Drug–Drug Interactions of FXI Inhibitors: Clinical Relevance
Abstract
:1. Introduction
2. Pharmacological Considerations of Drug–Drug Interaction with mAbs and ASOs
3. DOAC and Small Drug Molecules Anti FXIa: Potential Differences on DDIs
4. Clinical Evidence of DDI with Milvexian and Asundexian
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ruff, C.T.; Giugliano, R.P.; Braunwald, E.; Hoffman, E.B.; Deenadayalu, N.; Ezekowitz, M.D.; Camm, A.J.; Weitz, J.I.; Lewis, B.S.; Parkhomenko, A.; et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: A meta-analysis of randomised trials. Lancet 2014, 383, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Ferri, N.; Colombo, E.; Tenconi, M.; Baldessin, L.; Corsini, A. Drug-Drug Interactions of Direct Oral Anticoagulants (DOACs): From Pharmacological to Clinical Practice. Pharmaceutics 2022, 14, 1120. [Google Scholar] [CrossRef]
- Chan, N.C.; Weitz, J.I. New Therapeutic Targets for the Prevention and Treatment of Venous Thromboembolism with a Focus on Factor XI Inhibitors. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 1755–1763. [Google Scholar] [CrossRef] [PubMed]
- Duga, S.; Salomon, O. Congenital factor XI deficiency: An update. Semin. Thromb. Hemost. 2013, 39, 621–631. [Google Scholar] [CrossRef] [PubMed]
- De Caterina, R.; Prisco, D.; Eikelboom, J.W. Factor XI inhibitors: Cardiovascular perspectives. Eur. Heart J. 2023, 44, 280–292. [Google Scholar] [CrossRef]
- Occhipinti, G.; Laudani, C.; Spagnolo, M.; Finocchiaro, S.; Mazzone, P.M.; Faro, D.C.; Mauro, M.S.; Rochira, C.; Agnello, F.; Giacoppo, D.; et al. Pharmacological and Clinical Appraisal of Factor XI Inhibitor Drugs. Eur. Heart J. Cardiovasc. Pharmacother. 2024, pvae002. [Google Scholar] [CrossRef]
- Verhamme, P.; Yi, B.A.; Segers, A.; Salter, J.; Bloomfield, D.; Buller, H.R.; Raskob, G.E.; Weitz, J.I.; Investigators, A.-T. Abelacimab for Prevention of Venous Thromboembolism. N. Engl. J. Med. 2021, 385, 609–617. [Google Scholar] [CrossRef]
- Weitz, J.I.; Bauersachs, R.; Becker, B.; Berkowitz, S.D.; Freitas, M.C.S.; Lassen, M.R.; Metzig, C.; Raskob, G.E. Effect of Osocimab in Preventing Venous Thromboembolism Among Patients Undergoing Knee Arthroplasty: The FOXTROT Randomized Clinical Trial. JAMA 2020, 323, 130–139. [Google Scholar] [CrossRef]
- Lorentz, C.U.; Tucker, E.I.; Verbout, N.G.; Shatzel, J.J.; Olson, S.R.; Markway, B.D.; Wallisch, M.; Ralle, M.; Hinds, M.T.; McCarty, O.J.T.; et al. The contact activation inhibitor AB023 in heparin-free hemodialysis: Results of a randomized phase 2 clinical trial. Blood 2021, 138, 2173–2184. [Google Scholar] [CrossRef]
- Piccini, J.P.; Caso, V.; Connolly, S.J.; Fox, K.A.A.; Oldgren, J.; Jones, W.S.; Gorog, D.A.; Durdil, V.; Viethen, T.; Neumann, C.; et al. Safety of the oral factor XIa inhibitor asundexian compared with apixaban in patients with atrial fibrillation (PACIFIC-AF): A multicentre, randomised, double-blind, double-dummy, dose-finding phase 2 study. Lancet 2022, 399, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.V.; Kirsch, B.; Bhatt, D.L.; Budaj, A.; Coppolecchia, R.; Eikelboom, J.; James, S.K.; Jones, W.S.; Merkely, B.; Keller, L.; et al. A Multicenter, Phase 2, Randomized, Placebo-Controlled, Double-Blind, Parallel-Group, Dose-Finding Trial of the Oral Factor XIa Inhibitor Asundexian to Prevent Adverse Cardiovascular Outcomes After Acute Myocardial Infarction. Circulation 2022, 146, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Weitz, J.I.; Strony, J.; Ageno, W.; Gailani, D.; Hylek, E.M.; Lassen, M.R.; Mahaffey, K.W.; Notani, R.S.; Roberts, R.; Segers, A.; et al. Milvexian for the Prevention of Venous Thromboembolism. N. Engl. J. Med. 2021, 385, 2161–2172. [Google Scholar] [CrossRef] [PubMed]
- Bayer. OCEANIC-AF Study Stopped Early Due to Lack of Efficacy. Available online: https://www.bayer.com/media/en-us/oceanic-af-study-stopped-early-due-to-lack-of-efficacy (accessed on 21 December 2023).
- Koch, A.W.; Schiering, N.; Melkko, S.; Ewert, S.; Salter, J.; Zhang, Y.; McCormack, P.; Yu, J.; Huang, X.; Chiu, Y.H.; et al. MAA868, a novel FXI antibody with a unique binding mode, shows durable effects on markers of anticoagulation in humans. Blood 2019, 133, 1507–1516. [Google Scholar] [CrossRef]
- Campello, E.; Simioni, P.; Prandoni, P.; Ferri, N. Clinical Pharmacology of Factor XI Inhibitors: New Therapeutic Approaches for Prevention of Venous and Arterial Thrombotic Disorders. J. Clin. Med. 2022, 11, 6314. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.F.; Baker, B.F.; Pham, N.; Swayze, E.; Geary, R.S. Pharmacology of Antisense Drugs. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 81–105. [Google Scholar] [CrossRef] [PubMed]
- Tarumi, T.; Kravtsov, D.V.; Zhao, M.; Williams, S.M.; Gailani, D. Cloning and characterization of the human factor XI gene promoter: Transcription factor hepatocyte nuclear factor 4alpha (HNF-4alpha) is required for hepatocyte-specific expression of factor XI. J. Biol. Chem. 2002, 277, 18510–18516. [Google Scholar] [CrossRef]
- Walsh, M.; Bethune, C.; Smyth, A.; Tyrwhitt, J.; Jung, S.W.; Yu, R.Z.; Wang, Y.; Geary, R.S.; Weitz, J.; Bhanot, S.; et al. Phase 2 Study of the Factor XI Antisense Inhibitor IONIS-FXIRx in Patients With ESRD. Kidney Int. Rep. 2022, 7, 200–209. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, R.Z.; Henry, S.; Geary, R.S. Pharmacokinetics and Clinical Pharmacology Considerations of GalNAc(3)-Conjugated Antisense Oligonucleotides. Expert Opin. Drug Metab. Toxicol. 2019, 15, 475–485. [Google Scholar] [CrossRef]
- Keizer, R.J.; Huitema, A.D.; Schellens, J.H.; Beijnen, J.H. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 2010, 49, 493–507. [Google Scholar] [CrossRef]
- Tabrizi, M.A.; Tseng, C.M.; Roskos, L.K. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov. Today 2006, 11, 81–88. [Google Scholar] [CrossRef]
- Marathe, A.; Peterson, M.C.; Mager, D.E. Integrated cellular bone homeostasis model for denosumab pharmacodynamics in multiple myeloma patients. J. Pharmacol. Exp. Ther. 2008, 326, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Tardif, J.C.; Amarenco, P.; Duggan, W.; Glynn, R.J.; Jukema, J.W.; Kastelein, J.J.P.; Kim, A.M.; Koenig, W.; Nissen, S.; et al. Lipid-Reduction Variability and Antidrug-Antibody Formation with Bococizumab. N. Engl. J. Med. 2017, 376, 1517–1526. [Google Scholar] [CrossRef] [PubMed]
- Roskos, L.K.; Kellermann, S.; Foon, K.A. Human Antiglobulin Responses. In Measuring Immunity. Basic Biology and Clinical Assessment; Elsevier: Amsterdam, The Netherlands, 2005; Chapter 13; pp. 172–186. [Google Scholar]
- Clark, M. Antibody humanization: A case of the ’Emperor’s new clothes’? Immunol. Today 2000, 21, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Ferri, N.; Corsini, A.; Sirtori, C.R.; Ruscica, M. Bococizumab for the treatment of hypercholesterolaemia. Expert Opin. Biol. Ther. 2017, 17, 909–910. [Google Scholar] [CrossRef] [PubMed]
- Yi, B.A.; Freedholm, D.; Widener, N.; Wang, X.; Simard, E.; Cullen, C.; Al-Saady, N.M.; Lepor, N.E.; Coulter, S.; Lovern, M.; et al. Pharmacokinetics and pharmacodynamics of Abelacimab (MAA868), a novel dual inhibitor of Factor XI and Factor XIa. J. Thromb. Haemost. JTH 2022, 20, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Nowotny, B.; Thomas, D.; Schwers, S.; Wiegmann, S.; Prange, W.; Yassen, A.; Boxnick, S. First randomized evaluation of safety, pharmacodynamics, and pharmacokinetics of BAY 1831865, an antibody targeting coagulation factor XI and factor XIa, in healthy men. J. Thromb. Haemost. JTH 2022, 20, 1684–1695. [Google Scholar] [CrossRef] [PubMed]
- Lorentz, C.U.; Verbout, N.G.; Wallisch, M.; Hagen, M.W.; Shatzel, J.J.; Olson, S.R.; Puy, C.; Hinds, M.T.; McCarty, O.J.T.; Gailani, D.; et al. Contact Activation Inhibitor and Factor XI Antibody, AB023, Produces Safe, Dose-Dependent Anticoagulation in a Phase 1 First-In-Human Trial. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 799–809. [Google Scholar] [CrossRef]
- Maini, R.N.; Breedveld, F.C.; Kalden, J.R.; Smolen, J.S.; Davis, D.; Macfarlane, J.D.; Antoni, C.; Leeb, B.; Elliott, M.J.; Woody, J.N.; et al. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum. 1998, 41, 1552–1563. [Google Scholar] [CrossRef]
- Seitz, K.; Zhou, H. Pharmacokinetic drug-drug interaction potentials for therapeutic monoclonal antibodies: Reality check. J. Clin. Pharmacol. 2007, 47, 1104–1118. [Google Scholar] [CrossRef]
- Gunawan, P.I.; Idarto, A.; Saharso, D. Acanthamoeba Infection in a Drowning Child. Ethiop. J. Health Sci. 2016, 26, 289–292. [Google Scholar] [CrossRef]
- Yu, R.Z.; Graham, M.J.; Post, N.; Riney, S.; Zanardi, T.; Hall, S.; Burkey, J.; Shemesh, C.S.; Prakash, T.P.; Seth, P.P.; et al. Disposition and Pharmacology of a GalNAc3-conjugated ASO Targeting Human Lipoprotein (a) in Mice. Mol. Ther. Nucleic Acids 2016, 5, e317. [Google Scholar] [CrossRef] [PubMed]
- Donner, A.J.; Wancewicz, E.V.; Murray, H.M.; Greenlee, S.; Post, N.; Bell, M.; Lima, W.F.; Swayze, E.E.; Seth, P.P. Co-Administration of an Excipient Oligonucleotide Helps Delineate Pathways of Productive and Nonproductive Uptake of Phosphorothioate Antisense Oligonucleotides in the Liver. Nucleic Acid Ther. 2017, 27, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Geary, R.S.; Wancewicz, E.; Matson, J.; Pearce, M.; Siwkowski, A.; Swayze, E.; Bennett, F. Effect of dose and plasma concentration on liver uptake and pharmacologic activity of a 2’-methoxyethyl modified chimeric antisense oligonucleotide targeting PTEN. Biochem. Pharmacol. 2009, 78, 284–291. [Google Scholar] [CrossRef]
- Geary, R.S.; Yu, R.Z.; Watanabe, T.; Henry, S.P.; Hardee, G.E.; Chappell, A.; Matson, J.; Sasmor, H.; Cummins, L.; Levin, A.A. Pharmacokinetics of a tumor necrosis factor-alpha phosphorothioate 2’-O-(2-methoxyethyl) modified antisense oligonucleotide: Comparison across species. Drug Metab. Dispos. Biol. Fate Chem. 2003, 31, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Shemesh, C.S.; Yu, R.Z.; Gaus, H.J.; Greenlee, S.; Post, N.; Schmidt, K.; Migawa, M.T.; Seth, P.P.; Zanardi, T.A.; Prakash, T.P.; et al. Elucidation of the Biotransformation Pathways of a Galnac3-conjugated Antisense Oligonucleotide in Rats and Monkeys. Mol. Ther. Nucleic Acids 2016, 5, e319. [Google Scholar] [CrossRef]
- Shemesh, C.S.; Yu, R.Z.; Warren, M.S.; Liu, M.; Jahic, M.; Nichols, B.; Post, N.; Lin, S.; Norris, D.A.; Hurh, E.; et al. Assessment of the Drug Interaction Potential of Unconjugated and GalNAc(3)-Conjugated 2′-MOE-ASOs. Mol. Ther. Nucleic Acids 2017, 9, 34–47. [Google Scholar] [CrossRef]
- Yu, R.Z.; Warren, M.S.; Watanabe, T.; Nichols, B.; Jahic, M.; Huang, J.; Burkey, J.; Geary, R.S.; Henry, S.P.; Wang, Y. Lack of Interactions Between an Antisense Oligonucleotide with 2’-O-(2-Methoxyethyl) Modifications and Major Drug Transporters. Nucleic Acid Ther. 2016, 26, 111–117. [Google Scholar] [CrossRef]
- Willmann, S.; Marostica, E.; Snelder, N.; Solms, A.; Jensen, M.; Lobmeyer, M.; Lensing, A.W.A.; Bethune, C.; Morgan, E.; Yu, R.Z.; et al. PK/PD modeling of FXI antisense oligonucleotides to bridge the dose-FXI activity relation from healthy volunteers to end-stage renal disease patients. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 890–901. [Google Scholar] [CrossRef]
- Dilger, A.K.; Pabbisetty, K.B.; Corte, J.R.; De Lucca, I.; Fang, T.; Yang, W.; Pinto, D.J.P.; Wang, Y.; Zhu, Y.; Mathur, A.; et al. Discovery of Milvexian, a High-Affinity, Orally Bioavailable Inhibitor of Factor XIa in Clinical Studies for Antithrombotic Therapy. J. Med. Chem. 2022, 65, 1770–1785. [Google Scholar] [CrossRef]
- Perera, V.; Wang, Z.; Luettgen, J.; Li, D.; DeSouza, M.; Cerra, M.; Seiffert, D. First-in-human study of milvexian, an oral, direct, small molecule factor XIa inhibitor. Clin. Transl. Sci. 2022, 15, 330–342. [Google Scholar] [CrossRef]
- Perera, V.; Abelian, G.; Li, D.; Wang, Z.; Zhang, L.; Lubin, S.; Bello, A.; Murthy, B. Single-Dose Pharmacokinetics of Milvexian in Participants with Normal Renal Function and Participants with Moderate or Severe Renal Impairment. Clin. Pharmacokinet. 2022, 61, 1405–1416. [Google Scholar] [CrossRef]
- Piel, I.; Engelen, A.; Lang, D.; Schulz, S.I.; Gerisch, M.; Brase, C.; Janssen, W.; Fiebig, L.; Heitmeier, S.; Kanefendt, F. Metabolism and Disposition of the Novel Oral Factor XIa Inhibitor Asundexian in Rats and in Humans. Eur. J. Drug Metab. Pharmacokinet. 2023, 48, 411–425. [Google Scholar] [CrossRef]
- Kanefendt, F.; Brase, C.; Jungmann, N.; Fricke, R.; Engelen, A.; Schmitz, S. Pharmacokinetics of asundexian with combined CYP3A and P-gp inhibitors and an inducer: Target in vitro and in vivo studies. Br. J. Clin. Pharmacol. 2023. [Google Scholar] [CrossRef]
- Roehrig, S.; Ackerstaff, J.; Jimenez Nunez, E.; Teller, H.; Ellerbrock, P.; Meier, K.; Heitmeier, S.; Tersteegen, A.; Stampfuss, J.; Lang, D.; et al. Design and Preclinical Characterization Program toward Asundexian (BAY 2433334), an Oral Factor XIa Inhibitor for the Prevention and Treatment of Thromboembolic Disorders. J. Med. Chem. 2023, 66, 12203–12224. [Google Scholar] [CrossRef] [PubMed]
- Kanefendt, F.; Brase, C.; Unger, S.; Kubitza, D. Effects of Tablet Formulation, Food, or Gastric pH on the Bioavailability of Asundexian. Clin. Pharmacol. Drug Dev. 2023, 12, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Gnoth, M.J.; Buetehorn, U.; Muenster, U.; Schwarz, T.; Sandmann, S. In vitro and in vivo P-glycoprotein transport characteristics of rivaroxaban. J. Pharmacol. Exp. Ther. 2011, 338, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Corsini, A.; Ferri, N.; Proietti, M.; Boriani, G. Edoxaban and the Issue of Drug-Drug Interactions: From Pharmacology to Clinical Practice. Drugs 2020, 80, 1065–1083. [Google Scholar] [CrossRef] [PubMed]
- Steffel, J.; Collins, R.; Antz, M.; Cornu, P.; Desteghe, L.; Haeusler, K.G.; Oldgren, J.; Reinecke, H.; Roldan-Schilling, V.; Rowell, N.; et al. 2021 European Heart Rhythm Association Practical Guide on the Use of Non-Vitamin K Antagonist Oral Anticoagulants in Patients with Atrial Fibrillation. Europace Eur. Pacing Arrhythm. Card. Electrophysiol. J. Work. Groups Card. Pacing Arrhythm. Card. Cell. Electrophysiol. Eur. Soc. Cardiol. 2021, 23, 1612–1676. [Google Scholar] [CrossRef] [PubMed]
- FDA. For Healthcare Professionals. FDA’s Examples of Drugs That Interact with CYP Enzymes and Transporter Systems. Available online: https://www.fda.gov/drugs/drug-interactions-labeling/healthcare-professionals-fdas-examples-drugs-interact-cyp-enzymes-and-transporter-systems#table%201 (accessed on 21 December 2023).
- Kubitza, D.; Heckmann, M.; Distler, J.; Koechel, A.; Schwers, S.; Kanefendt, F. Pharmacokinetics, pharmacodynamics and safety of BAY 2433334, a novel activated factor XI inhibitor, in healthy volunteers: A randomized phase 1 multiple-dose study. Br. J. Clin. Pharmacol. 2022, 88, 3447–3462. [Google Scholar] [CrossRef] [PubMed]
- Perera, V.; Wang, Z.; Lubin, S.; Christopher, L.J.; Chen, W.; Xu, S.; Seiffert, D.; DeSouza, M.; Murthy, B. Effects of Itraconazole and Diltiazem on the Pharmacokinetics and Pharmacodynamics of Milvexian, A Factor XIa Inhibitor. Cardiol. Ther. 2022, 11, 407–419. [Google Scholar] [CrossRef]
- Perera, V.; Wang, Z.; Lubin, S.; Christopher, L.J.; Chen, W.; Xu, S.; Seiffert, D.; DeSouza, M.; Murthy, B. Effects of rifampin on the pharmacokinetics and pharmacodynamics of milvexian, a potent, selective, oral small molecule factor XIa inhibitor. Sci. Rep. 2022, 12, 22239. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. Guidance for Industry. Drug Interaction Studies—Design, Data Analysis, Implications for Dosing, and Labeling Instructions. 2018. Available online: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.pdf. (accessed on 6 June 2018).
mAbs (Abelacimab, Osocimab, and Xisomab) | Small Molecules (Asundexian and Milvexian) | ASOs (IONIS-FXIRX and Fesomersen) | |
---|---|---|---|
Molecular weight | 150 KDa | <1 KDa | 8–16 KDa |
Mechanism of action | Bind FXIa or inhibit activation of FXI | Inhibit FXIa | Block mRNA of FXI translation |
Administration | i.v. or s.c. | Oral | s.c. |
Administration frequency | Monthly | Daily | Weekly/monthly |
Metabolism | Proteolysis by reticuloendothelial system | CYP450 | N-acetyl-glucosaminidase/DNase II |
Renal excretion | No | Partially (6–18%) | Partially (25%) |
P-gp substrate | No | Yes | No |
Type of DDI | Pharmacodynamic | Pharmacodynamic/Pharmacokinetic | Pharmacodynamic |
Drug | Dabigatran | Rivaroxaban | Apixaban | Edoxaban | Milvexian | Asundexian |
---|---|---|---|---|---|---|
Target | Thrombin | FXa | FXa | FXa | FXIa | FXIa |
Ki (nmol/L) | 4.5 | 0.4 | 0.08 | 0.56 | 0.11 | 1.00 |
Bioavailability | 6.5% | 80% | 50% | 60% | ND | 94% |
Effect of food | Prolonged but not reduced | Increased (mainly with 20 mg) | None | None | Partially increased | Partially reduced |
Vd (L) | 60–70 | 50 | 21 | >300 | 347 | NA |
Proteins bound | 35% | >90% | 87% | 40–59% | 92% | 94% |
Prodrug | Yes | No | No | No | No | No |
Tmax (h) | 1–3 | 2–4 | 3–4 | 2 | 3–4 | 2.5–3 |
T½ (h) | 12–17 | 5–9 | 8–15 | 8–11 | 9–10 | 14–17 |
Metabolism (CYP) | Conjugation | 3A4 (18%), 2J2, Independent from CYP | CYP3A4 (25%), CYP1A2, CYP2J2, CYP2C8, CYP2C9, CYP2C19 | 3A4 (<4%) | 3A4 | 3A4 Modest 2C8, 2C9, 1A1 and 2D6 inhibitor Modest CYP3A4 inducer |
Substrate P-gp | Yes (only prodrug) | Yes | Yes | Yes | Yes | Yes |
Substrate of other transporters | NA | BCRP/ABCG2 | BCRP/ABCG2 | NA | No OATP | NA |
Renal excretion | 80% | 65% | 27% | 35% | 7–18% | 6% |
Posology | BID | OD | BID | OD | BID/OD | BID/OD |
P-gp Inhibitor | Non-P-gp Inhibitor | P-gp Inducer | |
---|---|---|---|
Strong CYP3A inhibitor | itraconazole, ketoconazole, clarithromycin, lopinavir, indinavir, ritonavir, telaprevir | voriconazole, fluconazole | |
Moderate CYP3A inhibitor | erythromycin, verapamil, diltiazem, dronedarone | not identified | doxorubicin |
Weak CYP3A inhibitor | lapatinib, quinidine, cyclosporine, felodipine, azithromycin, ranolazine, ticagrelor, chloroquine, hydroxychloroquine | cimetidine | vinblastine |
CYP3A Inducers | carbamazepine, phenytoin, phenobarbital, rifampin, dexamethasone, tocilizumab, St. John’s Wort |
Treatment | Analyte | AUC Ratio Day 1/Day 1 (90% CI) | AUC Ratio Day 10/Day 1 (90% CI) |
---|---|---|---|
Asundexian 25 mg OD + midazolam | Midazolam | 1.04 (0.97–1.12) | 1.06 (0.99–1.14) |
α-Hydroxymidazolam | 1.07 (0.97–1.17) | 1.06 (0.96–1.16) | |
Asundexian 75 mg OD + midazolam | Midazolam | 1.04 (0.98–1.12) | 1.17 (1.10–1.26) * |
α-Hydroxymidazolam | 0.99 (0.92–1.06) | 0.99 (0.92–1.06) |
Parameter | Asundexian | Asundexian + Itraconazole | Ratio Asundexian +Itraconazole/Asundexian | ||
---|---|---|---|---|---|
AUC (μg h L−1) | 6920 | 14,000 | 2.02 | ||
Cmax (μg L−1) | 377 | 387 | 1.03 | ||
Tmax | 3.48 | 2.49 | 0.71 | ||
T1/2 | 16.2 | 28.9 | 1.78 | ||
CL/F | 3.61 | 1.78 | 0.49 | ||
CLR | 0.307 | 0.180 | 0.59 | ||
Parameter | Asundexian | Asundexian + verapamil | Ratio asundexian + verapamil/asundexian | Asundexian + fluconazole | Ratio asundexian + fluconazole/asundexian |
AUC (μg h L−1) | 6360 | 11,200 | 1.76 | 7430 | 1.17 |
Cmax (μg L−1) | 347 | 396 | 1.14 | 359 | 1.03 |
Tmax (h) | 3.47 | 3.00 | 0.87 | 3.45 | 0.99 |
T1/2 (h) | 21.8 | 22.6 | 1.04 | 15.5 | 0.71 |
CL/F (L h−1) | 3.93 | 2.24 | 0.57 | 3.37 | 0.86 |
CLR (L h−1) | 0.297 | 0.215 | 0.72 | 0.313 | 1.05 |
Parameter | Asundexian | Asundexian + carbamazepine | Ratio asundexian + carbamazepine/asundexian | ||
AUC (μg h L−1) | 11,500 | 6380 | 0.55 | ||
Cmax (μg L−1) | 623 | 509 | 0.82 | ||
Tmax (h) | 2.00 | 3.00 | 1.50 | ||
T1/2 (h) | 14.4 | 11.0 | 0.76 | ||
CL/F (L h−1) | 4.36 | 7.84 | 1.80 | ||
CLR (L h−1) | 0.265 | 0.377 | 1.42 |
Parameter | Milvexian | Milvexian Following Repeated Doses of Rifampicin | Ratio Milvexian + Rifampicin/Milvexian |
---|---|---|---|
Cmax (ng/mL) | 599 | 132 | 0.22 |
AUC (ng·h/mL) | 6153 | 923 | 0.15 |
Tmax (h) | 3.5 | 4.0 | 1.14 |
T1/2 (h) | 13.21 | 8.85 | 0.67 |
Parameter | Milvexian | Milvexian + itraconazole | Ratio milvexian + itraconazole/milvexian |
Cmax (ng/mL) | 229 | 293 | 1.28 |
AUC (ng·h/mL) | 2144 | 5342 | 2.49 |
Tmax (h) | 3.0 | 4.0 | 1.33 |
T1/2 (h) | 11.6 | 17.1 | 1.47 |
Parameter | Milvexian | Milvexian + diltiazem | Ratio milvexian + diltiazem/milvexian |
Cmax (ng/mL) | 248 | 272 | 1.10 |
AUC (ng·h/mL) | 2220 | 3059 | 1.38 |
Tmax (h) | 3.0 | 4.0 | 1.33 |
T1/2 (h) | 12.3 | 13.6 | 1.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferri, N.; Colombo, E.; Corsini, A. Drug–Drug Interactions of FXI Inhibitors: Clinical Relevance. Hematol. Rep. 2024, 16, 151-163. https://doi.org/10.3390/hematolrep16010016
Ferri N, Colombo E, Corsini A. Drug–Drug Interactions of FXI Inhibitors: Clinical Relevance. Hematology Reports. 2024; 16(1):151-163. https://doi.org/10.3390/hematolrep16010016
Chicago/Turabian StyleFerri, Nicola, Elisa Colombo, and Alberto Corsini. 2024. "Drug–Drug Interactions of FXI Inhibitors: Clinical Relevance" Hematology Reports 16, no. 1: 151-163. https://doi.org/10.3390/hematolrep16010016
APA StyleFerri, N., Colombo, E., & Corsini, A. (2024). Drug–Drug Interactions of FXI Inhibitors: Clinical Relevance. Hematology Reports, 16(1), 151-163. https://doi.org/10.3390/hematolrep16010016