanni, C.; Paccagnella, A.; Farina, A.; Broccoli, A.; Casadei, B.; Zinzani, P.L.; Fanti, S. PET/CT in Non-Hodgkin Lymphoma: An Update. Semin. Nucl. Med. 2023, 53, 320–351. [Google Scholar] [CrossRef]
- Mena, E.; Lindenberg, M.L.; Turkbey, B.I.; Shih, J.; Logan, J.; Adler, S.; Wong, K.; Wilson, W.; Choyke, P.L.; Kurdziel, K.A. A pilot study of the value of 18F-fluoro-deoxy-thymidine PET/CT in predicting viable lymphoma in residual 18F-FDG avid masses after completion of therapy. Clin. Nucl. Med. 2014, 39, 874–881. [Google Scholar] [CrossRef]
- Buchmann, I.; Neumaier, B.; Schreckenberger, M.; Reske, S. [18F]3′-deoxy-3′-fluorothymidine-PET in NHL patients: Whole-body biodistribution and imaging of lymphoma manifestations--a pilot study. Cancer Biother. Radiopharm. 2004, 19, 436–442. [Google Scholar] [CrossRef]
- Buck, A.K.; Bommer, M.; Stilgenbauer, S.; Juweid, M.; Glatting, G.; Schirrmeister, H.; Mattfeldt, T.; Tepsic, D.; Bunjes, D.; Mottaghy, F.M.; et al. Molecular imaging of proliferation in malignant lymphoma. Cancer Res. 2006, 66, 11055–11061. [Google Scholar] [CrossRef]
- Herrmann, K.; Wieder, H.A.; Buck, A.K.; Schöffel, M.; Krause, B.J.; Fend, F.; Schuster, T.; Meyerzum Büschenfelde, C.; Wester, H.J.; Duyster, J.; et al. Early response assessment using 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin’s lymphoma. Clin. Cancer Res. 2007, 13, 3552–3558. [Google Scholar] [CrossRef] [PubMed]
- Soloviev, D.; Lewis, D.; Honess, D.; Aboagye, E. [18F]FLT: An imaging biomarker of tumour proliferation for assessment of tumour response to treatment. Eur. J. Cancer. 2012, 48, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, K.; Buck, A.K.; Schuster, T.; Junger, A.; Wieder, H.A.; Graf, N.; Ringshausen, I.; Rudelius, M.; Wester, H.J.; Schwaiger, M.; et al. Predictive value of initial 18F-FLT uptake in patients with aggressive non-Hodgkin lymphoma receiving R-CHOP treatment. J. Nucl. Med. 2011, 52, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Kasper, B.; Egerer, G.; Gronkowski, M.; Haufe, S.; Lehnert, T.; Eisenhut, M.; Mechtersheimer, G.; Ho, A.D.; Haberkorn, U. Functional diagnosis of residual lymphomas after radiochemotherapy with positron emission tomography comparing FDG- and FLT-PET. Leuk. Lymphoma 2007, 48, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Minamimoto, R.; Fayad, L.; Vose, J.; Meza, J.; Advani, R.; Hankins, J.; Mottaghy, F.; Macapinlac, H.; Heinzel, A.; Juweid, M.E.; et al. 18F-Fluorothymidine PET is an early and superior predictor of progression-free survival following chemoimmunotherapy of diffuse large B cell lymphoma: A multicenter study. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2883–2893. [Google Scholar] [CrossRef] [PubMed]
- Vanderhoek, M.; Juckett, M.B.; Perlman, S.B.; Nickles, R.J.; Jeraj, R. Early assessment of treatment response in patients with AML using [18F]FLT PET imaging. Leuk. Res. 2011, 35, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, K.; Buck, A.K.; Schuster, T.; Abbrederis, K.; Blümel, C.; Santi, I.; Rudelius, M.; Wester, H.J.; Peschel, C.; Schwaiger, M.; et al. Week one FLT-PET response predicts complete remission to R-CHOP and survival in DLBCL. Oncotarget 2014, 5, 4050–4059. [Google Scholar] [CrossRef]
- Lee, H.; Kim, S.K.; Kim, Y.I.; Kim, T.S.; Kang, S.H.; Park, W.S.; Yun, T.; Eom, H.S. Early determination of prognosis by interim 3′-deoxy-3′-18F-fluorothymidine PET in patients with non-Hodgkin lymphoma. J. Nucl. Med. 2014, 55, 216–222. [Google Scholar] [CrossRef]
- Schöder, H.; Zelenetz, A.D.; Hamlin, P.; Gavane, S.; Horwitz, S.; Matasar, M.; Moskowitz, A.; Noy, A.; Palomba, L.; Portlock, C.; et al. Prospective Study of 3′-Deoxy-3′-18F-Fluorothymidine PET for Early Interim Response Assessment in Advanced-Stage B-Cell Lymphoma. J. Nucl. Med. 2016, 57, 728–734. [Google Scholar] [CrossRef]
- Minamimoto, R.; Fayad, L.; Advani, R.; Vose, J.; Macapinlac, H.; Meza, J.; Hankins, J.; Mottaghy, F.; Juweid, M.; Quon, A. Diffuse Large B-Cell Lymphoma: Prospective Multicenter Comparison of Early Interim FLT PET/CT versus FDG PET/CT with IHP, EORTC, Deauville, and PERCIST Criteria for Early Therapeutic Monitoring. Radiology 2016, 280, 220–229. [Google Scholar] [CrossRef]
- Han, E.J.; Lee, B.H.; Kim, J.A.; Park, Y.H.; Choi, W.H. Early assessment of response to induction therapy in acute myeloid leukemia using 18F-FLT PET/CT. EJNMMI Res. 2017, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Brepoels, L.; Stroobants, S.; Verhoef, G.; De Groot, T.; Mortelmans, L.; De Wolf-Peeters, C. 18F-FDG and 18F-FLT uptake early after cyclophosphamide and mTOR inhibition in an experimental lymphoma model. J. Nucl. Med. 2009, 50, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- van Waarde, A.; Cobben, D.C.; Suurmeijer, A.J.; Maas, B.; Vaalburg, W.; de Vries, E.F.; Jager, P.L.; Hoekstra, H.J.; Elsinga, P.H. Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J. Nucl. Med. 2004, 45, 695–700. [Google Scholar] [PubMed]
- Buck, A.K.; Halter, G.; Schirrmeister, H.; Kotzerke, J.; Wurziger, I.; Glatting, G.; Mattfeldt, T.; Neumaier, B.; Reske, S.N.; Hetzel, M. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J. Nucl. Med. 2003, 44, 1426–1431. [Google Scholar]
Author, Year [Reference] | Type of Disease (No Patients) | Age (Mean ± SD or Median (Range)) | Clinical Setting | Parameters | Main Findings |
---|---|---|---|---|---|
Wang et al., 2018 [1] | DLBCL (44 pts) | 52 ± 16 | Baseline, iPET (after 2 cycle), end of treatment (rituximab-based CHT) vs. [18F]FDG | SUVmax | iFLT PET/CT had higher accuracy than standardized [18F]FDG-based interpretation for therapeutic response assessment in DLBCL, reducing the number of false positive results. |
Buck et al., 2008 [2] | AML (10 patients) | 47 ± 13 | Baseline | SUVmax | [18F]FLT is able to visualize extramedullary manifestation sites of AML. [18F]FLT uptake is also present in bone marrow, caused by both neoplastic and normal hematopoietic cells. Therefore, the correlation between [18F]FLT uptake in this tissue and leukemic blast infiltration did not reach statistical significance. |
Mena et al., 2014 [8] | HL and NHL stage II to IV (21 pts) | 46 ± 15 | Therapeutic response assessment vs. [18F]FDG | SUVest.max; time activity curves generated from dynamic data | [18F]FLT PET shows improved specificity over [18F]FDG in distinguishing residual lymphoma from post- treatment inflammation after completing therapy. |
Buchmann et al., 2004 [9] | NHL (7 pts) | 48 ± 12 | Radiopharmaceuticals biodistribution | SUVmax | [18F]FLT accumulated more intensively in aggressive NHL and NHL in transformation than in the indolent one. Organs with highest physiological uptake: bone marrow and liver. |
Buck et al., 2006 [10] | Malignant lymphoma (34 pts) | 51 ± 12 | Staging Restaging | SUVmax SUVmean | [18F]FLT PET was suitable for noninvasive assessment of tumor grading. [18F]FLT may be a superior PET tracer for detection of malignant lymphoma in organs with high physiologic [18F]FDG uptake and early detection of progression to a more aggressive histology or potential transformation. |
Hermann et al., 2007 [11] | High-grade NHL (22 pts) | 59 ± 14 | Baseline, interim, and end-of-treatment response evaluation (R-CHOP/CHOP) | SUVmax | Administration of R-CHOP/CHOP is associated with an early decrease in lymphoma [18F]FLT uptake. There was no reduction of [18F]FLT uptake after rituximab alone, indicating no early antiproliferative effect of immunotherapy. |
Hermann et al., 2011 [13] | DLBCL, follicular lymphoma grade I and grade IIIB, large cell anaplastic T-cell lymphoma (66 pts) | 59 ± 15 | Baseline Response to R-CHOP | SUVmean SUVmax | High [18F]FLT uptake at baseline is a negative predictor of response to R-CHOP treatment in aggressive B-NHL and correlates with the IPI score. |
Kasper et al., 2007 [14] | HL and NHL with residual m asses >2 cm (48 pts) | 46 (17–76) | Therapy response assessment | SUVmax | Although [18F]FDG detected more lesions than [18F]FLT, the additional biological characterization of tumor tissue with respect to proliferation by [18F]FLT might be useful by providing complementary information for the iden tification of recurrence. |
Minamimoto et al., 2021 [15] | DLBCL (92 pts) | 59 ± 15 | Interim response evaluation after two cycles R- CHOP or R-EPOCH vs. [18F]F-FDG | SUVmax | In patients with DLBCL given R-CHOP/R-EPOCH, iFLT PET/CT is a superior independent predictor of outcome compared to iFDG PET/CT. |
Vanderhoek et al., 2011 [16] | AML (8 pts) | 48 ± 19 | Different time points during therapy | None | [18F]FLT PET imaging during induction chemotherapy may serve as an early biomarker of treatment response in AML. |
Hermann et al., 2014 [17] | DLBCL (54 pts) | 62 (26–80) | Baseline and interim evaluation (one week after the start of R-CHOP) | SUVmax, SUVmean | iFLT showed relevant discriminative ability in predicting CR. Very early [18F]FLT PET in the course of R-CHOP is feasible and enables identification of patients at risk for treatment failure. |
Lee et al., 2014 [18] | High-grade NHL (61 pts) | 57 (29–80) | Baseline, interim PET (after 1 cycle), end of treatment evaluation | SUVmax, SUVmean | iFLT PET is a predictor of PFS and OS. Early [18F]FLT PET imaging also has a potential to identify patients with delayed response and non-favorable prognosis. |
Schöder et al., 2016 [19] | Advanced-stage B-cell lymphoma (65 pts) | 55 (21–71) | Baseline, interim (after 1 or 2 cycle), end of treatment (R-CHOP based chemotherapy) | Visually (using a 5- point score) or semi-quantitatively (using TPV, SUVmax and ΔSUV) | [18F]FLT PET after 1–2 cycles of chem- otherapy predicts PFS and OS, and a negative iFLT may potentially help design risk-adapted therapies in patients with aggressive lymphomas. In contrast, PPV of iFLT PET remains too low to justify changes in patient management. |
Minamimoto et al., 2016 [20] | DLBCL (60 patients) | 59 ± 13 | Interim and end of treatment vs. [18F]F-FDG | Visual interpretation | Early iFLT PET/CT had a significantly higher PPV than standardized [18F]FDG PET/CT-based interpretation for therapeutic response assessment in DLBCL |
Han et al., 2017 [21] | AML (10 patients) | 53 ± 17 | Post-induction therapy assessment | SUV | [18F]FLT PET/CT after induction therapy showed good sensitivity and NPV for evaluating resistant disease in patients with AML. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nappi, A.G.; Santo, G.; Jonghi-Lavarini, L.; Miceli, A.; Lazzarato, A.; La Torre, F.; Dondi, F.; Gorica, J. Emerging Role of [18F]FLT PET/CT in Lymphoid Malignancies: A Review of Clinical Results. Hematol. Rep. 2024, 16, 32-41. https://doi.org/10.3390/hematolrep16010004
Nappi AG, Santo G, Jonghi-Lavarini L, Miceli A, Lazzarato A, La Torre F, Dondi F, Gorica J. Emerging Role of [18F]FLT PET/CT in Lymphoid Malignancies: A Review of Clinical Results. Hematology Reports. 2024; 16(1):32-41. https://doi.org/10.3390/hematolrep16010004
Chicago/Turabian StyleNappi, Anna Giulia, Giulia Santo, Lorenzo Jonghi-Lavarini, Alberto Miceli, Achille Lazzarato, Flavia La Torre, Francesco Dondi, and Joana Gorica. 2024. "Emerging Role of [18F]FLT PET/CT in Lymphoid Malignancies: A Review of Clinical Results" Hematology Reports 16, no. 1: 32-41. https://doi.org/10.3390/hematolrep16010004
APA StyleNappi, A. G., Santo, G., Jonghi-Lavarini, L., Miceli, A., Lazzarato, A., La Torre, F., Dondi, F., & Gorica, J. (2024). Emerging Role of [18F]FLT PET/CT in Lymphoid Malignancies: A Review of Clinical Results. Hematology Reports, 16(1), 32-41. https://doi.org/10.3390/hematolrep16010004